MATHS QUESTION PAPER

Time: 2 Hrs. Max. Marks: 40 Note: All questions are compulsory. Figure to right indicates full marks. Graph paper is not necessary for LPP. Answer to every question must be written on a new page. Q. 1 (A) Attempt any two of the following: [8] (i) Evaluate : $\lim_{x \to 2} (x - i)^3$ (3) (ii) Evaluate : $\lim_{x \to 1} \frac{4^{x-1} - 2^x + 1}{(x-1)^2}$ (3). (iii) If a function 'f' is continuous at x = 0 where, $f(x) = \frac{\sin 3x}{5x} + a$, for x < 0 = x + 4 - b, for $x \ge 0$. find the value of a + b. (3)

(B) Attempt any one of the following:

(i) Evaluate:
$$\int \frac{dx}{x + \sqrt{x}}$$
 (2)

(ii) Evaluate:
$$\int \frac{dx}{1 + \sin x}$$
 (2)

O. 2 (A) Attempt any two of the following: [8]

(i) If
$$y = \tan^{-1} \left(\frac{5x+1}{3-x-6x^2} \right)$$
 show that $\frac{dy}{dx} = \frac{3}{1+(3x+2)^2+1+(2x-1)^2}$ (3)

(ii) If
$$2y = \sqrt{x+1} + \sqrt{x-1}$$
, show that $4(x^2-1)\frac{d^2y}{dx^2} + 4x\frac{dy}{dx} - y = 0$ (3)

(iii) Find the approximately value of tan⁻¹ (0.999) (3)

(i) Differentiate
$$(x^x + a^a)$$
 w.r.t. x (2)

(ii) Find
$$\frac{dy}{dx}$$
, if $y = \tan(x.e^x)$ (2)

Q.3 (A) (a) Attempt any one of the following: [8]

(i) Evaluate:
$$\int \sin(\log x) dx$$
 (3)

(ii) Evaluate:
$$\int \frac{x \, dx}{(x-1)(x^2+1)}$$
 (3)

(b) Attempt any one of the following:

(i) Evalute:
$$\int_{0}^{\pi/2} \frac{dx}{1 + \sqrt{\tan x}}$$
 (3)

(ii) Show that :
$$\int_{0}^{1} \frac{dx}{\sqrt{x^2 - x + 1}} - \log 3$$
 (3)

B) Attempt any one of the following:

Form the differentiate equation by eliminating the arbitrary constants a and b from the relation $y = ae^{2x} + be^{-2x}$. (2)

(2)

(ii) Solve the differential equation :
$$\frac{dy}{dx} = \sqrt{\frac{1-y^2}{1-x^2}}$$

). 4 (A) (a) Attempt any one of the following: [8]

(i) Prove that
$$\left(\frac{\Delta^2}{E}\right) e^x \cdot \frac{E(e^x)}{\Delta^2(e^x)} = e^x$$
. (3)

(ii) Using the relation between Δ and E, estimate the missing term in the following table:

(3)

			-			_
X	<u>U</u>	1	_ 2	3	4	'
f (x)	−5 ·	-2	- 7		91	

- Attempt any one of the following: (b)
- (3) (i)

Solve the differential equation:
$$\frac{dy}{dx} = (9x + y + 2)^2$$
, by using $9x + y + 2 = u$.

- Find the particular solution of the differential equation : (3) $y (1 + \log x) \frac{dx}{dy} - x \log x = 0$, when x = e and $y = e^2$.
- B) Attempt any one of the following:
 - In a Boolean algebra, prove that, the zero element '0' and unit element '1' are unique. (2)
 - (ii) If B is a Boolean algebra, for $x \in B$ prove that : (a) x + x = x(b) $x \cdot x = x$.
-). 5 (A) (a) Attempt any one of the following: [8]
 - If y is a differentiable function of u, and u is a differentiable function of x, then show (3)
 - If y = f(x) is a differentiable function of x such that, the inverse function $x = f^{-1}(y)$ is (ii)

Then prove that
$$\frac{dx}{dy} = \frac{1}{\left(\frac{dy}{dx}\right)}$$
, where $\frac{dy}{dx} \neq 0$. (3)

- **(b)** Attempt any one of the following:
- Prove that: (3) (i) $\int \sqrt{x^2 + a^2} \, dx = \frac{x}{2} \sqrt{x^2 + a^2 + \frac{a^2}{2}} \log \left(x + \sqrt{x^2 + a^2} \right) + c.$
- (ii) Prove that : $\int_{-a}^{a} f(x) dx = 2 \int_{0}^{a} f(x) dx$, if f (x) an even function. =0, if f(x) is an odd function. .- (3)
- 3) Attempt any one of the following:
 - **{2**} Draw the switching circuit of the Boolean expression a $[b \cdot (c + a')]$. (2)
 - (2) (ii) Simplify the switching circuit given below:

