GEOMETRY

Time Duration: 2 Hrs 30 Mins Question Paper : October 2011
Maximum Marks:60
Note : Please Refer to All Notes Q. P. March 2008.
Q,1. (A) Solve any six sub-question :
(i) In the following figure, Ray NS is bisector of $\angle L N M \operatorname{In} \triangle L M N . L S=4, S M=2, M N=8$ Find $\angle N$.

(ii) Find the diagonal of a rectangle whose sides are 4 cm and 3 cm .
(iii) In the following given figure, Q is a centre of the circle and PM, PN are tangent segments to circle. If $\angle M P N=30^{\circ}$, find $\angle M Q N$

(b)

In the following figure, $m(a r c P M Q)=120^{\circ}$.

Find M PQS.
(v) Draw a line segment of $\mathrm{AB}=5.5 \mathrm{~cm}$ and bisect it.
(vi) Find the value of $\frac{\tan 52}{\cot 38}$.
(vii) What is the volume of a cylinder with radius 14 cm and height 2 cm ? (Given $\pi=\frac{22}{7}$)
(viii) Find the distance between the poinls: $P(2,6), Q(4,7)$.
Q. 2. (A) Solve any four sub-questions :
(i) In $\triangle R S T$. $\angle S=90^{\circ}, \quad \angle T=30^{\circ}, R T=10$, find $R S$ and $S T$.
(ii) In the following given figure, there are four tangents to a circle at the points A, B, C and D. These four tangents form a parallelogram $P Q R S$. If $P B=6$ and $B Q=4$, then find $P S$.
(iii) In the following figure. P is the centre of the circle having diameter $A B$ and M is a Point on the circle. If $m \angle P M B=50^{\circ}$, then find:
(1) $m(\operatorname{arc} M \times B)$

(2) $m(\operatorname{arc} A y M)$.
(iv) Draw the circumcircle of $\triangle A B C$ such that $\angle B=90^{\circ}, B C=5.4 \mathrm{~cm}$ and $A B=6 \mathrm{~cm}$.
(v) If $\tan \theta=\frac{12}{5}$, then find the values of $\sin \theta$ and $\cos \theta$.
(vi) The volume of a cube is $125 \mathrm{~cm}^{3}$. Find the total surface area of that cube.
Q. 3. Solve any foursub-questions :
(i) $\triangle A B C \sim \triangle P Q R, A(\triangle A B C)=144 \mathrm{~cm}^{2}$ and $A(\triangle P Q R)=81 \mathrm{~cm}^{2}$. If $A B=8 \mathrm{~cm}$, then find $P Q$.
(II) From the information given below In the figure, $\angle P Q R-90^{\circ}, \angle P S R=90^{\circ}$,
find: (1) $P R$ and (2) RS

Inthe figure given below the inscribed cinde of $\triangle A B C$ bouches, side $A B$ at L, sdo $B C$ at M and side $A C$ at N.
Prove that $A(\triangle A B C)=\frac{1}{2}$ (Perimeter of $\left.\triangle A B C\right) \times$ (Redius of the inscribed circle).

(iv) In the figure A, B and C are three points on a circle with centre O such that $m \angle A O B=100^{\circ}, m \angle A O C=1300^{\circ}$ Find $\mathfrak{m} \angle B A C$.

M From the top of a lighthouse, an observer looks at a ship and finds the angle of depression to be 60°. If the height of the lighthouse is 90 metres, then find how far is that ship from the lighthouse?
M Using distance fornula, show that the points $L(-1,6), M(1,5)$ and $N(-5,8)$ are collinear.

Q.4.

Solve any thres sub-questions :

- Prove that, in a triangle, the angle bisector divides the side opposite to the angle in the ratio of remaining sides.
(n) In $\triangle A B C$, seg $A P$ is a median. If $A P=7$ and $A B^{2}+A C^{2}=260$, then find $B C$.
. In the given figure below, the drcte is the incircte of an isosceles $\triangle A B C$, where seg $A B \cong \operatorname{seg} A C$. Prove that M bisects $B C$.
(M) O is the centre of a circle. Point M, in arc AMB is such that : $m(\operatorname{arc} A M)=m(\operatorname{arc} M B)$.
$\therefore \therefore$ Show that readius OM is perpendicular to chord AB .

M Draw a tangent to a circle with centre P and radius 2.8 cm , from a point ' M ' such that $P M=7 \mathrm{~cm}$.
(M) 5 rupee coins were made by melting a solid cuboidal block of metal with dimensions $16 \times 11 \times 10 \mathrm{in} \mathrm{cm}$. How many coins of thlckness 2 mm and diameter 2 cm be made?

$$
\begin{equation*}
\text { (Given } \pi=\frac{22}{7} \text {) } \tag{12}
\end{equation*}
$$

Q. s. sonve any throe sub-questions:
(1. Construct $\triangle A B C$, such that $A C=9 \mathrm{~cm}, \angle B=90^{\circ}$ and altitude $B D$ has length 4 cm .
(i) Show that:

$$
\begin{aligned}
& \text { that: } \\
& \operatorname{soc}^{2} A-\operatorname{cosec} ? A=\frac{2 \sin ^{2} A-1}{\sin ^{2} A \cdot \cos ^{2} A}
\end{aligned}
$$

(n) In $\square A B C D$, side $B C \| A D$. Diagonals
$A C$ and $B D$ intersect each other at P.
If $A P=\frac{1}{3} A C$, then prove that $D P=\frac{1}{2} B P$.

(v) An tin-maker converts a cubical metallic box into 10 cylindrical tins. Side of the cube is 50 cm and radius of the cylinder is. 7 cm . Find the height of each cylinder so made if the wastage of 12% is incurred in the process. (Given $\pi=\frac{22}{7}$)
(M) The line segment $A B$ is divided at $P=(4,5)$ internally in the ratio $3: 4$, if $B(8,9)$ Find the coordinates of A
(v.) In a cyclic quadriateral show that the sum of the product of the opposite sides is equal to the product of the diagonats.

