MATHS QUESTION PAPER

Time: 2 Hrs.		Max. Marks: 40
Q. 1 (A) Attempt any TWO of the following:		
	$3^{(x-\frac{\pi}{2})}-6^{(x-\frac{\pi}{2})}$	
(i)	Evaluate: $\lim_{x \to \frac{\pi}{2}} \frac{3^{(x-\frac{\pi}{2})} - 6^{(x-\frac{\pi}{2})}}{\cos x}$	(3)
(ii)	Given: $f(x) = \frac{\log x - \log 3}{x - 3}$, for $x \ne 3$, If $f(x)$ is continuous at $x = 3$, find $f(3)$.	(3)
(iii)	Test the continuity of the function f at $x = 0$, where	
	$f(x) = x^2 \sin\left(\frac{1}{x}\right), \text{for } x \neq 0$	
	$= 1 \qquad \text{for } x = 0$	(3)
	Attempt any ONE of the following:	
	Evaluate: $\int \frac{\sin x}{\cos (x-a)} dx$	(2)
(ii)	Evaluate: $\int \log x dx$	(2)
Q. 2 (A) Attempt any TWO of the following :	[8]
(i)	$\operatorname{Sin}^{-1}\left(\frac{5}{\sqrt{41}}\frac{\sin x + 4\cos x}{\sqrt{41}}\right) \text{ w. r. t. x.}$	(3)
(ii)	Find $\frac{dy}{dx}$, if $x^y = 2^{x-y}$	(3)
(ii i)	Examine the function $f(x) = 2x^3 - 9x^2 + 12x + 5$. For maxima and minima.	(3)
(B)	Attempt any ONE of the following:	(0)
(i)	Solve the differential equation: $\frac{dy}{dx} = e^{x+y} + x^2 e^y$	(2)
(ii)	Show that $y = \cos(x + 5)$ is a solution of the differential equation $\frac{d^2y}{dx^2} + y = 0$	(2)
Q. 3 (A) (a) Attempt any ONE of the following:		[8]
	Evaluate: $\int_{(x-1)^2} \frac{\mathrm{d}x}{(x+1)}$	(3)
Gi	Evaluate: $\int_{3 \sin x + 4 \cos x + 5} \frac{dx}{3 \sin x + 4 \cos x + 5}$	(3)
(b)	Attemptany ONE of the following:	
(i)	Evaluate: $\int_0^1 x^2 e^x dx$	(3)
	O nt	
(ii)	Evaluate: $\int e^{x} (1 + \tan x + \tan^2 x) dx$	(3)
(B)	Attempt any ONE of the following:	(2)
(i)	Differentiate x5 w. r. t. 5=	(2)
(ii)	Pind $\frac{dy}{dx}$, if $y = \log_2 x + \log_3 x$	(2)
_) (a) Attempt any ONE of the following:	[8]
(1)	If the interval of differencing is 1 show that $f(5) = f(4) + \Delta f(3) + \Delta^2 f(2) + \Delta^3 f(1) + \Delta^4 f(1)$	(3)
(ii)	With usual notations prove that: $\Delta + \nabla = \frac{\Delta}{\nabla} - \frac{\Delta}{\nabla}$	(3)
(b)	Attempt any ONE of the following:	
(i)	Form the differential equation by eliminating arbitrary constants	
	A and B from the relation $y = Ae^{3x} + Be^{-2x}$	(3)
(ii)	Solve the differential equation : $(x + y)^2 \frac{dy}{dx} = a^2$, by using $x + y = u$.	(3)

(B) Attempt any ONE of the following:

- (i) If B is a Boolean algebra, for $x \in B$ prove that (a) x + 1 = 1 (b) $x \cdot 0 = 0$ (2)
- (ii) If B is a Boolean algebra, for $x, y \in B$ prove that $: x \cdot (x + y) = x$ (2)

Q. 5 (A) (a) Attempt any ONE of the following:

(i) If x and y are differentiable functions of t so that y is a function of x,

then prove that
$$\frac{dy}{dx} = \frac{\left(\frac{dy}{dt}\right)}{\left(\frac{dx}{dt}\right)}$$
, where $\frac{dx}{dt} \neq 0$ (3)

[8]

(ii) If y is a differentiable function of u and u is a differentiable function

Of x, then prove that
$$\frac{dy}{dx} - \frac{dy}{du} \cdot \frac{du}{dx}$$
 (3)

(b) Attempt any ONE of the following:

- (i) If $x = \phi(t)$ is a differentiable function of t, then prove that $\int f(x) dx = \int f[\phi(t)] \phi'(t) dt$ (3)
- (ii) Prove that $\int_{a}^{b} f(x) dx = \int_{a}^{b} f(a+b-x) dx$ (3)

(B) Attempt any ONE of the following :

- (i) Construct input/output table for the Boolean function 'f' given by $f(x_1, x_2) = x_1 \cdot x_2$ (2)
- (ii) Determine the Brooleanexpression for the following switching circuit (2)

