MATHS QUESTION PAPER

Time : 2 Hrs.
Q. 1 (A) Attempt any Two of the following:
(i) Discuss the continuity of the following function at $x=1$.

$$
\begin{array}{rlrl}
f(x) & =\frac{1}{1-\hat{x}}-\frac{3}{1-x^{3}}+\frac{7}{4}, & & \text { when } x<1 \\
& =\frac{\log x}{x-1}-\frac{1}{4}, & & \text { when } x=1 \\
& & \text { when } x>1
\end{array}
$$

(ii) Evaluate: $\lim _{x \rightarrow 0} \frac{\left(4^{x}-1\right)(1-\cos 4 x)}{3 \sin x-\sin 3 x}$
(iii) If

$$
\begin{align*}
f(x) & =\frac{\sqrt{3}-\tan x}{\pi-3 x} & & \text { when } x \neq \frac{\pi}{3} \tag{3}\\
& =3, & & \text { when } x=\frac{\pi}{3}
\end{align*}
$$

discuss the continuity of the function at $x=\frac{\pi}{3}$.
(B) Attempt any One of the following :
(i) If $f^{\prime}(x)=4 x^{3}-3 x^{2}+2 x+k$, find $f(x)$ given that $f(0)=1$ and $f(1)=4$.
(ii) Evaluate : $\int x^{x^{e-1}}+e^{x-1}+e^{x} d x$

Q. 2 (A) Attempt any Two of the following:

(i) Find the derivative of $x \sin x$ with reference to x by first principle.
(ii) If $\left(x^{2}+y\right)^{17}=x^{8} y^{13}$, prove that $\frac{d y}{d x}=\frac{2 y}{x}$.
(iii) A man of 2 metres height walks at a uniform speed of $6 \mathrm{~km} / \mathrm{hr}$ away from a lamp post of 6 metres high. Find the rate at which the length of his shadow increases.
(B) Attempt any One of the following:
(i) Form the differential equation by eliminating the arbitrary constants from the equation $y=a \cos (\log x)+b \sin (\log x)$.
(ii) Verify that $y=a e^{-b x}$ is a solution of $\frac{d^{2} y}{d x^{2}}=\frac{1}{y}\left(\frac{d y}{d x}\right)^{2}$
Q. 3 (A) (a) Attempt any Ore of the following:
(i) Evaluate : $\int\left(1+\frac{\log x}{+\log x)^{2}} d x\right.$
(ii) Evaluate: $\int-\frac{1}{\cos } \bar{x}(2+\sin x)$
(b) Attempt any One of the following:
(i) Evaluate: $\int_{0}^{3} x^{2}(3-x)^{3 / 2} d x$
(ii) Find the volume of a cone of height ' h ' and base radius ' r '.
(B) Attempt any One of the following:
(i) Find the Boolean function representing the following circuit :
Also find an equivalent circuit.

(ii) Construct the input-output table for the following Boolean function:
$f\left(x_{1}, x_{2}\right)=x_{1}^{\prime} \cdot x_{2}$
Q. 4 (A) (a) Attempt any One of the following:
(i) Find the 7 th term of a sequence $3,9,20,38,65, \ldots \ldots$ using operators E and Δ.
(ii) Evaluate: $\left(\frac{\Delta^{3}}{E^{2}}\right)\left(x^{3}\right)$
(b) Attempt any One of the following:
(i) Solve the differential equation : $\frac{d y}{d x}=\frac{y}{x}+\tan \binom{y}{x}$, using $y=u x$.
(ii) The growth of a population is proportional to the number present. If the population of a colony doubles in 50 years, in how many years will the population become triple ?
(3)
(B) Attempt any One of the following :
(i) If B is Boolean Algebra, then for any $x \in B$ prove that, $x+x=x$.
(ii) Write the Boolean expression for the following circuits :
(a)

Q. 5 (A) (a) Attempt any One of the following:
(i) If y is a differentiable function of u and u is a differential function of x, then prove that, $\frac{d y}{d x}=\frac{d y}{d u} \times \frac{d y}{d x}$.
(ii) Prove that every differentiable function is continuous.
(b) Attempt any One of the following:
(i) If u and v are differentiable functions of x, then prove that:

$$
\begin{equation*}
\int u v d x=u . \int v d x-\int\left[\frac{d u}{d x} \cdot \int v d x\right] d x \tag{3}
\end{equation*}
$$

(ii) Prove that:

$$
\begin{align*}
\int_{-a}^{a} f(x) d x & =2 \int_{0}^{a} f(x) f x & & \text { if } f(x) \text { is even. } \\
& =0, & & \text { if } f(x) \text { is odd. } \tag{3}
\end{align*}
$$

(B) Attempt any One of the following:
(i) Find $\frac{d y}{d x}$ if $y=\sin ^{-1}\binom{2 x}{1+x^{2}}$
(ii) If $y=\frac{(\tan x)^{x}}{1+\frac{x^{2}}{2}}$, find $\frac{d y}{d x}$.

