BOARD OF INTERMDIATE EDUCATION, A.P., HYDERABAD REVISION OF SYLLABUS SUBJECT- MATHEMATICS-IIB (w.e.f. 2013-2014)

CHAPTERS	PERIODS
$\begin{array}{l}\text { O1. COORDINATE GEOMETRY }\end{array}$	
$\begin{array}{l}\text { 1.1 Equation of circle -standard form-centre } \\ \text { and radius of a circle with a given line } \\ \text { segment as diameter \& equation of circle } \\ \text { through three non collinear points - } \\ \text { parametric equations of a circle. }\end{array}$	08
$\begin{array}{l}\text { 1.2 Position of a point in the plane of a circle - } \\ \text { power of a point-definition of tangent-length } \\ \text { of tangent }\end{array}$	06
1.3 Position of a straight line in the plane of a	
circle-conditions for a line to be tangent -	
chord joining two points on a circle -	
equation of the tangent at a point on the	
circle- point of contact-equation of normal.	
1.4 Chord of contact - pole and polar-conjugate	
points and conjugate lines - equation of	
chord with given middle point.	

03. Parabola:

3.1 Conic sections -Parabola- equation of parabola in standard form-different forms of parabola- parametric equations.
3.2 Equations of tangent and normal at a point on the parabola (Cartesian and parametric) - conditions for straight line to be a tangent.

04. Ellipse:

4.1 Equation of ellipse in standard formParametric equations.
4.2 Equation of tangent and normal at a point on the ellipse (Cartesian and parametric)condition for a straight line to be a tangent.

05. Hyperbola:

5.1 Equation of hyperbola in standard formParametric equations.
5.2 Equations of tangent and normal at a point on the hyperbola (Cartesian and parametric)- conditions for a straight line to be a tangent- Asymptotes.

CALCULUS

06. Integration :

6.1 Integration as the inverse process of differentiation- Standard forms -properties of integrals.
6.2 Method of substitution- integration of Algebraic, exponential, logarithmic, trigonometric and inverse trigonometric functions. Integration by parts.

6.3 Integration- Partial fractions method.	05
6.4 Reduction formulae.	05
	28
07. Definite Integrals:	03
7.1 Definite Integral as the limit of sum	03
7.2 Interpretation of Definite Integral as an area.	04
7.3 Fundamental theorem of Integral Calculus.	04
7.4 Properties. 7.5 Reduction formulae	06
7.6 Application of Definite integral to areas.	04
	24
08. Differential equations:	
8.1 Formation of differential equation-Degree and order of an ordinary differential equation.	02
8.2 Solving differential equation by a) Variables separable method.	03
b) Homogeneous differential equation.	03
equation	04
d) Linear differential equations.	04
	16
TOTAL	150

