Maharashtra State Board Class IX Mathematics – Geometry Board Paper 2 Solution

Time: 2 hours

Total Marks: 40

1.

i. The ratio of the angles of the triangle is 2 : 2 : 5. Let the measures of the angles be 2x°, 2x° and 5x°. Then 2x° + 2x° + 5x° = 180°
∴ 9x° = 180°
∴ x° = 20°
∴ 2x° = 2 × 20° = 40° and 5x° = 5 × 20 = 100°
Since two angles of the triangle are equal, it is an isosceles triangle.

- ii. AB + BC > CA, BC + AC > AB, AC + AB > BCYes, they form a triangle as sum of two sides is greater than the third side
- iii. $AM = \frac{AB}{2} = \frac{24}{2} = 12 \text{ cm and } AO = \frac{AD}{2} = \frac{30}{2} = 15 \text{ cm}$ In $\triangle AOM$, $AO^2 = AM^2 + OM^2 \dots (Pythagoras theorem)$ $\therefore (15)^2 = (12)^2 + OM^2$ $\therefore 225 = 144 + OM^2$ $\therefore OM^2 = 225 - 144 = 81$ $\therefore OM = 9 \text{ cm}$

Thus, the distance of AB from the centre of the circle is 9 cm.

iv. Let $J = (x_1, y_1)$ and $L = (x_2, y_2)$ Here, $x_1 = -8$, $y_1 = -4$, $x_2 = 1$, $y_2 = 2$, m = 1, n = 2Let P = (x, y) divides JL externally in the given ratio. Then, by section formula for external division, we have $x = \frac{mx_2 - nx_1}{m - n} = \frac{1(1) - 2(-8)}{1 - 2} = \frac{1 + 16}{-1} = -17$ $y = \frac{my_2 - ny_1}{m - n} = \frac{1(2) - 2(-4)}{1 - 2} = \frac{2 + 8}{-1} = -10$

Thus, the co-ordinates of the point $P \equiv (-17, -10)$.

v.
$$\cot 45^\circ = 1$$
, $\sec 60^\circ = 2$, $\csc 30^\circ = 2$ and $\cot 90^\circ = 0$
 $\therefore 4\cot^2 45^\circ - \sec^2 60^\circ + \csc^2 30^\circ + \cot 90^\circ$
 $= 4(1)^2 - (2)^2 + (2)^2 + 0$
 $= 4 - 4 + 4$
 $= 4$

vi. Radius of the circle = r = 28 cm \therefore Diameter of the circle = d = 2r = 2 × 28 = 56 cm Perimeter of the semicircle = π r + d

$$= \frac{22}{7} \times 28 + 56$$

= 22 \times 4 + 56
= 88 + 56
= 144 cm

2.

i. Measure of the given angle = $\frac{3}{5} \times$ right angle = $\frac{3}{5} \times 90^{\circ}$ = $3 \times 18^{\circ}$ = 54°

Thus, the measure of its supplementary angle = $180^{\circ} - 54^{\circ} = 126^{\circ}$

ii. $\Delta CAB \sim \Delta FDE$

$\therefore \frac{CA}{FD} = \frac{AB}{DE} = \frac{CB}{FE}$	\dots (Corresponding sides are proportional)
$\therefore \frac{13}{12} = \frac{12}{12} = \frac{5}{12}$	
n m 2	
. 12 _ 5	
$\frac{1}{m} = \frac{1}{2}$	
$\therefore m = \frac{12 \times 2}{5} = \frac{24}{5}$	
∴ m = 4.8	
Also, $\frac{13}{n} = \frac{5}{2}$	
$\therefore n = \frac{13 \times 2}{5} = \frac{26}{5}$	
∴ n = 5.2	

iii. In $\triangle ABC$, $\angle A + \angle B + \angle C = 180^{\circ}$ $\therefore 40^{\circ} + 80^{\circ} + \angle C = 180^{\circ}$ $\therefore \angle C = 180^{\circ} - 120^{\circ} = 60^{\circ}$ The descending order of the measures of the angles is $\angle B > \angle C > \angle A$. 80° \therefore side AC > side AB > side BC(Sides opposite to the angles) Thus, the shortest side is side BC and the longest side is side AC. iv. BD = 3DC....(given) Let DC = xThen, BD = 3x(1) Now, BC = BD + DC = 3x + x = 4x $\therefore BC^2 = 16x^2$ (2) In right-angled \triangle ADB, by Pythagoras theorem, $AB^2 = AD^2 + BD^2$ (3) Similarly, in right-angled $\triangle ADC$, $AC^2 = AD^2 + DC^2$ $\therefore AD^2 = AC^2 - DC^2 \qquad \dots (4)$ From (3) and (4), we have $AB^2 = AC^2 - DC^2 + BD^2$ $= AC^2 - x^2 + (3x)^2$ $= AC^2 - x^2 + 9x^2$ $= AC^{2} + 8x^{2}$ $= AC^{2} + \frac{1}{2} \times 16x^{2}$ (5)

$$\therefore AB^{2} = AC^{2} + \frac{1}{2}BC^{2} \qquad ... [From (5) and (2)]$$

v. Let the length of one side of the parallelogram be x cm.

Then, the length of other side is (25 + x) cm.

Perimeter of the parallelogram is 150 cm.

$$\therefore x + (25 + x) + x + (25 + x) = 150$$

- $\therefore 4x + 50 = 150$
- ∴ 4x = 100
- ∴ x = 25 cm
- $\therefore 25 + x = 25 + 25 = 50 \text{ cm}$

Thus, the lengths of the sides of the parallelogram are 25 cm, 50 cm, 25 cm and 50 cm.

vi.
$$\frac{\tan^2 60^\circ + 4\cos^2 45^\circ + \sec^2 30^\circ + 5\cos^2 90^\circ}{\cos e 30^\circ + \sec 60^\circ - \cot^2 30^\circ}$$
$$= \frac{\left(\sqrt{3}\right)^2 + 4\left(\frac{1}{\sqrt{2}}\right)^2 + \left(\frac{2}{\sqrt{3}}\right)^2 + 5 \times 0}{2 + 2 - \left(\sqrt{3}\right)^2}$$
$$= \frac{3 + 4 \times \frac{1}{2} + \frac{4}{3} + 0}{4 - 3}$$
$$= \frac{3 + 2 + \frac{4}{3}}{1}$$
$$= \frac{9 + 6 + 4}{3}$$
$$= \frac{19}{3}$$

3.

i. PQ is a straight line. \therefore a + b = 180°(Linear pair of angles)(1) Now, $a - b = 80^{\circ}$ (given)(2) Adding equation (1) and (2), we get $a + b + a - b = 180^{\circ} + 80^{\circ}$ ∴ 2a = 260° ∴ a = 130° Substituting $a = 130^{\circ}$ in equation (1), we get $130^{\circ} + b = 180^{\circ}$ ∴ b = 180° - 130° ∴ b = 50° $\therefore \angle POR = 130^{\circ} \text{ and } \angle ROQ = 50^{\circ}$ ii. (a) In $\triangle ABC$ and $\triangle CDE$, $m \angle B = m \angle D = 90^{\circ}$ hypotenuse AC \cong hypotenuse CE(Given) seg BC \cong seg ED(Given) ∴ ΔABC ≌ ΔCDE(Hypotenuse-side theorem) (b) As $\triangle ABC \cong \triangle CDE$ ∴∠BAC ≌ ∠DCE(1)(c.a.c.t.)

(c) In $\triangle ABC$, $\angle BAC + \angle ACB = 90^{\circ} \dots (2)$ (Acute angles of a right-angled triangle) From (1) and (2), $\angle DCE + \angle ACB = 90^{\circ} \dots (3)$ Now, $\angle ACB + \angle ACE + \angle DCE = 180^{\circ}$ $\therefore \underline{\angle ACB + \angle DCE} + \angle ACE = 180^{\circ}$ $\therefore 90^{\circ} + \angle ACE = 180^{\circ} \dots [From (3)]$ $\therefore \angle ACE = 90^{\circ}$

iii. $\triangle ABC$ is an isosceles triangle.(given)

$$\therefore AB = AC$$

Now, D, E and F are the mid-points of sides AB, AC and BC respectively. Then, by mid-point theorem, we have

$$EF = \frac{1}{2}AB \text{ and } DF = \frac{1}{2}AC$$

Since, AB = AC,
$$\frac{1}{2}AB = \frac{1}{2}AC$$

∴ EF = DF
Now, in ΔDEF, EF = DF
Hence, DEF is an isosceles triangle.

iv. $A \equiv (-3, 0)$ and $B \equiv (3, 0)$

Let C = (x, y)Since $\triangle ABC$ is an equilateral triangle, we have AB = BC = AC $\therefore AB^2 = BC^2 = AC^2$ Consider, $AB^2 = BC^2$ $\therefore [3 - (-3)]^2 + (0)^2 = (x - 3)^2 + (y - 0)^2$ $\therefore 36 = x^2 - 6x + 9 + y^2$ $\therefore x^2 - 6x + y^2 = 27$ (1) Consider, $BC^2 = AC^2$ $\therefore (x - 3)^2 + (y - 0)^2 = [x - (-3)]^2 + (y - 0)^2$ $\therefore x^2 - 6x + 9 + y^2 = (x + 3)^2 + y^2$ $\therefore x^2 - 6x + 9 + y^2 = x^2 + 6x + 9 + y^2$ $\therefore 12x = 0$ $\therefore x = 0$ Substituting x = 0 in equation (1), we get $(0)^2 - 6(0) + y^2 = 27$ $\therefore y^2 = 27$ $\therefore y = \pm 3\sqrt{3}$ Thus, the coordinates of C are $(0, 3\sqrt{3})$ or $(0, -3\sqrt{3})$.

v. In
$$\triangle ABC$$
, $\angle B = 90^{\circ}$, $\angle ACB = x$
 $\therefore \angle BAC = 90^{\circ} - x$
In $\triangle ADC$, $\angle D = 90^{\circ}$, $\angle ACD = y$
 $\therefore \angle DAC = 90^{\circ} - y$
 $\tan x = \frac{AB}{BC}$
 $\cot(90^{\circ} - y) = \cot \angle DAC = \frac{AD}{DC}$
 $\sec y = \frac{AC}{CD}$
 $\sin(90^{\circ} - x) = \sin \angle BAC = \frac{BC}{AC}$
 $\cos \sec(90^{\circ} - y) = \csc \angle DAC = \frac{AC}{DC}$
 $\cos(90^{\circ} - x) = \cos \angle BAC = \frac{AB}{AC}$

4.

i. Let
$$\Delta PQR$$
 be an isosceles triangle.
(a) Let $PQ = PR = x \text{ cm} \dots (1)$
 $QR = 1.5x \dots (2)$
Now, perimeter of $\Delta PQR = 42 \text{ cm} \dots (given)$
 $\therefore PQ + PR + QR = 42$
 $\therefore x + x + 1.5x = 42$ [From (1) and (2)]
 $\therefore 3.5x = 42$
 $\therefore x = 12$
 $\therefore PQ = PR = 12 \text{ cm}$
 $QR = 1.5x = 1.5 \times 12 = 18 \text{ cm}$
Thus, the length of congruent sides of a triangle, PQ = PR = 12 \text{ cm}.

- (b)In an isosceles triangle, the perpendicular to the base bisects the base.
- Let PS \perp QR. Le PS = h \therefore QS = $\frac{1}{2} \times QR = \frac{1}{2} \times 18 = 9 \text{ cm}$ In \triangle PQS, using Pythagoras theorem, PQ² = QS² + PS² \therefore (12)² = (9)² + h² \therefore 144 = 81 + h² \therefore h² = 144 - 81 = 63 \therefore h = $3\sqrt{7}$ cm Thus, the height of a triangle, PS = $3\sqrt{7}$ cm. (c) Area of \triangle PQR = $\frac{1}{2} \times$ base \times height

$$\therefore A(\Delta PQR) = \frac{1}{2} \times QR \times PS = \frac{1}{2} \times 18 \times 3\sqrt{7} = 27\sqrt{7} \text{ cm}^2$$

Thus, the area of a triangle is $27\sqrt{7} \text{ cm}^2$.

ii. Let the measure of $\angle D$ be x°.

Then,
$$4 \angle S = 3 \angle D = 3x^{\circ}$$

 $\therefore \angle S = \frac{3x^{\circ}}{4}$
Also, $6 \angle R = 3 \angle D = 3x^{\circ}$
 $\therefore \angle R = \frac{3x^{\circ}}{6} = \frac{x^{\circ}}{2}$
Now, in $\triangle DSR$,
 $\angle D + \angle S + \angle R = 180^{\circ}$ (Angle sum property of a triangle)
 $\therefore x^{\circ} + \frac{3x^{\circ}}{4} + \frac{x^{\circ}}{2} = 180^{\circ}$
 $\therefore 4x^{\circ} + 3x^{\circ} + 2x^{\circ} = 180^{\circ} \times 4$
 $\therefore 9x^{\circ} = 180^{\circ} \times 4$
 $\therefore x^{\circ} = \frac{180^{\circ} \times 4}{9}$
 $\therefore x^{\circ} = 80^{\circ}$
 $\therefore \angle S = \frac{3x^{\circ}}{4} = \frac{3 \times 80^{\circ}}{4} = 3 \times 20^{\circ} = 60^{\circ}$
 $\angle R = \frac{x^{\circ}}{2} = \frac{80^{\circ}}{2} = 40^{\circ}$
 $\therefore \angle D = 80^{\circ}, \angle S = 60^{\circ}$ and $\angle R = 40^{\circ}$

- iii. Steps of construction:
 - 1. Draw a line I, take any point M outside it.
 - 2. Taking M as the centre and any radius, draw two arcs of circle on line $\ensuremath{\mathsf{I}}.$
 - 3. Name the points of intersection of the arcs and line I as P and Q respectively.
 - 4. Taking P and Q as the centres, and radius more than half of PQ, draw arcs of circle above and below line I.
 - 5. Name the points of intersection as E and D.
 - 6. Draw line $n \perp$ line I by joining the points E and D.
 - 7. Taking M as the centre and any radius, draw arcs of circle above and below point M on line n. Name the points of intersection as R and S.
 - 8. Taking R and S as the centres and radius more than half of RS, draw arcs of circle on both sides of line n. Name the points of intersection as A and B.
 - 9. Draw line m \perp line n by joining the points A and B.

Now, line $I \perp$ line n and line m \perp line n.

Hence, line m and line I are parallel to each other.

5.

i.
$$I(AB) + I(BC) = I(AC)$$
 (A-B-C)
 $\therefore I(AB) + 5 = 8$
 $\therefore I(AB) = 3 \text{ units } \dots(1)$
seg AC \cong seg BD $\dots(\text{given})$
 $\therefore I(BD) = 8$
 $I(BC) + I(CD) = I(BD)$ (B-C-D)
 $\therefore 5 + I(CD) = 8$
 $\therefore I(CD) = 3 \text{ units } \dots(2)$
seg BD \cong seg CE $\dots(\text{given})$
 $\therefore I(CE) = 8$
 $I(CD) + I(DE) = I(CE)$ (C-D-E)
 $\therefore 3 + I(DE) = 8$
 $\therefore I(DE) = 5 \text{ units } \dots(3)$
(a) $I(BC) = I(DE) = 5 \text{ units } \dots(From (3) \text{ and given that } I(BC) = 5]$
 \therefore seg BC \cong seg DE

(b)I(AB) = I(CD) = 3 units[From (1) and (2)] ∴ seg AB \cong seg CD

ii. In $\triangle ABM$ and $\triangle PQN$,

 $\angle AMB = \angle PNQ \dots (each right angle)$ $AB = PQ \dots (given)$ $AM = PN \dots (given)$ $<math display="block"> \therefore \Delta ABM \cong \Delta PQN \dots (hypotenuse-side congruence of right triangles)$ $\\\therefore BM = QN \dots (1)(c.p.c.t.)$ $In <math>\Delta AMC$ and ΔPNR , $\angle AMC = \angle PNR \dots (each right angle)$ $AC = PR \dots (given)$ $AM = PN \dots (given)$ $\\\therefore \Delta AMC = \Delta PNR \dots (hypotenuse-side congruence of right triangles)$ $\\\therefore MC = NR \dots (2)(c.p.c.t.)$ Adding (1) and (2), we getBM + MC = QN + NR $\\\therefore BC = QR$ $Now, in <math>\Delta ABC$ and ΔPQR , AB = PQ(given) AC = PR(given) BC = QR(proved above)∴ ΔABC ≅ ΔPQR

iii. Let \Box PQRS be a rhombus with \angle PSR = 60°.

In ΔPSR,

PS = SR(sides of a rhombus)

 $\therefore \angle SPR = \angle SRP$ (1)(angles opposite to equal sides are equal) Now, in $\triangle PSR$,

 $\angle PSR + \angle SPR + \angle SRP = 180^{\circ}$

 $\therefore 2 \angle SPR + 60^\circ = 180^\circ$ [From (1)]

- ∴ 2∠SPR = 120°
- $\therefore \angle SPR = 60^{\circ} = \angle SRP$

 $\therefore \Delta PSR$ is an equilateral triangle.

Since in a parallelogram, the opposite angles are equal, we have $\angle PQR = 60^{\circ}$

In ∆PQR,

PQ = QR(sides of a rhombus)

 $\therefore \angle QPR = \angle QRP$ (2)(angles opposite to equal sides are equal) Now, in $\triangle PQR$,

 $\angle PQR + \angle QPR + \angle QRP = 180^{\circ}$

- $\therefore 2 \angle QPR + 60^\circ = 180^\circ$ [From (2)]
- ∴ 2∠APR = 120°
- $\therefore \angle QPR = 60^{\circ} = \angle QRP$
- $\therefore \Delta PQR$ is an equilateral triangle.

Thus, in a rhombus with an angle of 60°, the shorter diagonal divides the rhombus into two equilateral triangles.