MSB Board
 Class XII Mathematics \& Statistics Board Paper 2016 Solution

 SECTION - I

 SECTION - I}

1. (A)
(i) (d)

$$
\begin{aligned}
& \sim[\mathrm{P} \wedge(\mathrm{q} \rightarrow \mathrm{r})]=\sim[(\mathrm{P})] \vee[\sim(\mathrm{q} \rightarrow \mathrm{r})] \ldots \ldots \ldots \ldots \ldots \text {............. De Morgan's law } \\
& =\sim[(P)] \vee[\sim(\sim q \vee r)] \ldots \ldots \text {. By Conditional Law } \\
& =\sim[(P)] \vee[(q \wedge \sim r)] \ldots \ldots \ldots \text {. By De Morgan's law } \\
& \therefore \sim[P \wedge(q \rightarrow r)]=\sim P \vee(q \wedge \sim r)
\end{aligned}
$$

(ii) (c)

$$
\begin{aligned}
& \sin ^{-1}(1-x)-2 \sin ^{-1} x=\frac{\pi}{2} \\
& \sin ^{-1}(1-x)=\frac{\pi}{2}+2 \sin ^{-1} x \\
& (1-x)=\sin \left(\frac{\pi}{2}+2 \sin ^{-1} x\right) \\
& (1-x)=\cos \left(2 \sin ^{-1} x\right) \\
& (1-x)=\cos \left(\cos ^{-1}\left(1-2 x^{2}\right)\right) \\
& (1-x)=1-2 x^{2} \\
& 2 x^{2}-x=0 \\
& x(2 x-1)=0 \\
& x=0 \text { or } 2 x-1=0 \\
& x=0 \text { or } x=\frac{1}{2}
\end{aligned}
$$

For $x=\frac{1}{2}$
$\sin ^{-1}(1-x)-2 \sin ^{-1} x=\sin ^{-1}\left(\frac{1}{2}\right)-2 \sin ^{-1}\left(\frac{1}{2}\right)=-\sin ^{-1}\left(\frac{1}{2}\right)=-\frac{\pi}{6}$
So $x=\frac{1}{2}$ is not solution of the given equation.

For $\mathrm{x}=0$
$\sin ^{-1}(1-x)-2 \sin ^{-1} x=\sin ^{-1}(1)-2 \sin ^{-1}(0)=\frac{\pi}{2}-0=\frac{\pi}{2}$
So $x=0$ is a valid solution of the given equation.
(iii) (a)

Equation of the coordinate axes are $x=0$ and $y=0$.
\therefore The equations of the lines passing through $(2,3)$ and parallel to coordinate axes are, $x=2$ and $y=3$.
i.e. $x-2=0$ and $y-3=0$

The joint equation is given as

$$
\begin{aligned}
& (x-2)(y-3)=0 \\
& x y-3 x-2 y+6=0
\end{aligned}
$$

(B)
(i)

$$
\begin{aligned}
& A=\left[\begin{array}{rrr}
1 & 2 & 3 \\
1 & -2 & -3
\end{array}\right], B=\left[\begin{array}{rr}
1 & -1 \\
1 & 2 \\
1 & -2
\end{array}\right] \\
& A B=\left[\begin{array}{rrr}
1 & 2 & 3 \\
1 & -2 & -3
\end{array}\right] \times\left[\begin{array}{rr}
1 & -1 \\
1 & 2 \\
1 & -2
\end{array}\right] \\
& =\left[\begin{array}{cc}
6 & -3 \\
-4 & 1
\end{array}\right]
\end{aligned}
$$

$$
(A B)^{-1}(A B)=I
$$

$$
(A B)^{-1}\left[\begin{array}{cc}
6 & -3 \\
-4 & 1
\end{array}\right]=\left[\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right]
$$

Using $R_{1} \rightarrow \frac{1}{6} R_{1}$
$\therefore(A B)^{-1}\left[\begin{array}{cc}1 & \frac{-1}{2} \\ -4 & 1\end{array}\right]=\left[\begin{array}{ll}\frac{1}{6} & 0 \\ 0 & 1\end{array}\right]$
Using $R_{2} \rightarrow R_{2}+4 R_{1}$
$\therefore(A B)^{-1}\left[\begin{array}{cc}1 & \frac{-1}{2} \\ 0 & -1\end{array}\right]=\left[\begin{array}{cc}\frac{1}{6} & 0 \\ \frac{2}{3} & 1\end{array}\right]$
Using $\mathrm{R}_{2} \rightarrow(-1) \mathrm{R}_{2}$
$\therefore(\mathrm{AB})^{-1}\left[\begin{array}{ll}1 & \frac{-1}{2} \\ 0 & 1\end{array}\right]=\left[\begin{array}{cc}\frac{1}{6} & 0 \\ -\frac{2}{3} & -1\end{array}\right]$

Using $R_{1} \rightarrow R_{1}+\left(\frac{1}{2}\right) R_{2}$
$\therefore(A B)^{-1}\left[\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right]=\left[\begin{array}{cc}-\frac{1}{6} & \frac{-1}{2} \\ -\frac{2}{3} & -1\end{array}\right]$
$\therefore(A B)^{-1} I=\left[\begin{array}{rc}-\frac{1}{6} & \frac{-1}{2} \\ -\frac{2}{3} & -1\end{array}\right]$
$\therefore(\mathrm{AB})^{-1}=\left[\begin{array}{rr}-\frac{1}{6} & \frac{-1}{2} \\ -\frac{2}{3} & -1\end{array}\right]$
(ii) We know that the vector equation of a plane passing through a point $\mathrm{A}(\overline{\mathrm{a}})$ and normal to \bar{n} is $\bar{r} \cdot \bar{n}=\bar{a} \cdot \bar{n}$.
Here $\bar{a}=3 \hat{i}-2 \hat{j}+\hat{k}$ and $\bar{n}=4 \hat{i}+3 \hat{j}+2 \hat{k}$
\therefore The vector equation of the required plane is
$\bar{r} \cdot \bar{n}=\bar{a} \cdot \bar{n}$
$\bar{r} \cdot(4 \hat{i}+3 \hat{j}+2 \hat{k})=(3 \hat{i}-2 \hat{j}+\hat{k}) \cdot(4 \hat{i}+3 \hat{j}+2 \hat{k})$
$\bar{r} \cdot(4 \hat{i}+3 \hat{j}+2 \hat{k})=12-6+2$
$\bar{r} \cdot(4 \hat{i}+3 \hat{j}+2 \hat{k})=8$
\therefore The vector equation of the required plane is $\bar{r} \cdot(4 \hat{i}+3 \hat{j}+2 \hat{k})=8$.
(iii) R is the point which divides the line segment joining the points PQinternally in theratio 2:1.

$$
\begin{aligned}
\bar{r} & =\frac{2(\bar{q})+1(\overline{\mathrm{p}})}{2+1} \\
& =\frac{2(\hat{\mathrm{i}}+4 \hat{j}-2 \hat{k})+1(\hat{\mathrm{i}}-2 \hat{j}+\hat{k})}{3} \\
& =\frac{3 \hat{i}+6 \hat{j}-3 \hat{k}}{3} \\
\therefore \bar{r} & =\hat{i}+2 \hat{j}-\hat{k}
\end{aligned}
$$

The position vector of point R is $\hat{i}+2 \hat{j}-\hat{k}$.
(iv) Let m_{1} be the slope of $2 \mathrm{x}+\mathrm{y}=0$.
$\therefore m_{1}=-2$
$6 x^{2}+k x y+y^{2}=0$
$\therefore a=6, h=\frac{k}{2}, b=1$
$\therefore \mathrm{m}_{1}+m_{2}=-\frac{2 h}{b}=-k$
$\therefore-2+m_{2}=-k$
$\therefore m_{2}=-k+2$
Now, $\mathrm{m}_{1} m_{2}=\frac{a}{b}$
$\therefore(-2)(-k+2)=6$
$2 k-4=6$
$k=5$
The value of k is 5 .
(v) Given equations of the line are:

Let \bar{a} and \bar{b} be vectors in the direction of lines $\frac{x-1}{-3}=\frac{y-2}{2 k}=\frac{z-3}{2}$
and $\frac{\mathrm{x}-1}{3 \mathrm{k}}=\frac{\mathrm{y}-5}{1}=\frac{\mathrm{z}-6}{-5}$ respectively.
$\therefore \bar{a}=-3 \hat{i}+2 k \hat{j}+2 \hat{k}$ and $\bar{b}=3 k \hat{i}+\hat{j}-5 \hat{k}$
$\bar{a} \cdot \bar{b}=-9 k+2 k-10=-7 k-10$

Given lines are at right angle
$\therefore \theta=90^{\circ}$
$\cos \theta=\frac{\overline{\mathrm{a}} \cdot \overline{\mathrm{b}}}{|\overline{\mathrm{a}}||\overline{\mathrm{b}}|}$
$0=\frac{\bar{a} \cdot \bar{b}}{|\bar{a}||\bar{b}|}$
$\bar{a} \cdot \bar{b}=0$
$-7 k-10=0$
$k=-\frac{10}{7}$

The value of k is $-\frac{10}{7}$.
2. (A)
(i) Consider the statement pattern: $[(\mathrm{p} \rightarrow \mathrm{q}) \wedge \mathrm{q}] \rightarrow \mathrm{p}$

Thus the truth table of the given logical statement: $[(p \rightarrow q) \wedge q] \rightarrow p$

p	q	$\mathrm{p} \rightarrow \mathrm{q}$	$(\mathrm{p} \rightarrow \mathrm{q}) \wedge \mathrm{q}$	$[(\mathrm{p} \rightarrow \mathrm{q}) \wedge \mathrm{q}] \rightarrow \mathrm{p}$
T	T	T	T	T
T	F	F	F	T
F	T	T	T	F
F	F	T	F	T

From the above truth table we can say that given
logical statement: $[(p \rightarrow q) \wedge q] \rightarrow p$ is contingency.
(ii)

Let A, B and C be the vertices of a triangle.
Let D, E and F be the midpoints of the sides $B C, A C$ and $A B$ respectively.
Let $\overline{\mathrm{OA}}=\overline{\mathrm{a}}, \overline{\mathrm{OB}}=\overline{\mathrm{b}}, \overline{\mathrm{OC}}=\overline{\mathrm{c}}, \overline{\mathrm{OD}}=\overline{\mathrm{d}}, \overline{\mathrm{OE}}=\overline{\mathrm{e}}$ and $\overline{\mathrm{OF}}=\overline{\mathrm{f}}$ be position vectors of points A, B, C, D, E and F respectively.
Therefore, by midpoint formula,
$\overline{\mathrm{d}}=\frac{\overline{\mathrm{b}}+\overline{\mathrm{c}}}{2}, \overline{\mathrm{e}}=\frac{\overline{\mathrm{a}}+\overline{\mathrm{b}}}{2}$ and $\overline{\mathrm{f}}=\frac{\overline{\mathrm{a}}+\overline{\mathrm{b}}}{2}$
$\therefore 2 \overline{\mathrm{~d}}=\overline{\mathrm{b}}+\overline{\mathrm{c}}, 2 \overline{\mathrm{e}}=\overline{\mathrm{a}}+\overline{\mathrm{c}}$ and $2 \overline{\mathrm{f}}=\overline{\mathrm{a}}+\overline{\mathrm{b}}$
$\therefore 2 \overline{\mathrm{~d}}+\overline{\mathrm{a}}=\overline{\mathrm{a}}+\overline{\mathrm{b}}+\overline{\mathrm{c}}, 2 \overline{\mathrm{e}}+\overline{\mathrm{b}}=\overline{\mathrm{a}}+\overline{\mathrm{b}}+\overline{\mathrm{c}}$ and $2 \overline{\mathrm{f}}+\overline{\mathrm{c}}=\overline{\mathrm{a}}+\overline{\mathrm{b}}+\overline{\mathrm{c}}$
$\therefore \frac{2 \bar{d}+\overline{\mathrm{a}}}{3}=\frac{2 \overline{\mathrm{e}}+\overline{\mathrm{b}}}{3}=\frac{2 \overline{\mathrm{f}}+\overline{\mathrm{c}}}{3}=\frac{\overline{\mathrm{a}}+\overline{\mathrm{b}}+\overline{\mathrm{c}}}{3}$

Let $\overline{\mathrm{g}}=\frac{\overline{\mathrm{a}}+\overline{\mathrm{b}}+\overline{\mathrm{c}}}{3}$.
\therefore We have $\overline{\mathrm{g}}=\frac{\overline{\mathrm{a}}+\overline{\mathrm{b}}+\overline{\mathrm{c}}}{3}=\frac{(2) \overline{\mathrm{d}}+(1) \overline{\mathrm{a}}}{3}=\frac{(2) \overline{\mathrm{e}}+(1) \overline{\mathrm{b}}}{3}=\frac{(2) \overline{\mathrm{f}}+(1) \overline{\mathrm{c}}}{3}$
If G is the point whose position vector is \bar{g}, then from the above equation it is clear that the point G lies on the medians $A D, B E, C F$ and it divides each of the medians $A D, B E, C F$ internally in the ratio $2: 1$.
Therefore, three medians are concurrent.
(iii) We know that the shortest distance between the lines

$$
\bar{r}=\overline{a_{1}}+\lambda \bar{b}_{1} \text { and } \bar{r}=\overline{a_{2}}+\mu \overline{b_{2}} \text { is given as } d=\left|\frac{\left(\overline{a_{2}}-\overline{a_{1}}\right) \cdot\left(\overline{b_{1}} \times \overline{b_{2}}\right)}{\left|\overline{b_{1}} \times \overline{b_{2}}\right|}\right|
$$

Given equation of lines are

$$
\begin{aligned}
& \bar{r}=(4 \hat{i}-\hat{j})+\lambda(\hat{i}+2 \hat{j}-3 \hat{k}) \text { and } \bar{r}=(\hat{i}-\hat{j}+2 \hat{k})+\mu(\hat{i}+4 \hat{j}-5 \hat{k}) . \\
& \therefore \overline{a_{2}}-\overline{a_{1}}=(\hat{i}-\hat{j}+2 \hat{k})-(4 \hat{\mathrm{i}}-\hat{j})=-3 \hat{i}+2 \hat{k} \\
& \overline{\mathrm{~b}_{1}} \times \overline{\mathrm{b}_{2}}=\left|\begin{array}{ccc}
\hat{\mathrm{i}} & \hat{j} & \hat{k} \\
1 & 2 & -3 \\
1 & 4 & -5
\end{array}\right| \\
& =\hat{\mathrm{i}}(-10+12)-\hat{j}(-5+3)+\hat{k}(4-2) \\
& =2 \hat{\mathrm{i}}+2 \hat{j}+2 \hat{k}
\end{aligned}
$$

$$
\left(\overline{a_{2}}-\overline{a_{1}}\right) \cdot\left(\overline{b_{1}} \times \overline{b_{2}}\right)=(-3 \hat{i}+2 \hat{k}) \cdot(2 \hat{i}+2 \hat{j}+2 \hat{k})=-3 \times 2+0 \times 2+2 \times 2=-2
$$

$$
\left|\overline{\mathrm{b}_{1}} \times \overline{\mathrm{b}_{2}}\right|=\sqrt{4+4+4}=2 \sqrt{3}
$$

Shortest distance $=d=\left|\frac{-2}{2 \sqrt{3}}\right|=\left|\frac{-1}{\sqrt{3}}\right|=\frac{1}{\sqrt{3}}$ units.
(B)
(i) $\mathrm{LHS}=(\mathrm{a}-\mathrm{b})^{2} \cos ^{2}\left(\frac{\mathrm{C}}{2}\right)+(a+b)^{2} \sin ^{2}\left(\frac{C}{2}\right)$

$$
\begin{aligned}
& =a^{2}\left[\cos ^{2}\left(\frac{C}{2}\right)+\sin ^{2}\left(\frac{C}{2}\right)\right]+b^{2}\left[\cos ^{2}\left(\frac{\mathrm{C}}{2}\right)+\sin ^{2}\left(\frac{\mathrm{C}}{2}\right)\right]-2 a b\left[\cos ^{2}\left(\frac{\mathrm{C}}{2}\right)-\sin ^{2}\left(\frac{\mathrm{C}}{2}\right)\right] \\
& =a^{2}(1)+b^{2}(1)-2 a b[\cos C] \\
& \quad \ldots \ldots \ldots .\left[\because \cos ^{2} \theta+\sin ^{2} \theta=1 \text { and } \cos ^{2} \theta-\sin ^{2} \theta=\cos 2 \theta\right]
\end{aligned}
$$

$=a^{2}+b^{2}-2 a b\left[\frac{a^{2}+b^{2}-c^{2}}{2 a b}\right]$
$\ldots \ldots \ldots .\left[\right.$ Cosine Rule $\left.\cos C=\frac{a^{2}+b^{2}-c^{2}}{2 a b}\right]$
$=a^{2}+b^{2}-a^{2}-b^{2}+c^{2}$
$=c^{2}$
$=$ RHS
Hence proved.
(ii) Consider equations obtained by converting all inequations representing the constraints.

$$
\begin{aligned}
& 2 x+y=7 \text { i.e. } \frac{x}{3.5}+\frac{y}{7}=1 \\
& 2 x+3 y=15 \text { i.e. } \frac{x}{7.5}+\frac{y}{5}=1 \\
& x=3, x=0, y=0
\end{aligned}
$$

Plotting these lines on graph we get the feasible region.

From the graph we can see that $A B C$ is the feasible region.

Take any one point on the feasible region say $\mathrm{P}(2,3)$.
Draw initial isocost line z_{1} passing through the point $(2,3)$.
$\therefore z_{1}=4(2)+5(3)=8+15=23$
\therefore Initial isocost line is $4 \mathrm{x}+5 \mathrm{y}=23$.

Since the objective function is of minimization type, from the graph we can see that the line z_{3} contains only one point $A(3,1)$ of the feasible region $A B C$.

Minimum value of $z=4(3)+5(1)=12+5=17$
$\therefore \mathrm{z}$ is minimum when $\mathrm{x}=3$ and $\mathrm{y}=1$.
(iii) Let ₹' x^{\prime}, ₹'y' and ₹' $^{\prime} z^{\prime}$ be the cost of one dozen pencils, one dozen pens and one dozen erasers.
Thus, the system of equations are:
$4 x+3 y+2 z=60$
$2 x+4 y+6 z=90$
$6 x+2 y+3 z=70$
Let us write the above equations in the matrix form as:

$$
\left[\begin{array}{lll}
4 & 3 & 2 \\
2 & 4 & 6 \\
6 & 2 & 3
\end{array}\right]\left[\begin{array}{l}
x \\
y \\
z
\end{array}\right]=\left[\begin{array}{l}
60 \\
90 \\
70
\end{array}\right] \text { i.e. } A X=B
$$

Using $R_{2} \rightarrow R_{2}-\frac{1}{2} R_{1}$ and $R_{3} \rightarrow R_{3}-\frac{3}{2} R_{1}$
$\left[\begin{array}{ccc}4 & 3 & 2 \\ 0 & \frac{5}{2} & 5 \\ 0 & -\frac{5}{2} & 0\end{array}\right]\left[\begin{array}{l}x \\ y \\ z\end{array}\right]=\left[\begin{array}{c}60 \\ 60 \\ -20\end{array}\right]$
Using $\mathrm{R}_{3} \rightarrow \mathrm{R}_{3}+\mathrm{R}_{2}$
$\left[\begin{array}{ccc}4 & 3 & 2 \\ 0 & \frac{5}{2} & 5 \\ 0 & 0 & 5\end{array}\right]\left[\begin{array}{l}x \\ y \\ z\end{array}\right]=\left[\begin{array}{l}60 \\ 60 \\ 40\end{array}\right]$

As matrix A is reduced to its upper triangular form we can write
$4 x+3 y+2 z=60$
$\frac{5}{2} y+5 z=60$
$5 z=40$
$z=8 \ldots .$. (iii)
Substituting (iii) in (ii) we get,
$\frac{5}{2} y+5(8)=60$
$\mathrm{y}=8$.....(iv)
Substituting (iii) and (iv) in (i) we get,
$4 \mathrm{x}+3(8)+2(8)=60$
$x=5$
. Cost of one dozen pencils, one dozen pens and one dozen erasers is ₹5, ₹8 and ₹8 respectively.
3.
(A)
(i)

Volume of tetrahedron whose conterminus edges are \bar{a}, \bar{b} and \bar{c} is $\frac{1}{6}[\bar{a} \bar{b} \bar{c}]$. Here $\bar{a}=7 \hat{i}+\hat{k} ; \bar{b}=2 \hat{i}+5 \hat{j}-3 \hat{k} ; \bar{c}=4 \hat{i}+3 \hat{j}+\hat{k}$.

Volume of tetrahedron $=\frac{1}{6}[\bar{a} \bar{b} \bar{c}]$

$$
\begin{aligned}
& =\frac{1}{6}\left|\begin{array}{ccc}
7 & 0 & 1 \\
2 & 5 & -3 \\
4 & 3 & 1
\end{array}\right| \\
& =\frac{1}{6}[7(5+9)-0(2+12)+1(6-20)] \\
& =\frac{1}{6}[98-0-14] \\
& =\frac{1}{6}[84] \\
& =14
\end{aligned}
$$

Hence volume of tetrahedron is 14 cubic units.
(ii)

$$
\begin{array}{ll}
\sim(p \vee q) \vee(\sim p \wedge q) & \\
\equiv \sim(p \vee q) \vee \sim(p \vee \sim q) & \\
\equiv \sim[(p \vee q) \wedge(p \vee \sim q)] & \text { by De Morgan's Law } \\
\equiv \sim\{[(p \vee q) \wedge p] \vee[(p \vee q) \wedge \sim q]\} & \text { by De Morgan's Law } \\
\equiv \sim\{[P] \vee[(p \vee q) \wedge \sim q]\} & \\
\equiv \sim\{[P] \vee[(p \wedge \sim q) \vee(q \wedge \sim q)]\} & \\
\equiv \sim \text { by Absorption Listributive Law } \\
\equiv \sim[P] \vee[(p \wedge \sim q) \vee F]\} & \\
\equiv \sim\{[P] \vee[(p \wedge \sim q)]\} & \text { by Complement Law } \\
\equiv \sim P \wedge(\sim P \vee q) & \text { by Identity Law } \\
\equiv \sim P &
\end{array}
$$

(iii)

Consider a homogeneous equation of degree two in x and y
$a x^{2}+2 h x y+b y^{2}=0$ \qquad (i)

In this equation at least one of the coefficients a, b or h is non zero.
We consider two cases.

Case I: If $b=0$ then equation becomes
$a x^{2}+2 h x y=0$
$x(a x+2 h y)=0$
This is the joint equation of lines $x=0$ and $(a x+2 h y)=0$
These lines pass through the origin.

Case II: If $b \neq 0$
Multiplying both the sides of equation (i) by b, we get
$a b x^{2}+2 h b x y+b^{2} y^{2}=0$
$2 h b x y+b^{2} y^{2}=-a b x^{2}$
To make LHS a complete square, we add $\mathrm{h}^{2} x^{2}$ on both the sides.
$b^{2} y^{2}+2 h b x y+h^{2} x^{2}=-a b x^{2}+h^{2} x^{2}$

$$
\begin{aligned}
& (b y+h x)^{2}=\left(h^{2}-a b\right) x^{2} \\
& (b y+h x)^{2}=\left[\left(\sqrt{h^{2}-a b}\right) x\right]^{2} \\
& (b y+h x)^{2}-\left[\left(\sqrt{h^{2}-a b}\right) x\right]^{2}=0 \\
& {\left[(b y+h x)+\left(\sqrt{h^{2}-a b}\right) x\right]\left[(b y+h x)-\left(\sqrt{h^{2}-a b}\right) x\right]=0}
\end{aligned}
$$

It is the joint equation of two lines
$(b y+h x)+\left(\sqrt{h^{2}-a b}\right) x=0$ and $(b y+h x)-\left(\sqrt{h^{2}-a b}\right) x=0$
$\left(h+\sqrt{h^{2}-a b}\right) x+b y=0$ and $\left(h-\sqrt{h^{2}-a b}\right) x+b y=0$
These lines pass through the origin when $h^{2}-a b>0$.

From the above two cases we conclude that the equation $a x^{2}+2 h x y+b y^{2}=0$ represents a pair of lines passing through the origin.
(B)
(i)

Let M be the foot of the perpendicular drawn from the point $A(1,2,1)$ to the line joining $P(1,4,6)$ and $Q(5,4,4)$.

Equation of a line passing through the points $\left(x_{1}, y_{1}, z_{1}\right)$ and $\left(x_{2}, y_{2}, z_{2}\right)$ is
$\frac{x-x_{1}}{x_{2}-x_{1}}=\frac{y-y_{1}}{y_{2}-y_{1}}=\frac{z-z_{1}}{z_{2}-z_{1}}$
Equation of the required line passing through $P(1,4,6)$ and $Q(5,4,4)$ is
$\frac{x-1}{4}=\frac{y-4}{0}=\frac{z-6}{-2}$
Coordinates of any point on the line are given by
$\frac{x-1}{4}=\frac{y-4}{0}=\frac{z-6}{-2}=\lambda$
$x=4 \lambda+1 ; y=4 ; z=-2 \lambda+6$
\therefore Coordinates of M are $(4 \lambda+1,4,-2 \lambda+6)$ \qquad
The direction ratios of AM are
$4 \lambda+1-1,4-2,-2 \lambda+6-1$
i.e. $4 \lambda, 2,-2 \lambda+5$

The direction ratios of given line are 4,0,-2.
Since AM is perpendicular to the given line
$\therefore 4(4 \lambda)+0(2)+(-2)(-2 \lambda+5)=0$
$\therefore \lambda=\frac{1}{2}$
Putting $\lambda=\frac{1}{2}$ in (i), the coordinates of M are $(3,4,5)$.
\therefore Length of perpendicular from A on the given line
$A M=\sqrt{(3-1)^{2}+(4-2)^{2}+(5-1)^{2}}=\sqrt{24}$ units.
(ii)

Let $\overline{\mathrm{a}}=\hat{\mathrm{i}}+\hat{\mathrm{j}}-2 \hat{\mathrm{k}}, \quad \overline{\mathrm{b}}=\hat{\mathrm{i}}+2 \hat{\mathrm{j}}+\hat{\mathrm{k}}, \quad \overline{\mathrm{c}}=2 \hat{\mathrm{i}}-\hat{\mathrm{j}}+\hat{\mathrm{k}}$
$\overline{A B}=\overline{\mathrm{b}}-\overline{\mathrm{a}}=(\hat{\mathrm{i}}+2 \hat{\mathrm{j}}+\hat{\mathrm{k}})-(\hat{\mathrm{i}}+\hat{\mathrm{j}}-2 \hat{\mathrm{k}})=\hat{\mathrm{j}}+3 \hat{\mathrm{k}}$
$\overline{A C}=\overline{\mathrm{c}}-\overline{\mathrm{a}}=(2 \hat{\mathrm{i}}-\hat{\mathrm{j}}+\hat{\mathrm{k}})-(\hat{\mathrm{i}}+\hat{\mathrm{j}}-2 \hat{\mathrm{k}})=\hat{\mathrm{i}}-2 \hat{\mathrm{j}}+3 \hat{\mathrm{k}}$
$\overline{A B} \times \overline{A C}=\left|\begin{array}{ccc}\hat{i} & \hat{j} & \hat{k} \\ 0 & 1 & 3 \\ 1 & -2 & 3\end{array}\right|$
$=\hat{i}(3+6)-\hat{j}(0-3)+\hat{k}(0-1)$
$=9 \hat{i}+3 \hat{j}-\hat{k}$

Let $\bar{n}=\overline{A B} \times \overline{A C}$
Then the equation of required plane is,
$\bar{r} \cdot \bar{n}=\bar{a} \cdot \bar{n}$
$\bar{r} \cdot(9 \hat{i}+3 \hat{j}-\hat{k})=(\hat{i}+\hat{j}-2 \hat{k}) \cdot(9 \hat{i}+3 \hat{j}-\hat{k})$
$\bar{r} \cdot(9 \hat{i}+3 \hat{j}-\hat{k})=9+3+2$
$\bar{r} \cdot(9 \hat{i}+3 \hat{j}-\hat{k})=14$

The cartesian equation of the plane is given by, $(x \hat{i}+y \hat{j}+z \hat{k}) \cdot(9 \hat{i}+3 \hat{j}-\hat{k})=14, \quad$ where $\bar{r}=x \hat{i}+y \hat{j}+z \hat{k}$ $9 x+3 y-z=14$

The cartesian equation of the plane is $9 x+3 y-z=14$.
(iii)

$$
\begin{aligned}
& \sin x+\sin 3 x+\sin 5 x=0 \\
& \therefore(\sin x+\sin 5 x)+\sin 3 x=0 \\
& \therefore 2 \sin \left(\frac{x+5 x}{2}\right) \cos \left(\frac{5 x-x}{2}\right)+\sin 3 x=0 \\
& \therefore 2 \sin 3 x \cos 2 x+\sin 3 x=0 \\
& \therefore(2 \cos 2 x+1) \sin 3 x=0 \\
& \therefore(2 \cos 2 x+1)=0 \quad \text { or } \quad \sin 3 x=0 \\
& \therefore \cos 2 x=-\frac{1}{2} \quad \text { or } \quad \sin 3 x=0 \\
& \therefore \cos 2 x=-\cos \frac{\pi}{3} \quad \text { or } \quad \sin 3 x=0 \\
& \therefore \cos 2 x=\cos \left(\pi-\frac{\pi}{3}\right) \quad \text { or } \quad \sin 3 x=0 \\
& \therefore 2 x=2 n \pi \pm \frac{2 \pi}{3} \quad \text { or } 3 x=m \pi \\
& \\
& \text { where } \mathrm{n}, \mathrm{~m} \in \mathrm{Z} \\
& \therefore x=n \pi \pm \frac{\pi}{3} \quad \text { or } \quad x=\frac{m \pi}{3}
\end{aligned}
$$

The required solution is $x=n \pi \pm \frac{\pi}{3} \quad$ or $\quad x=\frac{m \pi}{3}$, where $n, m \in Z$.

SECTION - II

4. (A)
(i) (c)
$f(1)=4(1)+3=7$
$\lim _{x \rightarrow 1^{-}} f(x)=\lim _{h \rightarrow 0} f(1-h)=\lim _{h \rightarrow 0} k+1-h=k+1$
For the function to be continuous at $x=1$,
$f(1)=\lim _{x \rightarrow 1^{-}} f(x)$
$\Rightarrow 7=\mathrm{k}+1$
$\Rightarrow \mathrm{k}=6$
(ii) (a)
$y=x^{2}+4 x+1$
Differentiating w.r.t ' x ', we get
$\frac{d y}{d x}=2 x+4$
$\left.\Rightarrow \frac{\mathrm{dy}}{\mathrm{dx}}\right|_{\mathrm{x}=-1}=2(-1)+4=2$
Hence, slope of tangent at $(-1,-2)$ is 2 .
So equation of tangent line is
$y-(-2)=2(x-(-1))$
$\Rightarrow 2 \mathrm{x}-\mathrm{y}=0$
(iii) (c)

Since $X \sim B(n=10, p)$,
$E(x)=n p$
$\Rightarrow 10 \mathrm{p}=8$
$\Rightarrow p=0.8$
(B)
(i)

$$
\begin{aligned}
& y=x^{x} \\
& \Rightarrow \ln y=x \ln x
\end{aligned}
$$

Differentiating both sides with respect to ' x ', we get

$$
\begin{aligned}
& \left(\frac{1}{y}\right) \frac{d y}{d x}=x\left(\frac{1}{x}\right)+\ln x(1) \\
& \Rightarrow \frac{d y}{d x}=y(1+\ln x) \\
& \Rightarrow \frac{d y}{d x}=x^{x}(1+\ln x)
\end{aligned}
$$

(ii)
$\mathrm{s}=5+20 \mathrm{t}-2 \mathrm{t}^{2}$
$v=\frac{\mathrm{ds}}{\mathrm{dt}}=20-4 \mathrm{t}$
$v=0 \Rightarrow 20-4 t=0 \Rightarrow t=5$
$a=\frac{d v}{d t}=-4$, which is a constant.
Hence, acceleration is -4 when velocity is zero.
(iii)

Area bounded $=\int_{0}^{a} y d x$
$=\int_{0}^{a} \sqrt{4 a x} d x$
$=2 \sqrt{a} \int_{0}^{a} x^{\frac{1}{2}} d x$
$=2 \sqrt{a}\left[\frac{x^{\frac{1}{2}+1}}{\frac{1}{2}+1}\right]_{0}^{a}$
$=2 \sqrt{a} \times \frac{2}{3} \times a^{\frac{3}{2}}$
$=\frac{4}{3} a^{\frac{1}{2}+\frac{3}{2}}$
$=\frac{4}{3} a^{2}$
(iv)
$\mathrm{P}(\mathrm{X} \leq 4)=\mathrm{P}(\mathrm{X}=1)+\mathrm{P}(\mathrm{X}=2)+\mathrm{P}(\mathrm{X}=3)+\mathrm{P}(\mathrm{X}=4)$ $=k+2 k+3 k+4 k$
$=10 \mathrm{k}$
(v)
$\int \frac{\sin x}{\sqrt{36-\cos ^{2} x}} d x$
Substitute $\cos x=t$
$\Rightarrow-\sin x d x=d t$
The integral becomes
$\int \frac{-\mathrm{dt}}{\sqrt{36-\mathrm{t}^{2}}}=-\int \frac{\mathrm{dt}}{\sqrt{6^{2}-\mathrm{t}^{2}}}$
$=-\sin ^{-1} \frac{t}{6}+C=-\sin ^{-1} \frac{\cos x}{6}+C$

5. (A)

(i)

Let δx be a small increment in x.
Let δy and δu be the corresponding increments in y and u respectively.
As $\delta x \rightarrow 0, \delta y \rightarrow 0, \delta u \rightarrow 0$.
As u is differentiable function, it is continuous.
Consider the incrementary ratio $\frac{\delta y}{\delta x}$.
We have, $\frac{\delta y}{\delta x}=\frac{\delta y}{\delta u} \times \frac{\delta u}{\delta x}$
Taking limit as $\delta x \rightarrow 0$, on both sides,
$\lim _{\delta x \rightarrow 0} \frac{\delta y}{\delta x}=\lim _{\delta x \rightarrow 0}\left(\frac{\delta y}{\delta u} \times \frac{\delta u}{\delta x}\right)$
$\Rightarrow \lim _{\delta x \rightarrow 0} \frac{\delta y}{\delta x}=\lim _{\delta u \rightarrow 0} \frac{\delta y}{\delta u} \times \lim _{\delta x \rightarrow 0} \frac{\delta u}{\delta x} \ldots$
Since y is a differentiable function of $u, \lim _{\delta u \rightarrow 0} \frac{\delta y}{\delta u}$ exists and $\lim _{\delta x \rightarrow 0} \frac{\delta u}{\delta x}$ exists as u is a differentiable function of x.
Hence, R.H.S. of (1) exists.
Now, $\lim _{\delta u \rightarrow 0} \frac{\delta y}{\delta u}=\frac{d y}{d u}$ and $\lim _{\delta x \rightarrow 0} \frac{\delta u}{\delta x}=\frac{d u}{d x}$
$\therefore \lim _{\delta x \rightarrow 0} \frac{\delta y}{\delta x}=\frac{d y}{d u} \times \frac{d u}{d x}$
Since R.H.S. exists, L.H.S. of (1) also exists and
$\lim _{\delta x \rightarrow 0} \frac{\delta y}{\delta x}=\frac{d y}{d x}$
$\therefore \frac{\mathrm{dy}}{\mathrm{dx}}=\frac{\mathrm{dy}}{\mathrm{du}} \times \frac{\mathrm{du}}{\mathrm{dx}}$
(ii)

Probability of recovery $=P(R)=0.5$
Probability of non-recovery $=P(\bar{R})=1-0.5=0.5$
(a) If there are six patients, the probability that none recovers

$$
={ }^{6} \mathrm{C}_{0} \times[\mathrm{P}(\mathrm{R})] \times[\mathrm{P}(\overline{\mathrm{R}})]^{6}=(0.5)^{6}=\frac{1}{64}
$$

(b) Of the six patients, the probability that half will recover

$$
={ }^{6} \mathrm{C}_{3} \times[\mathrm{P}(\mathrm{R})]^{3} \times[\mathrm{P}(\overline{\mathrm{R}})]^{3}=\frac{6!}{3!3!} \times 0.5^{3} \times 0.5^{3}=20 \times \frac{1}{64}=\frac{5}{16}
$$

(iii)

$$
\begin{equation*}
I=\int_{0}^{\pi} \frac{x}{a^{2} \cos ^{2} x+b^{2} \sin ^{2} x} d x \ldots \tag{i}
\end{equation*}
$$

$\Rightarrow \mathrm{I}=\int_{0}^{\pi} \frac{\pi-\mathrm{x}}{\mathrm{a}^{2} \cos ^{2}(\pi-\mathrm{x})+\mathrm{b}^{2} \sin ^{2}(\pi-\mathrm{x})} \mathrm{dx}$
$\Rightarrow \mathrm{I}=\int_{0}^{\pi} \frac{\pi-\mathrm{x}}{\mathrm{a}^{2} \cos ^{2} \mathrm{x}+\mathrm{b}^{2} \sin ^{2} \mathrm{x}} \mathrm{dx} \ldots$
Adding (i) and (ii), we get
$2 I=\int_{0}^{\pi} \frac{x}{a^{2} \cos ^{2} x+b^{2} \sin ^{2} x} d x+\int_{0}^{\pi} \frac{\pi-x}{a^{2} \cos ^{2} x+b^{2} \sin ^{2} x} d x$
$\Rightarrow 2 \mathrm{I}=\int_{0}^{\pi} \frac{\pi}{\mathrm{a}^{2} \cos ^{2} \mathrm{x}+\mathrm{b}^{2} \sin ^{2} \mathrm{x}} \mathrm{dx}$
$\Rightarrow \mathrm{I}=\frac{\pi}{2} \int_{0}^{\pi} \frac{1}{\mathrm{a}^{2} \cos ^{2} \mathrm{x}+\mathrm{b}^{2} \sin ^{2} \mathrm{x}} \mathrm{dx}$
$\Rightarrow \mathrm{I}=\frac{\pi}{2} \int_{0}^{\pi} \frac{\sec ^{2} \mathrm{x}}{\mathrm{a}^{2}+\mathrm{b}^{2} \tan ^{2} \mathrm{x}} \mathrm{dx}$ (dividing numerator and denominator by $\cos ^{2} \mathrm{x}$)
Substitute $\tan \mathrm{x}=\mathrm{t} \Rightarrow \sec ^{2} \mathrm{xdx}=\mathrm{dt}$
$\mathrm{t}=\tan \mathrm{x}=0$ at $\mathrm{x}=0, \mathrm{t}=\tan \mathrm{x}=0$ at $\mathrm{x}=\pi$
$\Rightarrow \mathrm{I}=\frac{\pi}{2} \int_{0}^{0} \frac{\mathrm{dt}}{\mathrm{a}^{2}+\mathrm{b}^{2} \mathrm{t}^{2}}=0$
(B)
(i)

$$
\begin{aligned}
\lim _{x \rightarrow 0^{-}} f(x) & =\lim _{x \rightarrow 0^{-}} \frac{4^{x}-e^{x}}{6^{x}-1} \\
& =\lim _{h \rightarrow 0} \frac{\frac{4^{0-h}-1}{0-h}-\frac{e^{0-h}-1}{0-h}}{\frac{6^{0-h}-1}{0-h}} \\
& =\frac{\log 4-\log e}{\log 6} \\
& =\frac{\log \left(\frac{4}{e}\right)}{\log 6}
\end{aligned}
$$

$$
\begin{aligned}
\lim _{x \rightarrow 0^{+}} f(x) & =\lim _{x \rightarrow 0^{+}} \frac{4^{x}-e^{x}}{6^{x}-1} \\
& =\lim _{h \rightarrow 0} \frac{\frac{4^{0+h}-1}{0+h}-\frac{e^{0+h}-1}{0+h}}{\frac{6^{0+h}-1}{0+h}} \\
& =\frac{\log 4-\log e}{\log 6} \\
& =\frac{\log \left(\frac{4}{e}\right)}{\log 6} \\
\text { LHL } & =R H L \text { at } x=0 . \\
\text { But } f(0) & \neq \lim _{x \rightarrow 0} f(x) .
\end{aligned}
$$

Hence, the given function has removable discontinuity at $x=0$.
To remove the discontinuity, we define $f(0)=\frac{\log \left(\frac{4}{e}\right)}{\log 6}$
So the revised function becomes
$f(x)= \begin{cases}\frac{4^{x}-e^{x}}{6^{x}-1}, & x \neq 0 \\ \frac{\log \left(\frac{4}{e}\right)}{\log 6}, & x=0\end{cases}$
(ii)
$\int \sqrt{a^{2}-x^{2}} d x$
Substitute $x=a \sin \theta \ldots$ (i)
$\Rightarrow d x=a \cos \theta d \theta$
The integral becomes

$$
\begin{aligned}
& \int \sqrt{a^{2}-a^{2} \sin ^{2} \theta} a \cos \theta d \theta \\
& =\int a \sqrt{1-\sin ^{2} \theta} a \cos \theta d \theta \\
& =a^{2} \int \cos ^{2} \theta d \theta \\
& =a^{2} \int \frac{1+\cos 2 \theta}{2} d \theta \\
& =a^{2}\left[\int \frac{1}{2} d \theta+\int \frac{\cos 2 \theta}{2} d \theta\right] \\
& =\frac{a^{2} \theta}{2}+\frac{a^{2}}{4} \sin 2 \theta+C
\end{aligned}
$$

From (i), $\theta=\sin ^{-1}\left(\frac{x}{a}\right), \sin 2 \theta=2 \sin \theta \cos \theta=2\left(\frac{x}{a}\right) \sqrt{1-\frac{x^{2}}{a^{2}}}=\frac{2 x}{a^{2}} \sqrt{a^{2}-x^{2}}$
Substituting these values, we get
$\int \sqrt{a^{2}-x^{2}} d x=\frac{a^{2}}{2} \sin ^{-1}\left(\frac{x}{a}\right)+\frac{a^{2}}{4} \times \frac{2 x}{a^{2}} \sqrt{a^{2}-x^{2}}+C$
$=\frac{a^{2}}{2} \sin ^{-1}\left(\frac{x}{a}\right)+\frac{x}{2} \sqrt{a^{2}-x^{2}}+C$ (Proved)
(iii)

Let θ be the temperature of the body at any time t.
Temperature of air is given to be $10^{\circ} \mathrm{C}$.
According to Newton's law of cooling, we have

$$
\begin{aligned}
& \frac{\mathrm{d} \theta}{\mathrm{dt}} \propto \theta-10^{\circ} \\
& \Rightarrow \frac{\mathrm{d} \theta}{\mathrm{dt}}=-\mathrm{k}\left(\theta-10^{\circ}\right), \mathrm{k}>0 \\
& \Rightarrow \frac{\mathrm{~d} \theta}{\theta-10^{\circ}}=-\mathrm{kdt}
\end{aligned}
$$

Integrating both sides, we get
$\int \frac{d \theta}{\theta-10^{\circ}}=-k \int d t$
$\Rightarrow \ln \left(\theta-10^{\circ}\right)=-k t+C$
$\Rightarrow \theta=10^{\circ}+\mathrm{e}^{-\mathrm{kt}+\mathrm{C}}$.
When $\mathrm{t}=0, \theta=110^{\circ}$.
Substituting in the equation, we get
$110^{\circ}=10^{\circ}+\mathrm{e}^{-\mathrm{k}(0)+\mathrm{C}}$
$\Rightarrow e^{C}=100^{\circ}$
Substituting the above in (1), we get
$\theta=10^{\circ}+100^{\circ} e^{-k t} \ldots$
As per the data in the question,
$60^{\circ}=10^{\circ}+100^{\circ} \mathrm{e}^{-k(1)}$
$\Rightarrow 50^{\circ}=100^{\circ} e^{-k(1)}$..
$\Rightarrow \mathrm{e}^{-\mathrm{k}}=\frac{1}{2}$
$\Rightarrow \mathrm{k}=\ln 2$
$35^{\circ}=10^{\circ}+100^{\circ} e^{-k t}$
$\Rightarrow 25^{\circ}=100^{\circ} \mathrm{e}^{-k t} \ldots$

Dividing (4) by (3), we get
$2=e^{-k(1-t)}$
$\Rightarrow \ln 2=-\mathrm{k}(1-\mathrm{t})$
$\Rightarrow \mathrm{t}-1=\frac{\ln 2}{\mathrm{k}}=\frac{\ln 2}{\ln 2}=1$
Hence, additional time required for cooling from 60° to 35° is 1 hour.
6. (A)
(i)

LHS $=\int_{0}^{2 a} f(x) d x=\int_{0}^{a} f(x) d x+\int_{a}^{2 a} f(x) d x \ldots$.
Substitute $\mathrm{x}=\mathrm{a}+\mathrm{t}$ in the second integral.
$\Rightarrow d x=d t$
When $x=a, t=0$.
When $x=2 a, t=a$.
$\therefore \int_{a}^{2 a} f(x) d x=\int_{0}^{a} f(a+t) d t$
$=\int_{0}^{a} f(a+(a-t)) d t\left(\because \int_{0}^{a} f(x) d x=\int_{0}^{a} f(a-x) d x\right)$
$=\int_{0}^{a} f(2 a-t) d t$
$\Rightarrow \int_{a}^{2 a} f(x) d x=\int_{0}^{a} f(2 a-x) d x\left(\because \int_{0}^{a} f(t) d t=\int_{0}^{a} f(x) d x\right)$
Using the above in (1), we get
$\int_{0}^{2 a} f(x) d x=\int_{0}^{a} f(x) d x+\int_{a}^{2 a} f(x) d x$
$=\int_{0}^{a} f(x) d x+\int_{0}^{a} f(2 a-x) d x=$ RHS (Proved)
(ii)
$\int \frac{1+\log x}{x(2+\log x)(3+\log x)} d x$
Substitute $\log x=\mathrm{t} . . .(1)$
$\Rightarrow \frac{1}{\mathrm{x}} \mathrm{dx}=\mathrm{dt}$
Hence, the integral becomes
$\int \frac{1+t}{(2+t)(3+t)} d t$

$$
\begin{aligned}
& =\int \frac{2+\mathrm{t}-1}{(2+\mathrm{t})(3+\mathrm{t})} \mathrm{dt} \\
& =\int \frac{2+\mathrm{t}}{(2+\mathrm{t})(3+\mathrm{t})} \mathrm{dt}-\int \frac{1}{(2+\mathrm{t})(3+\mathrm{t})} \mathrm{dt} \\
& =\int \frac{1}{3+\mathrm{t}} \mathrm{dt}-\int \frac{(\mathrm{t}+3)-(\mathrm{t}+2)}{(2+\mathrm{t})(3+\mathrm{t})} \mathrm{dt} \\
& =\int \frac{1}{3+\mathrm{t}} \mathrm{dt}-\left[\int \frac{(\mathrm{t}+3)}{(2+\mathrm{t})(3+\mathrm{t})} \mathrm{dt}-\int \frac{(\mathrm{t}+2)}{(2+\mathrm{t})(3+\mathrm{t})} \mathrm{dt}\right] \\
& =\int \frac{1}{3+\mathrm{t}} \mathrm{dt}-\int \frac{1}{2+\mathrm{t}} \mathrm{dt}+\int \frac{1}{3+\mathrm{t}} \mathrm{dt} \\
& =2 \int \frac{1}{3+\mathrm{t}} \mathrm{dt}-\int \frac{1}{2+\mathrm{t}} \mathrm{dt} \\
& =2 \ln (3+\mathrm{t})-\ln (2+\mathrm{t})+C
\end{aligned}
$$

Substituting the value of 't' from (1), we get
$\int \frac{1+\log x}{x(2+\log x)(3+\log x)} d x$
$=2 \ln (3+\log x)-\ln (2+\log x)+C$
(iii)

$$
y=\cos ^{-1}\left(2 x \sqrt{1-x^{2}}\right)
$$

Substitute $x=\sin \theta$

$$
\begin{aligned}
y & =\cos ^{-1}\left(2 x \sqrt{1-x^{2}}\right) \\
& =\cos ^{-1}\left(2 \sin \theta \sqrt{1-\sin ^{2} \theta}\right) \\
& =\cos ^{-1}(2 \sin \theta \cos \theta) \\
& =\cos ^{-1}(\sin 2 \theta) \\
& =\cos ^{-1}\left(\cos \left(\frac{\pi}{2}-2 \theta\right)\right) \\
\Rightarrow & y=\frac{\pi}{2}-2 \theta=\frac{\pi}{2}-2 \sin ^{-1} x
\end{aligned}
$$

Differentiating with respect to ' x ', we get
$\frac{d y}{d x}=\frac{-2}{\sqrt{1-x^{2}}}$
(B)
(i)
$\frac{d y}{d x}=\frac{1}{\cos (x+y)}$
Substitute $x+y=v . . .(1)$
Differentiating w.r.t. ' x ', we get
$1+\frac{d y}{d x}=\frac{d v}{d x}$
$\Rightarrow \frac{d y}{d x}=\frac{d v}{d x}-1$
The original differential equation becomes

$$
\begin{aligned}
& \frac{d v}{d x}-1=\frac{1}{\cos v} \\
& \Rightarrow \frac{d v}{d x}=\frac{1+\cos v}{\cos v} \\
& \Rightarrow \int \frac{\cos v d v}{1+\cos v}=\int d x \\
& \Rightarrow \int \frac{(\cos v+1-1) d v}{1+\cos v}=x+C \\
& \Rightarrow \int \frac{1+\cos v}{1+\cos v} d v-\int \frac{1}{1+\cos v} d v=x+C \\
& \Rightarrow \int d v-\int \frac{1}{2 \cos ^{2} \frac{v}{2}} d v=x+C \\
& \Rightarrow v-\frac{1}{2} \int \sec ^{2} \frac{v}{2} d v=x+C \\
& \Rightarrow v-\frac{1}{2} \tan \frac{v}{2}=x+C
\end{aligned}
$$

Resubstituting the value of ' v ' from (1), we get
$x+y-\frac{1}{2} \tan \frac{x+y}{2}=x+C$
$\Rightarrow y=\frac{1}{2} \tan \frac{x+y}{2}+C$
For $\mathrm{x}=0$ and $\mathrm{y}=0$, we get $\mathrm{C}=0$
Hence, particular solution is $y=\frac{1}{2} \tan \frac{x+y}{2}$

(ii)

Length of the wire is ' I '.
Let the part bent to make circle is of length ' x ', and the part bent to make square is of length ' $I-x$ '.
Circumference of the circle $=2 \pi r=x$
$\Rightarrow r=\frac{x}{2 \pi}$

Area of the circle $=\pi r^{2}=\pi\left(\frac{\mathrm{x}}{2 \pi}\right)^{2}=\frac{\mathrm{x}^{2}}{4 \pi}$
Perimeter of the square $=4 a=1-x \Rightarrow a=\frac{1-x}{4}$
Area of the square $=\left(\frac{1-x}{4}\right)^{2}=\frac{(1-x)^{2}}{16}$
Sum of the areas $A(x)=\frac{x^{2}}{4 \pi}+\frac{(1-x)^{2}}{16}$
For extrema, $\frac{\mathrm{dA}(\mathrm{x})}{\mathrm{dx}}=0$
$\Rightarrow \frac{2 x}{4 \pi}+\frac{2(I-x)(-1)}{16}=0$
$\Rightarrow \frac{4(2 x)+2 \pi(x-I)}{16 \pi}=0$
$\Rightarrow 4 \mathrm{x}+\pi \mathrm{x}-\pi \mathrm{I}=0$
$\Rightarrow x=\frac{\pi l}{4+\pi}$
Since there is one point of extremum, it has to be the minimum in this case.
$r=\frac{x}{2 \pi}=\frac{1}{2(4+\pi)} \ldots$
Side of the square $a=\frac{I-x}{4}=\frac{1-\frac{\pi \mid}{4+\pi}}{4}=\frac{1}{4+\pi}$..
From (1) and (2), we get that the radius of the circle is half the side of the square, for least sum of areas. (Proved)
(iii)
(a) c.d.f. of a continuous random variable X is given by
$F(x)=\int_{-\infty}^{x} f(y) d y$
In the given density function $f(x)$, range of X starts at ' 0 '.
$\therefore F(x)=\int_{0}^{x} f(y) d y=\int_{0}^{x} \frac{y}{32} d y=\left[\frac{y^{2}}{64}\right]_{0}^{x}=\frac{x^{2}}{64}$
Thus, $\mathrm{F}(\mathrm{x})=\frac{\mathrm{x}^{2}}{64}, \quad \forall \mathrm{x} \in \mathrm{R}$
(b) $F(0.5)=\frac{0.5^{2}}{64}=\frac{1}{256}$

For any value of $x \geq 8, F(x)=1$
$\therefore \mathrm{F}(9)=1$

