BOARD QUESTION PAPER :OCTOBER 2013 MATHS

Note:

- i. Solve *All* questions. Draw diagrams wherever necessary.
- ii. Use of calculator is not allowed.
- iii. Figures to the right indicate full marks.
- iv. Marks of constructions should be distinct. They should not be rubbed off.
- v. Diagram is essential for the proof of the theorem.

1. Solve any six sub-questions:

i. In the following figure, seg BE \perp seg AB and seg BA \perp seg AD. If BE = 6 and AD = 9, find A(\triangle ABE)

- ii. If two circles with radii 8 and 3 respectively touch internally, then find the distance between their centres.
- iii. In the following figure, Q is the centre of circle and PM and PN are tangent segments to the circle. If \angle MPN = 40°, find \angle MQN.

- iv. If $\theta = -60^\circ$, find the value of $\cos \theta$.
- v. Find the slope of the line passing through A(-2, 1) and B(0, 3).
- vi. Find the area of the sector of a circle with radius 6 cm and the length of arc is 15 cm.
- vii. Using Euler's formula, find V, if E = 30, F = 12.

Max. Marks: 60

[6]

2. Solve any five sub-questions:

i. In $\triangle PQR$, seg RS is the bisector of $\angle PRQ$. PS = 4, SQ = 12, PR = 13, find QR.

ii. In the following figure, a tangent segment PA touching a circle in A and a secant PBC intersects the circle at points C and B. If AP = 13 and BP = 6, find PC.

- iii. If $\sin \theta = \frac{7}{25}$, where θ is an acute angle, find the value of $\cos \theta$ using identity.
- iv. Find the trigonometric ratios $\tan \theta$ and $\cos \theta$ of an angle θ , which is in standard position, whose terminal arm passes through (7, 24).
- v. P(-2, -3) is a point on the line $2y = \frac{11}{2}x + c$. Find c.
- vi. The dimensions of a cuboid in cm arc $20 \times 18 \times 10$. Find its total surface area.

3. Solve any four sub-questions:

- i. The ratio of the areas of two triangles with common base is 4 : 3. Height of the larger triangle is 20 cm, then find the corresponding height of the smaller triangle.
- ii. Draw the circumcircle of Δ KLM in which LM = 7 cm, \angle L = 60°, \angle M = 55°.
- iii. A boy is at a distance of 70 m from a tree makes an angle of elevation of 60° with the top of the tree. What is the height of the tree? ($\sqrt{3} = 1.73$)
- iv. Find the equation of the line passing through the points (-2, -3) and (-4, 7).

[12]

v. In the following figure, the radius of the circle is 7 cm and m(arc RYS) = 30° , then find:

В

- a. Area of the circle
- b. A(P-RYS)
- c. A(P-RXS).

4. Solve any three sub-questions:

- i. Prove that, If a line parallel to a side of a triangle intersect the other sides in two distinct points, then the line divides those sides in proportion.
- ii. Prove that the lengths of the two tangent segments to a circle drawn from external point are equal.
- *iii. Construct Δ LMN such that LM = 6.6 cm, \angle LNM = 65°, where ND is median and ND = 5 cm.
- iv. An observer standing on a bank of river observes the top of a tree on the opposite bank making an angle of elevation 60°. He moves 30 m backward and observes the top of the tree making an angle of elevation 30°. Find the height of the tree and the width of the river. $(\sqrt{3} = 1.73)$

5. Solve any four sub-questions:

- i. Prove that, in a triangle, the angle bisector divides the side opposite to the angle in the ratio of the remaining sides.
- ii. In the following figure, BC is a diameter of the circle with centre M. PA is a tangent at A from P which is a point on line BC and $AD \perp BC$. Prove that $DP^2 = BP \times CP BD \times CD$.

C

<u>M</u> D

- iv. If the points A(1, 2), B(4, 6), C(3, 5) are the vertices of a \triangle ABC, find the equation of the line passing through the midpoints of AB and AC.
- v. Draw a triangle PQR right angled at Q such that PQ = 3 cm, QR = 4 cm. Now construct $\triangle AQB$ similar to $\triangle PQR$, each of whose sides is $\frac{7}{5}$ times the corresponding side of $\triangle PQR$.

[12]

[20]