MATHS QUESTION PAPER

Time :	2 Hrs.		N	/lax. Marks : 40
Q. 1 (A	Attempt any TWO of the following	owing:		[8]
_	Which of the following sentence	•	?	(3)
	(a) A cyclic trapezium has its non-parallel sides congruent.			
	(b) Do you like Mathematics?	_		
	(c) The sun rises in the east.			
(ii)	 Determine whether the following statement pattern is a 'tautology' or a 'contradiction' neither of the two: (*p ∨ q) → p ∧ (q ∨ ~ q) 			
(iii)	Using the truth table, show that	ıt		
	$\sim (p \leftrightarrow q) \equiv (p \land \sim q) \lor (q \land \sim p)$			(3)
	Attempt any ONE of the following:			
(i)	Find the values of K it the lines represented by $K(x^2 + y^2) = 8xy$ are co-incident.			
(ii)				
	$x^2 + y^2 + 2x - 2y - 3 = 0$ on the co-ordinate axes. (2)			
-) Attempt any TWO of the follo	_	_	[8]
(i)	Find P' if the vectors i+ pj 3	\overline{k} , $2\overline{i} + \overline{j} - 4\overline{k}$ and	i - j + k are co-planar.	(3)
(ii)	Using Vector method, show that the "medians of a triangle are concurrent."			
(iii)	If a, b, c are three non-zero, non-coplanar vectors, then prove that and vector r in the space			
	can be uniquely expressed as a linear combination $xa + yb + zc$, where x_iy and z are scalars.			
	can be unuquery expressed as a	mear combinant	m x a + y b + z c, where x, y and	z are scalars.
(R)	Attempt any ONE of the follo	wina:		(3)
(i)			point of see CD.	
24-7	,		Louis at 40B and	
	then show that $A\overline{C} + BD = 2$		(2)	
(ii)	i) Find the volume of the parallelopiped formed by the vectors			
	a = i + 2j + 3k, $b = 2i + j + 4k$	and $c = 3i + 4i$	k	
0.3/4) (a) Attempt any ONE of the f			
Qr o un	[4 3 3]			
6)	If $A = \begin{bmatrix} 4 & 3 & 3 \\ -1 & 0 & -1 \\ 4 & 4 & -3 \end{bmatrix}$, then find	1 A-1 hr Adioint n	iethod	(3)
(-)	4 4 -3	ar Maintenan		(0)
(ii)	Solve the following quations by Reduction method.			
	$x \cdot y + z = 2$; $2x + y - z = 7$; $x + 2y + z = 8$			
(b)	Attempt any ONE of the following:			
(1)	If '0' is the measure of acute angle between the lines represented by $ax^2 + 2hxy + by^2 = 0$, then			
	show that $\tan \theta = \frac{2\sqrt{h^2 - ab}}{a + b}$			
	show that tan $\theta = \begin{bmatrix} a+b \end{bmatrix}$			(3)
(ii)	Find equation of a tangent to t	he circle $x^2 + y^2 + 3$	2gx + 2fy + c = 0 at the point P($(x_1, y_1).$ (3)
(B)	Attempt any ONE of the following			
(i)				
invest and has space for 20 items only. A fan costs Rs. 360 and a sewing machine co. His expectation is that he can sell a fan at a profit of Rs. 22 and a sewing machine at				ne costs.iss. 440. ine at a profit of
	Rs. 18 Assuming that he can sell all items that he can buy, formulate this problem as a L.P.P.			
2115	to maximize his profit. (2) Two food products A and B are to be purchased. Their contents and price per unit are given			
(ii) Two food products A and B are to be purchased. Their contents and profuse in the following: "ble.				r unit are given (2)
	Product	A	R	14)
	Calories	2	3.	
	Vitamins	2	1	
	Price	_ 3	4.	
	Minimum requirements , cal		is are 6 - 14 units respect	vel . Formulate
this problem as a L.P.P. to minimize the cost. Q. 4 (A) (a) Attempt any ONE of the following: [8]				
	Find the values of p and q if the		$+7xy - py^2 + 8x + qy + 6 = 0 r$	
		·		

of perpendicular lines.

on the line x - 2y + 9 = 0. (b) Attempt any ONE of the following: (i) If A and B are two events of a sample space S such that $P(A) = \frac{5}{8}$, $P(B) = \frac{3}{4}$ and $P(A \cap B) = \frac{1}{2}$, then find: (a) $P(A \cap B')$, (b) $P(A \setminus B)$, (c) $P(A \cup B)$. (3) (ii) If a coin is tossed three times and X = number of heads, then find E(X) and V(X). (3) (B) Attempt any ONE of the following: (i) Find the equation of a parabola whose vertex is at the origin, having X axis as the axis and passing through the point (3, 6). (2) (ii) Find the co-ordinates of the foci and length of latus rectum of the ellipse $3x^2 + 4y^2 = 12$. (2)[8] Q. 5 (A) (a) Attempt any ONE of the following: (i) Find the equation of the tangents to the hyperbola $16x^2 - 25y^2 = 400$ passing through the point (3) (3) (ii) Find the equation of common tangents to the parabolas $y^2 = 4x$ and $x^2 = 4y$. (b) Attempt any ONE of the following: (i) Find the equation of a line in the Cartesian form passing through the point (3, 2, -1) and perpendicular to the vectors 3i - 4j + 5k and $\overline{i} - \overline{j} + \overline{k}$. (3) (ii) Find the Cartesian equation of the plane passing through the points (1, 1, 1), (2, 4, 3) and (3, 9, 7) using Vector method. (3) (B) Attempt any ONE of the following: (i) Find the equation of a normal to the ellipse $2x^2 + 3y^2 = 30$ at the point (-3, 2). (2) (ii) If the line $y = mx + \sqrt{a^2 m^2 - b^2}$ touches the hyperbola $b^2 x^2 - a^2 y^2 = a^2 b^2$ at the point P(a sec θ , b tan θ), then show that $\sin \theta = \frac{b}{am}$. (2)

(ii) Find the equation of the circle passing through the points (1, -4) (5, 2) and whose centre lies