MATHEMATICS : GEOMETRY -II

Time : $\mathbf{2 . 3 0} \mathrm{Hrs}$.) Question Pader: March 2010 (max. Marks : 60

Q. 1. Solve any six sub-questions.

(i) In the figure given betow, line PQ II side ST, R-R-S and $R-Q-T, R P=6, P S=9$, $R Q=8$, find $Q T$.

(ii) Sides of triangle are $8 \mathrm{~cm}, 17 \mathrm{~cm}$ and 15 cm . Determine whet her the triangle is a right-angled triangle or not.
(ill) If two circles with centres \mathbf{A} and B and radii 5 cm and 8 cm respectively touch each other extemally. Find the distence between A and B.
(iv)

In the figure given betow, chords $A B$ and CD of a circle intersect in point Q in the interior of a circle. If $m(\operatorname{arc} A D)=35^{\circ}$ and $m(\operatorname{arc} B C)=47^{\circ}$, then find $m \angle B Q C$.
(v) Construct and equilateral triangle ABC of side 6.5 cm . Draw perpendtular bisectors of any two sides of $\triangle A B C$. (Do not write the steps of the construction.)
(vi) If $\cot A=\frac{20}{21}$, then find the value of $\operatorname{cosec} A$.
(vii) What is the volume of a cube with side 4 cm ?
(viii) Find the co-ordinates of the mid-point of the segment joining the points $(0,4)$ and $(10,12)$.
Q. 2. Solve any four sub-questions.
(i) In $\triangle R S T, m \angle S=90^{\circ}, m \angle T=30^{\circ}, R T=10$. Find $R S$ and $S T$.
(li) In the figure given below, two concentric circles with centre O are given and line $A B$ is tangent to the smaller circle at T . Show that Tis the mid-point of seg AB.

(iii)

In the figure given below, side DC of a cyclic quadrilateral $A B C D$ is produced to a point E.
Prove that: $m \angle B C E=m \angle B A D$.
(iv) Draw tangents to a circle with centre ' A ' and radius 2.9 cm from a point B at a distance 5 cm from the centre. (Do not write the steps of the "construction.)
(v) Evaluate: : $\begin{array}{ll}3 \sin 58 & \sec 39 \\ \cos 32 & \operatorname{cosec} 51\end{array}$.
(vi) What is the volume of a cylinder with radius 15 cm and height 28 cm ? (Given $\pi=\frac{22}{7}$)
Q. 3. Solve any four sub-questions.
(i) Areas of two similar triangles are $225 \mathrm{~cm}^{2}$ and $81 \mathrm{~cm}^{2}$. If one side of the smaller triangle is 12 cm , then find the corresponding side of the larger triangle.
(ii) In $\triangle P Q R, M$ is a mid-point of side $Q R$. $I F P Q=11, Q R=12$ and $P R=17$. then find the length of seg PM. .
(iii) In the figure given below, $\triangle A B C$ is an isosceles triangle with perimeter 44 cm . The base $B C$ is of length 12 cm . Sides AB and AC are congruent. A circle touches the three sides as shown. Find the length of a tangent segment from A to the circle.

(iv)

In the figure given below, O is the centre of a circle, segment $P Q$ is diameter, line $A Q$ is a tangent. If $O P=3$ and $m(\operatorname{arc} P M)=120^{\circ}$, determine AP.
(v) Show.that : $\cot \theta+\tan \theta=\operatorname{cosec}^{2} \theta$. $\sec \theta$
(vi) If $A=(3,4)$ and $B=(8,-1)$, find the coordinates of R so that $3 A R=2 R B$.
9. 4. 8olve any three sub-questions.
(i) The volume of a sphere is $\frac{4312}{3} \mathrm{~cm}^{3}$, find its radius and surface area. (Given $\pi=\frac{22}{7}$)
(i) In the figure given below diagonal $A C$ is the perpendicular bisector of diagonal $B D$. $B D=16 \mathrm{~cm}, A B=10 \mathrm{~cm}$ and $B C=17 \mathrm{~cm}$. Find the length of diagonal AC.

(iii)

In the figure given below two circles centred at A and B are touching at C . Line passing through C intersects two circles at M and N respectively. Show that AM II BN.
(iv) In the figure given below $A B$ be the dlameter of a circle with centre P. Let line CB be a tangent and line ADC ADC a secant:
Prove that $A C \times A D=4$ (radius) ${ }^{2}$.

(v) Construct $\triangle P Q R$ suct that $Q R=8.6 \mathrm{~cm}, \mathrm{~m} \angle P=70^{\circ}$ and median $P M=5.2 \mathrm{~cm}$. (Do not write the steps of construction.)
(vi) Prove that: If a line paraliel to a side of a triangle intersects other sides in two distinct points, then the other sides are divided in the same ratio by it.
Q. 8. 8olve any three sub-questions.
(I) Bisectors of $\angle 8$ and $\angle \mathrm{C}$ and $\triangle \mathrm{ABC}$ meet each other at P . Line AP cuts the side BC at Q. then prove that: $: \begin{aligned} & A P \\ & P Q\end{aligned}=\frac{A B+A C}{B C}$
(ii) The angle of elevation of the top of a tower from a point on the ground is 30°. Atter: walking 30 metres towards the tower, the angle of elevation becomes 60°. What is the helght of the tower ?
(iil) Construct $\triangle P Q R$ such that $P Q=5 \mathrm{~cm}, \mathrm{QR}=6.2 \mathrm{~cm}, \mathrm{PR}=6.7 \mathrm{~cm}$ and draw its circumcircle. Draw tangents to the circle at P and R. (without using centre.) (Do not write the steps of the construction.)
(iv) If $P A B$ is a secant to a circle intersecting at points A and B and PT is a tangent, then prove that $\mathrm{PA} \times \mathrm{PB}=\mathrm{PT}^{2}$.
(v) The lower part of a toy is right circular cylindrical and its upper part is conical. The diameter of its base is 8 cm and height of the cylindrical part is 5 cm . If the total height of the toy is 8 cm , find the area of the curved surface of the toy. (Given $\pi=3.14$)
(vi) $M(-3,7)$ and $N(-1,6)$ are the points of trisection of segnent $A B$, where $A-M-N-B$. Find the co-ordinates of A and B.

