MATHS QUESTION PAPER

		Max. Marks:	
	Attempt any ONE of the following: If y is a differentiable function of u and u is a differentiable function of x, ther		[8]
	$\frac{dy}{dx} = \frac{dy}{dx} \times \frac{du}{dx}$		(3)
	un un un		
(ii)	If x & y are differentiable functions t so that y is a function of x, then prove	that $\frac{dy}{dx} = \frac{dy}{dx}$) (
	$\frac{dx}{dt} \neq 0$.	**	(3)
(b)	Attempt any ONE of the following:		
(i)	If u and v are functions of x, then prove that -		(3)
	$\int u \cdot v dx = u \int v dx - \int \left\{ \frac{du}{dx} \int v dx \right\} dx.$		
	a a e		
(ii)	Prove that: $\int_{-a}^{a} f(x) dx = 2 \int_{0}^{a} f(x) dx,$ if $f(x)$ is an even function	n.	
	= 0, if f(x) is an odd function	١.	(2)
(B)	. ,		
(i)	For all x in B, prove that $x = x \cdot x$ where B is Boolean Algebra.		(2)
(ii)	Write down the Boolean Function for the expression $x_1 \cdot (x_1 + x_2)$ in tabular for	m.	(2)
	a) (a) Attempt any ONE of the following:		[8]
(i)	Show that $\Delta \log [f(x)] = \log \left[1 + \frac{\Delta f(x)}{f(x)}\right]$		(3)
(ii)	If f (x) is a polynomial of degree 2 in x and		
	if $f(0) = 8$, $f(1) = 12$, $f(2) = 18$, find $f(x)$. (3)		
	Attempt any ONE of the following:		
	Solve: $(y + x \frac{dy}{dx}) \cdot \sin(xy) = \cos x$ by putting $xy = u$.		(3)
(ii)	Solve: $\frac{dy}{dx} = \frac{x+y}{x-y}$		(3)
(B)	Attempt any ONE of following:		
(i)	Evaluate: $\int_{2x + 3x} \frac{dx}{3x \log x}$		(2)
(ii)	Evaluate: $\int \frac{dx}{\sin^2 x \cdot \cos^2 x}$		(2)
Q. 3 (A	A) (a) Attempt any ONE of the following :		[8]
(i)	Evaluate: $\int_{\sqrt{2}e^{2x}} \frac{e^x}{+7e^x - 5} dx.$		(3)
	Evaluate: $\int_{(x^2-7)}^{x^2+37} \frac{x^2+37}{(x^2-7)(x^2+4)} dx$	-	(3)
(b)	Attempt any ONE of the following:		
,			
(i)	Evaluate: $\int_{0}^{\infty} \log (1 + \tan x) dx.$		(3)
(ii)	Show that: $\int_{-\infty}^{3} \frac{dx}{(x^3-1)} = \frac{1}{3} \log \left(\frac{208}{189} \right).$		(3)

(B)	Attempt any ONE of the following:	
(i)	If $y = \sqrt{x}$; find $\frac{dy}{dx}$ using first principles.	(2)
(ii)	Find $\frac{dy}{dx}$; if $y = tan^{-1} \left(\frac{\sin x}{1 + \cos x} \right)$	(2)
Q. 4 (A	Attempt any TWO of the following:	[8]
(i)	If $y = \log \left(\frac{x + \sqrt{x^2 + a^2}}{\sqrt{x^2 + a^2} - x} \right)$; find $\frac{dy}{dx}$.	(3)
(ii)	Find the approximate value of tan (0.999).	(3)
(1ii')	If $y = x \cdot e^{xy}$ show that $\frac{dy}{dx} = \frac{y(1 + xy)}{x(1 - xy)}$.	(3)
_ (B)	Attempt any ONE of the following:	
(i)	Simplify and show that $x \cdot [(x' + z) \cdot y] = x \cdot y \cdot z$) using Boolean Algebra.	(2)

(ii) For the Boolean function $f(x_1, x_2) = (x_1 \cdot x_2) + (x_1 \cdot x_2)$ write down its value in tabular form. (2)

Q. 5 (A) Attempt any TWO of the following: [8]
$$\frac{1}{2} = \sin(x + 3) - \sin(x + 3) = 2 \sin x$$

(i) Evaluate:
$$\lim_{x \to 0} \frac{\sin(x+a) - \sin(x-a) - 2\sin a}{x \cdot \sin x}$$
 (3)

(ii) Evaluate:
$$\frac{\lim ab^{x} - ba^{x}}{x \rightarrow 1 \quad x - 1}$$
 (3)

(iii) Find kgif the function
$$f(x) = 3x - 4$$
, for $0 \le x \le 2$?
= $2x + k$, for $2x \le 4$.

is continuous at
$$x = 2$$
. (3)

(B) Attempt any ONE of the following:

(i) Solve:
$$\frac{dy}{dx} = \frac{1+y^2}{1+x^2}$$
. (2)

(ii) Verify that $y = Ae^x + Be^{-2x}$ is a solution of the

Differential Equation
$$\frac{d^2y}{dx^2} + \frac{dy}{dx} - 2y = 0$$
: (2)