CHEMISTRY QUESTION PAPER

Time : 2 Hrs	Max. Ma	arks:40			
Note:					
(i) All c	estions carry equal marks.				
(ii) Give	palanced equations and draw diagrams wherever necessary.				
	Use of logarithmic table is allowed.				
(iv) Figu	es to the right indicate full marks?				
_	er to every question must be written on a new page.				
	nd write the most appropriate answer from the given alternatives for ea	ch sub-			
questi		[8]			
(i) Whi	of the following ions is colourless?	(1)			
(a) Z					
(ii) Amo	g the following equimolar solutions identify the one having highest boiling po	oint. (1)			
(a) {	rea (b) Sucrose (c) Sodium chloride (d) Sodium sulp	hate			
(iii) The	der of reaction between equimolar mixture of H_2 and Cl_2 in the presence of su	nlight is			
	•••	(1)			
(a) 0	(b) 1 (c) 2 (d) 3.				
(iv) The	thalpy of which of the following substances in standard state is zero?	(1)			
• • •	rbon (b) Calcium carbonate (c) Ammonia (d) Nitric acid				
(v) The	sic principle used in Hydrogen bomb is	(1)			
	clear fission (b) Nuclear fission				
	clear disintegration (d) Artificial radioactivity.				
	ld's Dilution Law is applicable in case of dilute solution of	(1)			
(a) I		1 34 5			
(vii) Whe	a change of 1 Faraday is passed through AlCi3 solution, the amount of Alv	ıminum			
	ited at cathode in gram is (At. Wt. of Al = 27)	(1).			
(a) 9	(b) 18 (c) 27 (d) 2.7	• •			
	eat of Neutralization of HCl by NaOH solution is - 57 kJ. The heat liber	• • •			
	lization of 109,5 × 10 ⁻³ kg of HClas	(1)			
(a) 5		· 			
Q. 2 (A) Atte	ipi aliy one i	[8]			
(1)	State and explain the van't Hoff-Boyle's Law.	(2)			
(II) (D) A44	Give one statement of First Law of Thermodynamics and give its corollary.	(2)			
	npt any one: Derive Ostwald's Dilution Law for weak acid.	(2)			
• •	State and explain Faraday's Second Law of Electrolysis.	(2)			
	ver the following:	(2)			
		(2)			
		(2) (2)			
Q. 3 (A) Atte	Give names and formulae of any 'two' ores of Zinc.	[8]			
(i)	Define Hydrolysis of salt and show that degree of hydrolysis of salt of we	eak acid			
• • •	and weak base is independent of concentration of solution.	(3)			
(ii)	What is Artificial Transmutation? Write nuclear reactions for a	rtificial			
	transmutation using alpha particle and neutron as projectiles.	. (3)			
(B) Att	npt any one:	:.			
(i)	What is Rate Law? Show that, half life of first order chemical rea	ction is			
	independent of initial concentration of the reactant.	.(3)			
(ii)	Give the observed outer electronic configuration of Copper $(Z = 29)$.	_			
4 4 -	Why are compounds of Copper 'coloured' while those of Zinc 'colourless'?	(3)			
	ver the following:	2 m h			
	e: (1) Mole fraction, (2) Faraday.	(2)			
Q. 4 (A) Ai	wer the following:	[8]			
St	e and explain Hess's Law of Constant Heat Summation and give it				
		(4)			

(B)	Att	empt any one:	
	(i)	Describe the construction and working of Standard Hydrogen electrode.	
		Give its 'two' disadvantages.	(4)
	(ii)	Describe Landsberger - Walker method for the determination of molecular solute by boiling point elevation.	•
Q. 5 (A)	Atte	empt any one :	(4)
	(i)	Heat of following reaction at constant volume (ΔE) at 300 K is	1 15
		$H_{2(g)} + \frac{1}{2}O_{2(g)} \rightarrow H_2O_{(I)}$ [$\Delta E = -285.8 \text{ kJ/mol.}$]	(4)
		Calculate the heat of formation of water at 500 K.	

The mean molar heat capacities at constant pressure in the given range of temperature are $H_{2(g)} = 28.87$, $O_{2(g)} = 27$ and $H_2O_{(1)} = 75.3$ J/K/mol. [R = 8.314 J/K/mol] (4)

(ii) The NH₄OH is 4.3% ionized at 298 K in 0.01M solution.

Calculate the ionization constant and pH of NH₄OH.

(4)

(B) Attempt any two:

(i) A solution is prepared by adding 3.7 moles of NaCL to 9.8 moles of water.
 What is the mole fraction of NaCl and H₂O in the solution?

(ii) A current of 5 amperes was passed through a solution of silver nitrate for 5 minutes when 1.677 × 10⁻³ kg of silver was deposited at cathode.
 Calculate electrochemical equivalent of silver.

(iii) Calculate the time taken by radio element to reduce 25% of its initial activity, if disintegration constant of radio element is $6.93 \times 10^{-2} \, day^{-1}$. (2)