1.

i. The ratio of the angles of the triangle is 2 : 2 : 5.
Let the measures of the angles be 2x°, 2x° and 5x°.
Then 2x° + 2x° + 5x° = 180°
\[9x° = 180°\]
\[x° = 20°\]
\[2x° = 2 \times 20° = 40°\] and \[5x° = 5 \times 20 = 100°\]
Since two angles of the triangle are equal, it is an isosceles triangle.

ii. AB + BC > CA, BC + AC > AB, AC + AB > BC
Yes, they form a triangle as sum of two sides is greater than the third side

iii. AM = \(\frac{AB}{2} = \frac{24}{2} = 12\) cm and AO = \(\frac{AD}{2} = \frac{30}{2} = 15\) cm
In \(\triangle AOM\),
\[AO^2 = AM^2 + OM^2\](Pythagoras theorem)
\[\therefore (15)^2 = (12)^2 + OM^2\]
\[\therefore 225 = 144 + OM^2\]
\[\therefore OM^2 = 225 - 144 = 81\]
\[\therefore OM = 9\] cm
Thus, the distance of AB from the centre of the circle is 9 cm.

iv. Let \(J \equiv (x_1, y_1)\) and \(L \equiv (x_2, y_2)\)
Here, \(x_1 = -8, y_1 = -4, x_2 = 1, y_2 = 2, m = 1, n = 2\)
Let \(P \equiv (x, y)\) divides JL externally in the given ratio.
Then, by section formula for external division, we have
\[x = \frac{mx_2 - nx_1}{m - n} = \frac{1(1) - 2(-8)}{1 - 2} = \frac{1 + 16}{-1} = -17\]
\[y = \frac{my_2 - ny_1}{m - n} = \frac{1(2) - 2(-4)}{1 - 2} = \frac{2 + 8}{-1} = -10\]
Thus, the co-ordinates of the point \(P \equiv (-17, -10)\).
v. \cot 45^\circ = 1, \sec 60^\circ = 2, \cosec 30^\circ = 2 \text{ and } \cot 90^\circ = 0\\
\therefore 4\cot^2 45^\circ - \sec^2 60^\circ + \cosec^2 30^\circ + \cot 90^\circ\\
= 4(1)^2 - (2)^2 + (2)^2 + 0\\
= 4 - 4 + 4\\
= 4\\

vi. \text{Radius of the circle } = r = 28 \text{ cm}\\
\therefore \text{Diameter of the circle } = d = 2r = 2 \times 28 = 56 \text{ cm}\\

\text{Perimeter of the semicircle } = \pi r + d\\
= \frac{22}{7} \times 28 + 56\\
= 22 \times 4 + 56\\
= 88 + 56\\
= 144 \text{ cm}\\

2.\\

i. \text{Measure of the given angle } = \frac{3}{5} \times \text{right angle}\\
= \frac{3}{5} \times 90^\circ\\
= 3 \times 18^\circ\\
= 54^\circ\\

\text{Thus, the measure of its supplementary angle } = 180^\circ - 54^\circ = 126^\circ\\

ii. \Delta CAB \sim \Delta FDE\\
\therefore \frac{CA}{FD} = \frac{AB}{DE} = \frac{CB}{FE} \quad \text{(Corresponding sides are proportional)}\\
\therefore \frac{13}{n} = \frac{12}{m} = \frac{5}{2}\\
\therefore \frac{12}{m} = \frac{5}{2}\\
\therefore m = \frac{12 \times 2}{5} = \frac{24}{5}\\
\therefore m = 4.8\\
Also, \frac{13}{n} = \frac{5}{2}\\
\therefore \frac{n}{13} = \frac{26}{5}\\
\therefore n = 5.2
iii. In $\triangle ABC$, $\angle A + \angle B + \angle C = 180^\circ$

$\therefore 40^\circ + 80^\circ + \angle C = 180^\circ$

$\therefore \angle C = 180^\circ - 120^\circ = 60^\circ$

The descending order of the measures of the angles is $\angle B > \angle C > \angle A$.

\therefore side $AC >$ side $AB >$ side BC ...(Sides opposite to the angles)

Thus, the shortest side is side BC and the longest side is side AC.

iv. $BD = 3DC$(given)

Let $DC = x$

Then, $BD = 3x$(1)

Now, $BC = BD + DC = 3x + x = 4x$

$\therefore BC^2 = 16x^2$(2)

In right-angled $\triangle ADB$, by Pythagoras theorem,

$AB^2 = AD^2 + BD^2$(3)

Similarly, in right-angled $\triangle ADC$,

$AC^2 = AD^2 + DC^2$

$\therefore AD^2 = AC^2 - DC^2$(4)

From (3) and (4), we have

$AB^2 = AC^2 - DC^2 + BD^2$

$= AC^2 - x^2 + (3x)^2$

$= AC^2 - x^2 + 9x^2$

$= AC^2 + 8x^2$

$= AC^2 + \frac{1}{2} \times 16x^2$(5)

$\therefore AB^2 = AC^2 + \frac{1}{2}BC^2$ [From (5) and (2)]

v. Let the length of one side of the parallelogram be x cm.

Then, the length of other side is $(25 + x)$ cm.

Perimeter of the parallelogram is 150 cm.

$\therefore x + (25 + x) + x + (25 + x) = 150$

$\therefore 4x + 50 = 150$

$\therefore 4x = 100$

$\therefore x = 25$ cm

$\therefore 25 + x = 25 + 25 = 50$ cm

Thus, the lengths of the sides of the parallelogram are 25 cm, 50 cm, 25 cm and 50 cm.
vi. \[
\frac{\tan^2 60^\circ + 4 \cos^2 45^\circ + \sec^2 30^\circ + 5 \cos 90^\circ}{\csc 30^\circ + \sec 60^\circ - \cot 30^\circ}
\]
\[=
\frac{(\sqrt{3})^2 + 4\left(\frac{1}{\sqrt{2}}\right)^2 + \left(\frac{2}{\sqrt{3}}\right)^2 + 5 \times 0}{2 + 2 - (\sqrt{3})^2}
\]
\[=
\frac{3 + \frac{4 \times 1}{2} + \frac{4}{3} + 0}{4 - 3}
\]
\[=
\frac{3 + \frac{4}{3}}{1}
\]
\[=
\frac{9 + 6 + 4}{3}
\]
\[=
\frac{19}{3}
\]

3.

i. PQ is a straight line.

\[\therefore a + b = 180^\circ \quad \text{...(Linear pair of angles)}(1)\]

Now, \(a - b = 80^\circ \quad \text{...(given)}(2)\)

Adding equation (1) and (2), we get

\[a + b + a - b = 180^\circ + 80^\circ\]

\[\therefore 2a = 260^\circ\]

\[\therefore a = 130^\circ\]

Substituting \(a = 130^\circ\) in equation (1), we get

\[130^\circ + b = 180^\circ\]

\[\therefore b = 180^\circ - 130^\circ\]

\[\therefore b = 50^\circ\]

\[\therefore \angle POR = 130^\circ \text{ and } \angle ROQ = 50^\circ\]

ii.

(a) In \(\triangle ABC\) and \(\triangle CDE\),

\[m\angle B = m\angle D = 90^\circ\]

hypotenuse \(AC \cong \text{hypotenuse CE} \quad \text{...(Given)}\)

seg \(BC \cong \text{seg ED} \quad \text{...(Given)}\)

\[\therefore \triangle ABC \cong \triangle CDE \quad \text{...(Hypotenuse-side theorem)}\]

(b) As \(\triangle ABC \cong \triangle CDE\)

\[\therefore \angle BAC \cong \angle DCE \quad \text{...(1)(c.a.c.t.)}\]
(c) In $\triangle ABC$,
\[\angle BAC + \angle ACB = 90^\circ \quad (2) \text{(Acute angles of a right-angled triangle)} \]

From (1) and (2),
\[\angle DCE + \angle ACB = 90^\circ \quad \text{....(3)} \]

Now, \[\angle ACB + \angle ACE + \angle DCE = 180^\circ \]
\[\therefore \angle ACB + \angle DCE + \angle ACE = 180^\circ \]
\[\therefore 90^\circ + \angle ACE = 180^\circ \quad \text{....[From (3)]} \]
\[\therefore \angle ACE = 90^\circ \]

iii. $\triangle ABC$ is an isosceles triangle. \quad \text{....(given)}

\[\therefore AB = AC \]

Now, D, E and F are the mid-points of sides AB, AC and BC respectively.

Then, by midpoint theorem, we have

\[EF = \frac{1}{2} AB \text{ and } DF = \frac{1}{2} AC \]

Since, \[AB = AC \]
\[\frac{1}{2} AB = \frac{1}{2} AC \]
\[\therefore EF = DF \]

Now, in $\triangle DEF$, EF = DF

Hence, DEF is an isosceles triangle.

iv. \[A \equiv (-3, 0) \text{ and } B \equiv (3, 0) \]

Let \[C \equiv (x, y) \]

Since $\triangle ABC$ is an equilateral triangle, we have

\[AB = BC = AC \]
\[\therefore AB^2 = BC^2 = AC^2 \]

Consider, \[AB^2 = BC^2 \]
\[\therefore [3 - (-3)]^2 + (0)^2 = (x - 3)^2 + (y - 0)^2 \]
\[\therefore 36 = x^2 - 6x + 9 + y^2 \]
\[\therefore x^2 - 6x + y^2 = 27 \quad \text{....(1)} \]

Consider, \[BC^2 = AC^2 \]
\[\therefore (x - 3)^2 + (y - 0)^2 = [x - (-3)]^2 + (y - 0)^2 \]
\[\therefore x^2 - 6x + 9 + y^2 = (x + 3)^2 + y^2 \]
\[\therefore x^2 - 6x + 9 + y^2 = x^2 + 6x + 9 + y^2 \]
\[\therefore 12x = 0 \]
\[\therefore x = 0 \]
Substituting $x = 0$ in equation (1), we get

$$(0)^2 - 6(0) + y^2 = 27$$

$\therefore y^2 = 27$

$\therefore y = \pm 3\sqrt{3}$

Thus, the coordinates of C are $(0, 3\sqrt{3})$ or $(0, -3\sqrt{3})$.

v. In $\triangle ABC$, $\angle B = 90^\circ$, $\angle ACB = x$

$\therefore \angle BAC = 90^\circ - x$

In $\triangle ADC$, $\angle D = 90^\circ$, $\angle ACD = y$

$\therefore \angle DAC = 90^\circ - y$

$$\tan x = \frac{AB}{BC}$$

$$\cot(90^\circ - y) = \cot \angle DAC = \frac{AD}{DC}$$

$$\sec y = \frac{AC}{CD}$$

$$\sin(90^\circ - x) = \sin \angle BAC = \frac{BC}{AC}$$

$$\csc(90^\circ - y) = \csc \angle DAC = \frac{AC}{DC}$$

$$\cos(90^\circ - x) = \cos \angle BAC = \frac{AB}{AC}$$

4.

i. Let $\triangle PQR$ be an isosceles triangle.

(a) Let $PQ = PR = x$ cm \hspace{1cm} \ldots(1)

$QR = 1.5x$ \hspace{1cm} \ldots(2)$

Now, perimeter of $\triangle PQR = 42$ cm \hspace{1cm} \ldots(given)

$\therefore PQ + PR + QR = 42$

$\therefore x + x + 1.5x = 42$ \hspace{1cm} [From (1) and (2)]

$\therefore 3.5x = 42$

$\therefore x = 12$

$\therefore PQ = PR = 12$ cm

$QR = 1.5x = 1.5 \times 12 = 18$ cm

Thus, the length of congruent sides of a triangle, $PQ = PR = 12$ cm.
(b) In an isosceles triangle, the perpendicular to the base bisects the base.

Let PS \perp QR.

Le PS = h

\[QS = \frac{1}{2} \times QR = \frac{1}{2} \times 18 = 9 \text{ cm} \]

In \(\triangle PQS \), using Pythagoras theorem,

\[PQ^2 = QS^2 + PS^2 \]

\[\therefore (12)^2 = (9)^2 + h^2 \]

\[\therefore 144 = 81 + h^2 \]

\[\therefore h^2 = 144 - 81 = 63 \]

\[\therefore h = 3\sqrt{7} \text{ cm} \]

Thus, the height of a triangle, PS = 3\sqrt{7} \text{ cm}.

(c) Area of \(\triangle PQR = \frac{1}{2} \times \text{base} \times \text{height} \)

\[\therefore A(\triangle PQR) = \frac{1}{2} \times QR \times PS = \frac{1}{2} \times 18 \times 3\sqrt{7} = 27\sqrt{7} \text{ cm}^2 \]

Thus, the area of a triangle is 27\sqrt{7} \text{ cm}^2.

ii. Let the measure of \(\angle D \) be \(x^\circ \).

Then, \(4\angle S = 3\angle D = 3x^\circ \)

\[\therefore \angle S = \frac{3x^\circ}{4} \]

Also, \(6\angle R = 3\angle D = 3x^\circ \)

\[\therefore \angle R = \frac{3x^\circ}{6} = \frac{x^\circ}{2} \]

Now, in \(\triangle DSR \),

\[\angle D + \angle S + \angle R = 180^\circ \] \ldots (Angle sum property of a triangle)

\[\therefore x^\circ + \frac{3x^\circ}{4} + \frac{x^\circ}{2} = 180^\circ \]

\[\therefore 4x^\circ + 3x^\circ + 2x^\circ = 180^\circ \times 4 \]

\[\therefore 9x^\circ = 180^\circ \times 4 \]

\[\therefore x^\circ = \frac{180^\circ \times 4}{9} \]

\[\therefore x^\circ = 80^\circ \]

\[\therefore \angle S = \frac{3x^\circ}{4} = \frac{3 \times 80^\circ}{4} = 3 \times 20^\circ = 60^\circ \]

\[\angle R = \frac{x^\circ}{2} = \frac{80^\circ}{2} = 40^\circ \]

\[\therefore \angle D = 80^\circ, \angle S = 60^\circ \text{ and } \angle R = 40^\circ \]
iii. Steps of construction:

1. Draw a line \(l \), take any point \(M \) outside it.

2. Taking \(M \) as the centre and any radius, draw two arcs of circle on line \(l \).

3. Name the points of intersection of the arcs and line \(l \) as \(P \) and \(Q \) respectively.

4. Taking \(P \) and \(Q \) as the centres, and radius more than half of \(PQ \), draw arcs of circle above and below line \(l \).

5. Name the points of intersection as \(E \) and \(D \).

6. Draw line \(n \perp l \) by joining the points \(E \) and \(D \).

7. Taking \(M \) as the centre and any radius, draw arcs of circle above and below point \(M \) on line \(n \). Name the points of intersection as \(R \) and \(S \).

8. Taking \(R \) and \(S \) as the centres and radius more than half of \(RS \), draw arcs of circle on both sides of line \(n \). Name the points of intersection as \(A \) and \(B \).

9. Draw line \(m \perp n \) by joining the points \(A \) and \(B \).

Now, line \(l \perp n \) and line \(m \perp n \).

Hence, line \(m \) and line \(l \) are parallel to each other.
5.

i. \(\text{l}(AB) + \text{l}(BC) = \text{l}(AC) \) \(\text{A-B-C} \)
\[\therefore \text{l}(AB) + 5 = 8 \]
\[\therefore \text{l}(AB) = 3 \text{ units} \quad \ldots(1) \]
seg AC ≅ seg BD \(\ldots \) \(\text{given} \)
\[\therefore \text{l}(BD) = 8 \]
\(\text{l}(BC) + \text{l}(CD) = \text{l}(BD) \) \(\text{B-C-D} \)
\[\therefore 5 + \text{l}(CD) = 8 \]
\[\therefore \text{l}(CD) = 3 \text{ units} \quad \ldots(2) \]
seg BD ≅ seg CE \(\ldots \) \(\text{given} \)
\[\therefore \text{l}(CE) = 8 \]
\(\text{l}(CD) + \text{l}(DE) = \text{l}(CE) \) \(\text{C-D-E} \)
\[\therefore 3 + \text{l}(DE) = 8 \]
\[\therefore \text{l}(DE) = 5 \text{ units} \quad \ldots(3) \]

(a) \(\text{l}(BC) = \text{l}(DE) = 5 \text{ units} \quad \ldots[\text{From (3) and given that } \text{l}(BC) = 5] \)
\[\therefore \text{seg BC} \cong \text{seg DE} \]
(b) \(\text{l}(AB) = \text{l}(CD) = 3 \text{ units} \quad \ldots[\text{From (1) and (2)}] \)
\[\therefore \text{seg AB} \cong \text{seg CD} \]

ii. In \(\Delta ABM \) and \(\Delta PQN \),
\[\angle AMB = \angle PNQ \quad \ldots(\text{each right angle}) \]
\(AB = PQ \quad \ldots(\text{given}) \)
\(AM = PN \quad \ldots(\text{given}) \)
\[\therefore \Delta ABM \cong \Delta PQN \quad \ldots(\text{hypotenuse-side congruence of right triangles}) \]
\[\therefore BM = QN \quad \ldots(1)(\text{c.p.c.t.}) \]
In \(\Delta AMC \) and \(\Delta PNR \),
\[\angle AMC = \angle PNR \quad \ldots(\text{each right angle}) \]
\(AC = PR \quad \ldots(\text{given}) \)
\(AM = PN \quad \ldots(\text{given}) \)
\[\therefore \Delta AMC = \Delta PNR \quad \ldots(\text{hypotenuse-side congruence of right triangles}) \]
\[\therefore MC = NR \quad \ldots(2)(\text{c.p.c.t.}) \]
Adding (1) and (2), we get
\(BM + MC = QN + NR \)
\[\therefore BC = QR \]
Now, in \(\Delta ABC \) and \(\Delta PQR \),
\[AB = PQ \quad \text{...(given)} \]
\[AC = PR \quad \text{...(given)} \]
\[BC = QR \quad \text{...(proved above)} \]
\[\therefore \Delta ABC \cong \Delta PQR \]

iii. Let \(\square PQRS \) be a rhombus with \(\angle PSR = 60^\circ \).

In \(\triangle PSR \),
\[PS = SR \quad \text{...(sides of a rhombus)} \]
\[\therefore \angle SPR = \angle SRP \quad \text{...(1)(angles opposite to equal sides are equal)} \]
Now, in \(\triangle PSR \),
\[\angle PSR + \angle SPR + \angle SRP = 180^\circ \]
\[\therefore 2\angle SPR + 60^\circ = 180^\circ \quad \text{....[From (1)]} \]
\[\therefore 2\angle SPR = 120^\circ \]
\[\therefore \angle SPR = 60^\circ = \angle SRP \]
\[\therefore \triangle PSR \text{ is an equilateral triangle.} \]
Since in a parallelogram, the opposite angles are equal, we have
\[\angle PQR = 60^\circ \]
In \(\triangle PQR \),
\[PQ = QR \quad \text{...(sides of a rhombus)} \]
\[\therefore \angle QPR = \angle QRP \quad \text{...(2)(angles opposite to equal sides are equal)} \]
Now, in \(\triangle PQR \),
\[\angle PQR + \angle QPR + \angle QRP = 180^\circ \]
\[\therefore 2\angle QPR + 60^\circ = 180^\circ \quad \text{....[From (2)]} \]
\[\therefore 2\angle APR = 120^\circ \]
\[\therefore \angle QPR = 60^\circ = \angle QRP \]
\[\therefore \triangle PQR \text{ is an equilateral triangle.} \]
Thus, in a rhombus with an angle of 60\(^\circ\), the shorter diagonal divides the rhombus into two equilateral triangles.