# Maharashtra State Board Class IX Mathematics - Geometry Board Paper 2 <br> Solution 

## Time: 2 hours

Total Marks: 40
1.
i. The ratio of the angles of the triangle is $2: 2: 5$.

Let the measures of the angles be $2 x^{\circ}, 2 x^{\circ}$ and $5 x^{\circ}$.
Then $2 x^{\circ}+2 x^{\circ}+5 x^{\circ}=180^{\circ}$
$\therefore 9 x^{\circ}=180^{\circ}$
$\therefore \mathrm{x}^{\circ}=20^{\circ}$
$\therefore 2 x^{\circ}=2 \times 20^{\circ}=40^{\circ}$ and $5 x^{\circ}=5 \times 20=100^{\circ}$
Since two angles of the triangle are equal, it is an isosceles triangle.
ii. $A B+B C>C A, B C+A C>A B, A C+A B>B C$

Yes, they form a triangle as sum of two sides is greater than the third side
iii. $A M=\frac{A B}{2}=\frac{24}{2}=12 \mathrm{~cm}$ and $A O=\frac{A D}{2}=\frac{30}{2}=15 \mathrm{~cm}$

In $\triangle A O M$,
$\mathrm{AO}^{2}=\mathrm{AM}^{2}+\mathrm{OM}^{2} \ldots$ (Pythagoras theorem)
$\therefore(15)^{2}=(12)^{2}+\mathrm{OM}^{2}$
$\therefore 225=144+\mathrm{OM}^{2}$
$\therefore \mathrm{OM}^{2}=225-144=81$
$\therefore \mathrm{OM}=9 \mathrm{~cm}$
Thus, the distance of $A B$ from the centre of the circle is 9 cm .
iv. Let $\mathrm{J} \equiv\left(\mathrm{x}_{1}, \mathrm{y}_{1}\right)$ and $\mathrm{L} \equiv\left(\mathrm{x}_{2}, \mathrm{y}_{2}\right)$

Here, $x_{1}=-8, y_{1}=-4, x_{2}=1, y_{2}=2, m=1, n=2$
Let $P \equiv(x, y)$ divides JL externally in the given ratio.
Then, by section formula for external division, we have

$$
\begin{aligned}
& x=\frac{m x_{2}-n x_{1}}{m-n}=\frac{1(1)-2(-8)}{1-2}=\frac{1+16}{-1}=-17 \\
& y=\frac{m y_{2}-n y_{1}}{m-n}=\frac{1(2)-2(-4)}{1-2}=\frac{2+8}{-1}=-10
\end{aligned}
$$

Thus, the co-ordinates of the point $P \equiv(-17,-10)$.
v. $\cot 45^{\circ}=1, \sec 60^{\circ}=2, \operatorname{cosec} 30^{\circ}=2$ and $\cot 90^{\circ}=0$

$$
\begin{aligned}
& \therefore 4 \cot ^{2} 45^{\circ}-\sec ^{2} 60^{\circ}+\operatorname{cosec}^{2} 30^{\circ}+\cot 90^{\circ} \\
& =4(1)^{2}-(2)^{2}+(2)^{2}+0 \\
& =4-4+4 \\
& =4
\end{aligned}
$$

vi. Radius of the circle $=r=28 \mathrm{~cm}$
$\therefore$ Diameter of the circle $=d=2 r=2 \times 28=56 \mathrm{~cm}$
Perimeter of the semicircle $=\pi r+d$

$$
\begin{aligned}
& =\frac{22}{7} \times 28+56 \\
& =22 \times 4+56 \\
& =88+56 \\
& =144 \mathrm{~cm}
\end{aligned}
$$

2. 

i. Measure of the given angle $=\frac{3}{5} \times$ right angle

$$
\begin{aligned}
& =\frac{3}{5} \times 90^{\circ} \\
& =3 \times 18^{\circ} \\
& =54^{\circ}
\end{aligned}
$$

Thus, the measure of its supplementary angle $=180^{\circ}-54^{\circ}=126^{\circ}$
ii. $\triangle \mathrm{CAB} \sim \triangle \mathrm{FDE}$
$\therefore \frac{C A}{F D}=\frac{A B}{D E}=\frac{C B}{F E} \quad \ldots$ (Corresponding sides are proportional)
$\therefore \frac{13}{\mathrm{n}}=\frac{12}{\mathrm{~m}}=\frac{5}{2}$
$\therefore \frac{12}{\mathrm{~m}}=\frac{5}{2}$
$\therefore \mathrm{m}=\frac{12 \times 2}{5}=\frac{24}{5}$
$\therefore \mathrm{m}=4.8$
Also, $\frac{13}{\mathrm{n}}=\frac{5}{2}$
$\therefore \mathrm{n}=\frac{13 \times 2}{5}=\frac{26}{5}$
$\therefore \mathrm{n}=5.2$
iii. In $\triangle A B C, \angle A+\angle B+\angle C=180^{\circ}$
$\therefore 40^{\circ}+80^{\circ}+\angle C=180^{\circ}$
$\therefore \angle C=180^{\circ}-120^{\circ}=60^{\circ}$
The descending order of the measures of the angles is $\angle B>\angle C>\angle A$.
$\therefore$ side $A C>$ side $A B>$ side $B C \quad \ldots$ (Sides opposite to
 the angles)

Thus, the shortest side is side BC and the longest side is side AC.
iv. $B D=3 D C$

Let $D C=x$
Then, $B D=3 x$
Now, $B C=B D+D C=3 x+x=4 x$
$\therefore B C^{2}=16 \mathrm{x}^{2}$
In right-angled $\triangle A D B$, by Pythagoras theorem,

$$
\begin{equation*}
A B^{2}=A D^{2}+B D^{2} \tag{3}
\end{equation*}
$$

Similarly, in right-angled $\triangle A D C$,
$A C^{2}=A D^{2}+D C^{2}$
$\therefore A D^{2}=A C^{2}-D C^{2}$
From (3) and (4), we have

$$
\begin{align*}
A B^{2} & =A C^{2}-D C^{2}+B D^{2} \\
& =A C^{2}-x^{2}+(3 x)^{2} \\
& =A C^{2}-x^{2}+9 x^{2} \\
& =A C^{2}+8 x^{2} \\
& =A C^{2}+\frac{1}{2} \times 16 x^{2}  \tag{5}\\
& \therefore A B^{2}=A C^{2}+\frac{1}{2} B C^{2}
\end{align*}
$$

$v$. Let the length of one side of the parallelogram be $\times \mathrm{cm}$.
Then, the length of other side is $(25+x) \mathrm{cm}$.
Perimeter of the parallelogram is 150 cm .
$\therefore \mathrm{x}+(25+\mathrm{x})+\mathrm{x}+(25+\mathrm{x})=150$
$\therefore 4 x+50=150$
$\therefore 4 x=100$
$\therefore x=25 \mathrm{~cm}$
$\therefore 25+x=25+25=50 \mathrm{~cm}$
Thus, the lengths of the sides of the parallelogram are $25 \mathrm{~cm}, 50 \mathrm{~cm}, 25$ cm and 50 cm .
vi. $\frac{\tan ^{2} 60^{\circ}+4 \cos ^{2} 45^{\circ}+\sec ^{2} 30^{\circ}+5 \cos ^{2} 90^{\circ}}{\operatorname{cosec} 30^{\circ}+\sec 60^{\circ}-\cot ^{2} 30^{\circ}}$

$$
\begin{aligned}
& =\frac{(\sqrt{3})^{2}+4\left(\frac{1}{\sqrt{2}}\right)^{2}+\left(\frac{2}{\sqrt{3}}\right)^{2}+5 \times 0}{2+2-(\sqrt{3})^{2}} \\
& =\frac{3+4 \times \frac{1}{2}+\frac{4}{3}+0}{4-3} \\
& =\frac{3+2+\frac{4}{3}}{1} \\
& =\frac{9+6+4}{3} \\
& =\frac{19}{3}
\end{aligned}
$$

3. 

i. $P Q$ is a straight line.
$\therefore \mathrm{a}+\mathrm{b}=180^{\circ}$
....(Linear pair of angles)(1)
Now, $a-b=80^{\circ} \quad \ldots$ (given)(2)
Adding equation (1) and (2), we get
$a+b+a-b=180^{\circ}+80^{\circ}$
$\therefore 2 a=260^{\circ}$
$\therefore \mathrm{a}=130^{\circ}$
Substituting $a=130^{\circ}$ in equation (1), we get
$130^{\circ}+b=180^{\circ}$
$\therefore \mathrm{b}=180^{\circ}-130^{\circ}$
$\therefore \mathrm{b}=50^{\circ}$
$\therefore \angle \mathrm{POR}=130^{\circ}$ and $\angle \mathrm{ROQ}=50^{\circ}$
ii.
(a) In $\triangle A B C$ and $\triangle C D E$,
$\mathrm{m} \angle \mathrm{B}=\mathrm{m} \angle \mathrm{D}=90^{\circ}$
hypotenuse $A C \cong$ hypotenuse $C E$ ....(Given)
seg $B C \cong$ seg ED
$\therefore \triangle \mathrm{ABC} \cong \triangle \mathrm{CDE}$
....(Hypotenuse-side theorem)
(b) As $\triangle \mathrm{ABC} \cong \triangle \mathrm{CDE}$
$\therefore \angle \mathrm{BAC} \cong \angle \mathrm{DCE}$
....(1)(c.a.c.t.)
(c) In $\triangle A B C$,
$\angle B A C+\angle A C B=90^{\circ} \ldots(2)($ Acute angles of a right-angled triangle)
From (1) and (2),
$\angle \mathrm{DCE}+\angle \mathrm{ACB}=90^{\circ}$
Now, $\angle \mathrm{ACB}+\angle \mathrm{ACE}+\angle \mathrm{DCE}=180^{\circ}$
$\therefore \angle \mathrm{ACB}+\angle \mathrm{DCE}+\angle \mathrm{ACE}=180^{\circ}$
$\therefore 90^{\circ}+\angle A C E=180^{\circ}$
....[From (3)]
$\therefore \angle \mathrm{ACE}=90^{\circ}$
iii. $\triangle A B C$ is an isosceles triangle. ....(given)
$\therefore A B=A C$
Now, D, E and F are the mid-points of sides $A B, A C$ and $B C$ respectively.
Then, by mid-point theorem, we have
$E F=\frac{1}{2} A B$ and $D F=\frac{1}{2} A C$
Since, $A B=A C$,
$\frac{1}{2} A B=\frac{1}{2} A C$
$\therefore \mathrm{EF}=\mathrm{DF}$
Now, in $\triangle D E F, E F=D F$


Hence, DEF is an isosceles triangle.
iv. $A \equiv(-3,0)$ and $B \equiv(3,0)$

Let $C \equiv(x, y)$
Since $\triangle A B C$ is an equilateral triangle, we have
$A B=B C=A C$
$\therefore A B^{2}=B C^{2}=A C^{2}$
Consider, $A B^{2}=B C^{2}$
$\therefore[3-(-3)]^{2}+(0)^{2}=(x-3)^{2}+(y-0)^{2}$
$\therefore 36=x^{2}-6 x+9+y^{2}$
$\therefore x^{2}-6 x+y^{2}=27$
Consider, $\mathrm{BC}^{2}=\mathrm{AC}^{2}$
$\therefore(x-3)^{2}+(y-0)^{2}=[x-(-3)]^{2}+(y-0)^{2}$
$\therefore x^{2}-6 x+9+y^{2}=(x+3)^{2}+y^{2}$
$\therefore x^{2}-6 x+9+y^{2}=x^{2}+6 x+9+y^{2}$
$\therefore 12 x=0$
$\therefore \mathrm{x}=0$

Substituting $x=0$ in equation (1), we get
$(0)^{2}-6(0)+y^{2}=27$
$\therefore y^{2}=27$
$\therefore \mathrm{y}= \pm 3 \sqrt{3}$
Thus, the coordinates of $C$ are $(0,3 \sqrt{3})$ or $(0,-3 \sqrt{3})$.
v. In $\triangle A B C, \angle B=90^{\circ}, \angle A C B=x$
$\therefore \angle B A C=90^{\circ}-x$
In $\triangle A D C, \angle D=90^{\circ}, \angle A C D=y$
$\therefore \angle D A C=90^{\circ}-\mathrm{y}$
$\tan x=\frac{A B}{B C}$
$\cot \left(90^{\circ}-\mathrm{y}\right)=\cot \angle \mathrm{DAC}=\frac{\mathrm{AD}}{\mathrm{DC}}$
$\sec y=\frac{A C}{C D}$
$\sin \left(90^{\circ}-x\right)=\sin \angle B A C=\frac{B C}{A C}$
$\operatorname{cosec}\left(90^{\circ}-y\right)=\operatorname{cosec} \angle D A C=\frac{A C}{D C}$
$\cos \left(90^{\circ}-x\right)=\cos \angle \mathrm{BAC}=\frac{\mathrm{AB}}{\mathrm{AC}}$
4.
i. Let $\triangle P Q R$ be an isosceles triangle.
(a) Let $P Q=P R=x \mathrm{~cm}$

$$
\mathrm{QR}=1.5 \mathrm{x}
$$

Now, perimeter of $\triangle P Q R=42 \mathrm{~cm} \ldots$ (given)
$\therefore P Q+P R+Q R=42$
$\therefore \mathrm{x}+\mathrm{x}+1.5 \mathrm{x}=42 \quad[$ From (1) and (2)]
$\therefore 3.5 x=42$

$\therefore \mathrm{x}=12$
$\therefore \mathrm{PQ}=\mathrm{PR}=12 \mathrm{~cm}$
$Q R=1.5 x=1.5 \times 12=18 \mathrm{~cm}$
Thus, the length of congruent sides of a triangle, $\mathrm{PQ}=\mathrm{PR}=12 \mathrm{~cm}$.
(b) In an isosceles triangle, the perpendicular to the base bisects the base. Let $P S \perp Q R$.
Le $P S=h$
$\therefore \mathrm{QS}=\frac{1}{2} \times \mathrm{QR}=\frac{1}{2} \times 18=9 \mathrm{~cm}$
In $\triangle \mathrm{PQS}$, using Pythagoras theorem,
$\mathrm{PQ}^{2}=\mathrm{QS}^{2}+\mathrm{PS}^{2}$
$\therefore(12)^{2}=(9)^{2}+\mathrm{h}^{2}$
$\therefore 144=81+\mathrm{h}^{2}$
$\therefore \mathrm{h}^{2}=144-81=63$
$\therefore \mathrm{h}=3 \sqrt{7} \mathrm{~cm}$
Thus, the height of a triangle, $\mathrm{PS}=3 \sqrt{7} \mathrm{~cm}$.
(c) Area of $\triangle \mathrm{PQR}=\frac{1}{2} \times$ base $\times$ height

$$
\therefore \mathrm{A}(\triangle \mathrm{PQR})=\frac{1}{2} \times \mathrm{QR} \times \mathrm{PS}=\frac{1}{2} \times 18 \times 3 \sqrt{7}=27 \sqrt{7} \mathrm{~cm}^{2}
$$

Thus, the area of a triangle is $27 \sqrt{7} \mathrm{~cm}^{2}$.
ii. Let the measure of $\angle \mathrm{D}$ be $\mathrm{x}^{\circ}$.

Then, $4 \angle S=3 \angle D=3 x^{\circ}$
$\therefore \angle \mathrm{S}=\frac{3 \mathrm{x}^{\circ}}{4}$
Also, $6 \angle \mathrm{R}=3 \angle \mathrm{D}=3 x^{\circ}$
$\therefore \angle \mathrm{R}=\frac{3 \mathrm{x}^{\circ}}{6}=\frac{\mathrm{x}^{\circ}}{2}$
Now, in $\triangle \mathrm{DSR}$,

$$
\begin{aligned}
& \angle \mathrm{D}+\angle \mathrm{S}+\angle \mathrm{R}=180^{\circ} \ldots .(\text { Angle sum property of a triangle) } \\
& \therefore \mathrm{x}^{\circ}+\frac{3 \mathrm{x}^{\circ}}{4}+\frac{\mathrm{x}^{\circ}}{2}=180^{\circ} \\
& \therefore 4 \mathrm{x}^{\circ}+3 \mathrm{x}^{\circ}+2 \mathrm{x}^{\circ}=180^{\circ} \times 4 \\
& \therefore 9 \mathrm{x}^{\circ}=180^{\circ} \times 4 \\
& \therefore \mathrm{x}^{\circ}=\frac{180^{\circ} \times 4}{9} \\
& \therefore \mathrm{x}^{\circ}=80^{\circ} \\
& \therefore \angle \mathrm{S}=\frac{3 \mathrm{x}^{\circ}}{4}=\frac{3 \times 80^{\circ}}{4}=3 \times 20^{\circ}=60^{\circ} \\
& \angle \mathrm{R}=\frac{\mathrm{x}^{\circ}}{2}=\frac{80^{\circ}}{2}=40^{\circ} \\
& \therefore \angle \mathrm{D}=80^{\circ}, \angle \mathrm{S}=60^{\circ} \text { and } \angle \mathrm{R}=40^{\circ}
\end{aligned}
$$

iii. Steps of construction:

1. Draw a line $I$, take any point $M$ outside it.
2. Taking $M$ as the centre and any radius, draw two arcs of circle on line I.
3. Name the points of intersection of the arcs and line $I$ as $P$ and $Q$ respectively.
4. Taking $P$ and $Q$ as the centres, and radius more than half of $P Q$, draw arcs of circle above and below line $I$.
5. Name the points of intersection as E and D.
6. Draw line $\mathrm{n} \perp$ line $I$ by joining the points $E$ and $D$.
7. Taking $M$ as the centre and any radius, draw arcs of circle above and below point $M$ on line $n$. Name the points of intersection as $R$ and $S$.
8. Taking $R$ and $S$ as the centres and radius more than half of RS, draw arcs of circle on both sides of line $n$. Name the points of intersection as A and B .
9. Draw line $m \perp$ line $n$ by joining the points $A$ and $B$.

Now, line $I \perp$ line $n$ and line $m \perp$ line $n$.
Hence, line $m$ and line I are parallel to each other.

5.
i. $\quad I(A B)+I(B C)=I(A C) \quad(A-B-C)$
$\therefore I(A B)+5=8$
$\therefore I(A B)=3$ units
$\operatorname{seg} A C \cong \operatorname{seg} B D$
$\therefore \mathrm{I}(\mathrm{BD})=8$
$I(B C)+I(C D)=I(B D) \quad(B-C-D)$
$\therefore 5+\mathrm{I}(\mathrm{CD})=8$
$\therefore I(C D)=3$ units
$\operatorname{seg} B D \cong \operatorname{seg} C E$
$\therefore I(C E)=8$
$I(C D)+I(D E)=I(C E) \quad(C-D-E)$
$\therefore 3+\mathrm{I}(\mathrm{DE})=8$
$\therefore I(D E)=5$ units
$(a) I(B C)=I(D E)=5$ units $\quad \ldots .[$ From (3) and given that $I(B C)=5]$
$\therefore$ seg $B C \cong$ seg $D E$
(b) $I(A B)=I(C D)=3$ units $\ldots$...[From (1) and (2)]
$\therefore \operatorname{seg} A B \cong \operatorname{seg} C D$
ii. In $\triangle A B M$ and $\triangle P Q N$,
$\angle \mathrm{AMB}=\angle \mathrm{PNQ} \ldots$. (each right angle)
$A B=P Q \quad \ldots$. (given)
$A M=P N \quad \ldots$ (given)
$\therefore \triangle \mathrm{ABM} \cong \triangle \mathrm{PQN} \quad \ldots$ (hypotenuse-side congruence of right triangles)
$\therefore B M=Q N \quad . . .(1)(c . p . c . t$.
In $\triangle A M C$ and $\triangle P N R$,
$\angle \mathrm{AMC}=\angle \mathrm{PNR} \quad \ldots$. (each right angle)
$A C=P R \quad \ldots$. (given)
$A M=P N \quad \ldots$ (given)
$\therefore \triangle A M C=\triangle P N R \quad \ldots$. (hypotenuse-side congruence of right triangles)
$\therefore M C=N R \quad . . .(2)(c . p . c . t$.
Adding (1) and (2), we get
$B M+M C=Q N+N R$
$\therefore B C=Q R$
Now, in $\triangle A B C$ and $\triangle P Q R$,

$$
\begin{aligned}
& A B=P Q \quad \ldots . \text { (given) } \\
& A C=P R \quad \ldots . \text { (given) } \\
& B C=Q R \quad \ldots .(\text { proved above }) \\
& \therefore \triangle A B C \cong \triangle P Q R
\end{aligned}
$$

iii. Let $\square \mathrm{PQRS}$ be a rhombus with $\angle P S R=60^{\circ}$.


In $\triangle \mathrm{PSR}$,
$\mathrm{PS}=\mathrm{SR} \quad \ldots$. (sides of a rhombus)
$\therefore \angle \mathrm{SPR}=\angle \mathrm{SRP} \quad \ldots .(1)$ (angles opposite to equal sides are equal)
Now, in $\triangle \mathrm{PSR}$,
$\angle \mathrm{PSR}+\angle \mathrm{SPR}+\angle \mathrm{SRP}=180^{\circ}$
$\therefore 2 \angle \mathrm{SPR}+60^{\circ}=180^{\circ} \quad \ldots .[$ [From (1)]
$\therefore 2 \angle \mathrm{SPR}=120^{\circ}$
$\therefore \angle \mathrm{SPR}=60^{\circ}=\angle \mathrm{SRP}$
$\therefore \triangle P S R$ is an equilateral triangle.
Since in a parallelogram, the opposite angles are equal, we have $\angle P Q R=60^{\circ}$
In $\triangle P Q R$,
$\mathrm{PQ}=\mathrm{QR} \quad \ldots$. (sides of a rhombus)
$\therefore \angle Q P R=\angle Q R P \quad \ldots .(2)$ (angles opposite to equal sides are equal)
Now, in $\triangle P Q R$,
$\angle P Q R+\angle Q P R+\angle Q R P=180^{\circ}$
$\therefore 2 \angle \mathrm{QPR}+60^{\circ}=180^{\circ} \quad \ldots .[$ From (2)]
$\therefore 2 \angle A P R=120^{\circ}$
$\therefore \angle Q P R=60^{\circ}=\angle Q R P$
$\therefore \triangle P Q R$ is an equilateral triangle.
Thus, in a rhombus with an angle of $60^{\circ}$, the shorter diagonal divides the rhombus into two equilateral triangles.

