PHYSICS QUESTION PAPER

Time:	2 Hrs.		Max. Marks : 4	0 -	
Note:					
(i)	All questions are compulsory.				
	Neat diagrams must be drawn wherever necessary.				
	Figures to the right indicate full marks.				
	Use of only logarithmic table is allowed				
	All symbols have their usual meanings		,		
	Answer to every question must be written		_	_	
	Select and write the most appropriate	answer from the give			
	question.		T:	8]	
(1)	Huygen's Wave Theory of Light could.		: la . : (1	L)	
C 5 8 5 /	(a) reflection (b) refraction				
(11)	In interference of light, a point is bri	gnt ir the path differen			
	arriving at that point is	ath	(1	L)	
	(b) an odd multiple of the wavelength	gui			
	(c) an odd multiple of half of the wave	lenoth 1			
	(d) an even multiple of the wavelength	•			
(iii)		into two equal parts by	cutting it perpendicular to i	ts	
(/	length. The magnetic moment of each p		(1		
		r			
	(a) Zero (b) $\frac{M}{2}$	(c) M	(d) 2 M.		
(iv)	Henry is equivalent to		(1	1).	
,		(b) ampere second			
	(c) Ohm/second	(d) Ohm second.			
(v)	A pure semiconductor is known as	•••	(*)	1)	
	(a) extrinsic semiconductor	(b) intrinsic semiconduc	for		
	(c) p-type semiconductor	(d) n - type semiconduct	or		
(vi)	If μ_1 and μ_2 are refractive indices of the	he material of core and	l leading respectively of a	an	
	optical fibre, then the loss of light due		nimized by making	ł	
	(a) $\mu_1 > \mu_2$ (b) $\mu_1 < \mu_2$	(c) µ ₁ ≤ µ ₂	(d) $\mu_1 = \mu_2$		
(vii)	The de-Broglie wavelength of 1 mg grain	in of sand blown by a w	rind at the speed of 20m/s	is	
•	- 26		$h = 6.63 \times 10^{-34} \text{ S. I. unit}$ (1)	
		(b) 33.15×10^{-33} m			
	(c) 33.15×10^{-30} m	(d) 33.15×10^{30} m		. •	
(viii)					
	fields of magnitude 4×10^5 V/m, and 0.0			•••	
O 2 (A		(c) 2×10^7	(d) 8×10^7	[8]	
Q. 2 (A (i)) Attempt any One : Find the energy of an electron in Second	Robe Orbit of hydrogen		OI	
(1)	[Energy of an electron in the First Bohr (2)	
(ii)					
()	plates is 1 mm. Find its capacity. $[\epsilon_0 = 8]$	$3.85 \times 10^{-12} \text{C}^2 / \text{Nm}^2 \text{l}$	-	2)	
(B)	Attempt any Two:	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	•	-,	
	Describe how potentiometer is used to c	ompare the e.m.f. of two	cells by Sum and Differen	ce	
` ,	Method.	1		3)	
(ii)	Derive an expression for the magnetic in	nduction due to a short	magnetic dipole at any poir	nt.	
	-		, (C	3)	
(iii)	What is a Communication Satellite? G	live any two advantage	s of Optical Communication	on	
	over Conventional Communication.			3)	
. •) Attempt any One:		_	[8]	
	State the conditions necessary for obtain		•	2)	
(::)	Draw the logical symbol of NIAND gate	and must thith table of	NIANII) gata	2)	

(B)	Attempt any Two:				
(i)	What is thermocouple? Explain Seebeck effect.	(3)			
(ii)	Distinguish between Laser and Maser. (Any three points)	(3)			
(iii)	State Einstein's photoelectric equation. Explain two characteristics of photoelectric effect				
	on the basis of Einstein's photoelectric equation.	(3)			
O.4 (A)	Attempt any Two:	[8]			
	What are eddy currents? State any two applications of eddy currents.	(2)			
(ii)	Draw a neat labelled circuit diagram of a transistor used as common emitter amplifier.	(2)			
(iii)	Explain how a moving coil galvanometer can be converted into voltmeter.	(2)			
• •	Attempt any One;	,_,			
	What is interference of Light?				
` '	With the help of neat ray diagrams, describe how the distance between two virtual				
	in biprism experiment is measured.	(4)			
(ii)	State and prove Gauss' Theorem in Electrostatics.	(4)			
	tempt any Two:	[8]			
- ·	An LCR series combination has $R = 10 \Omega$, $L = 1 \text{ m H}$ and $C = 2 \mu\text{F}$. Determine : (a) the reso				
	frequency, (b) The current in the circuit and (c) Voltages across L and C, when an altering				
1 4	voltage of 10 mV, operating at the resonant frequency is applied to the series combination.				
		(4)			
(ii)	Determine the change in wavelength of light during its passage from air to glass, i	f the			
	refractive index of glass with respect to air is 1.5 and the frequency of the light is 4 ×				
	Hz.				
	Find the wave number of light in glass. [Velocity of light in air = 3×10^8 m/s]	(4)			
(iii)	A coil of tangent galvanometer having diameter 16 cm is set up in magnetic meridian. V	Vhen			
	current of 0.8A is passed through the coil, the magnetic needle is deflected through				
	Find the length of the wire in the coil.				
	Also find the reduction factor of tangent galvanometer.				
	$[BH = 2 \times 10^{-5} \text{ Wb/m}^2, \mu_0 = 4 \pi \times 10^{-9} \text{ Wb/Am.}]$	(4)			