PHYSICS QUESTION PAPER

l i <u>me</u> :				Max.	Marks: 40		
· Da	$ta: \epsilon_0 = 8.85 \times 10^{-12} \text{C}^2/\text{Nm}$	2					
	nck 's constant : $h = 6.63 \times 10^{-2}$	-					
•	ss of proton: $m = 1.67 \times 10^{-2}$	- ·					
	ocity of light in vacuum: 3						
	elect and write the most app	propriate answ	er from the given a	alternatives for each	<i>-</i>		
	sub-question.				[8]		
i(i)	The absolute refractive inc				(1)		
	(a) 0	` '	0.95	1 (
.•	(c) 1	•	00	, h	.43		
(ii)	The temperature of hot ju	nction, at whic	It the direction of	thermo e.m.f. reverse	es is called		
	•••••	•			(1)		
	(a) inversion temperature	e, '''' (b)	neutral tempera	ture			
	(c) critical temperature	(d)	Curie temperatu	ıre.			
	A moving coil galvanome	ter of resistance	e 'G' gives full sca	le defelction for certa	uin current		
	The shunt resistance requi	red to convert	t to measure a cur	rent 'n' times of initia	l current is		
	_				(1)		
	(a) (n-1)G · (b)	G	(n-1)	(d) =C			
	$(a) (n-1)G \qquad (b)$	n – 1	G G	(a) no			
(iv)	In series L-C-R circuit, at r	esonance, appl	ied e.m.f. and the o	cuttent are	(1)		
	(a) out of phase.	(b)	in phase.				
(5)	(c) differ in phase by $\frac{\pi}{4}$ r	adian (d)	differ in phase h	π v = radian			
{II.;							
(v)	The energy of an electron i	n n th Bohr orbi		_	(1)		
	(a) n ² (b) 1	n	(c) $\frac{1}{n}$	(d) $\frac{1}{n^2}$			
(vi)	Oscillator is a device which converts energy from						
	(a) a. c. to d. c.		(b) d. c. to a. c.				
	(c) 'a. c. to a. c.		(d) d. c. to d. c.				
(vii)	The magnetic induction at a point P on the axis is 54 times the magnetic induction at point Q						
` '	on the equator of a short m				•		
	of the dipole is		,		(1)		
	(a) 1:27	(b)	1:3				
	(c) 3:1	• •	27:1				
(viii)	The photoelectric threshold wavelength of a certain metal is 3315 A. U. Then its work						
	function is	44.5			(1)		
	(a) 6×10^{-19} J	•	$7.286 \times 10^{-19} \text{ J}$				
0 0 (4	(c) $9 \times 10^{-19} \text{ J}$	(d)	$9.945 \times 10^{-19} \text{ J}$		5 01		
_	A voltage of registers of	500 O con mocou		ltogo of 5 Volt Vou	[8]		
(1)	A voltmeter of resistance 5 made to measure a maximu			mage of 5 voil. now	(2)		
(ii)	Calculate the De-Broglie	•		moving with the			
(11)	2×10^5 m/s.	wavelength c	protott, it it is	moving, with the s	(2)		
(B) A	ttempt any TWO:				\ da /		
	·Describe how a potentiome	ter is used to co	mpare the e.m.f.s	of two cells by connect	ing them		
·-/	separately.	,	•	,	(3)		
(ii)	What is resolving power of	f an optical inst	rument ? Explain :	Rayleigh's criterion fo			
	maximum.	•	•	÷ •	(3)		
(;;;)	With the help of circuit dia	gram dospriha	an experiment to st	andy photoglactric offe	oct (3)		

Q. 3 (A)	Attempt any ONE:					
(i)	Define line communication and state is types.	(2)				
(ii)	Derive an expression for electric intensity at a point outside a charged sphere.	(2)				
(B) Atte	empt any TWO :					
(i)	Derive an expression for magnetic potential at any point due to a short magnetic dipole.	(3)				
(ii)	State the postulates of Bohr's theory of hydrogen atom. Write down necessary equations.					
		(3)				
(iii)	While using T.G., state the adjustments required in presetting. Describe the work	ing				
	principle of tangent galvanometer.	(3)				
Q.4 (A)	Attemptiany TWO					
(i)	What are eddy currents? State any two applications of eddy currents.	(2)				
	Explain the principle of satellite communication.	(2)				
	State and explain Seebeck effect.	(2)				
(B) Att	empt any ONE:					
(i)) With neat circuit diagram, explain p - n junction diode as full wave rectifier. Draw					
	necessary graphs.	(4)				
(ii)	What is polarisation of light? State and explain Brewster's law.	(4)				
Q.5 At	tempt any TWO:					
(i)	A parallel plate capacitor has circular plates, each of diameter 20 cm separated b	у а				
	distance of 2 mm. The potential difference between the plates is maintained at 360					
	Calculate its capacitance and charge. What is the intensity of electric field between	the				
	plates of the capacitor? (Given: $K = 1$).	(4)				
(ii)	In a biprism experiment the slit is illuminated by a light of wavelength 4800 A.U.	The				
	distance between slit and biprism is 20 cm and the distance between biprism and eye piece					
	80 cm. If the distance between virtual sources is 3 mm, determine the distance between					
	5 th bright band on one side of the central band and 5 th dark band on other side.	(4)				
(iii)	A rectangular coil of length 0.5 m and breadth 0.4 m has resistance of 5 Ω . The coil is pla	iced				
	in a magnetic induction of 0.05 T and its direction is perpendicular to the plane of the co	il. If				
	the magnetic induction is uniformly reduced to zero in 5 milli seconds, find the e.m.f					
	current induced in the coil.	(4)				