Maharashtra State Board

Class X Maths Part-II

Geometry Answers Set-2

Q. 1 (A)

(1) line PQ || line RS

 $\therefore x = 50^{\circ}$ (Corresponding angle)

- (2) \triangle ABC and \triangle PQR are congruent by hypotenuse side test.
- (3) In \triangle ABC, \angle A = 65°, \angle B = 40°

$$\angle A + \angle B + \angle C = 180^{\circ}$$

$$\therefore 65^{\circ} + 40^{\circ} + \angle C = 180^{\circ}$$

$$\angle C = 180^{\circ} - 105^{\circ}$$

$$\therefore$$
 $\angle C = 75^{\circ}$

(4) □PQRS is a parallelogram.

 $\therefore \angle P + \angle Q = 180^{\circ}$ (Sum of measures of interior angles is 180°)

(5) Radius = $\frac{1}{2}$ × hypotenuse(The circumcentre of a right angled triangle is the mid-point of its hypotenuse)

$$=\frac{1}{2}\times 5$$

$$= 2.5$$

(6) The co-ordinates of point of intersection of x = 2 and y = -3 are (2,-3).

(B)

- (1) Let breadth of the tank be x.
 - \therefore Length of the tank = 2x.

Area of the walls of the tank = $2(length + breadth) \times depth$.

$$\therefore 108 = 2(2x + x) \times 3$$

$$\therefore 108 = 18 x$$
 $\therefore x = 6 \therefore 2x = 12$

 \therefore Length of the tank = 12m.

(2) In \triangle PQR, PQ² + QR² = PR²(Pythagoras Theorem) $PQ^{2} = 5^{2}-4^{2}$ $PQ^{2} = 9$ PQ = 3 $\tan R = \frac{PQ}{OR} = \frac{3}{4}$

(3) In \triangle PQR, S and T are midpoints of side PQ and side PR.

ST = 6.2

ST = $\frac{1}{2}$ × QR(Theorem of midpoints of two sides of a triangle.)

 $\therefore 6.2 = \frac{1}{2} \times QR$

 \therefore QR = 6.2 × 2

 \therefore QR = 12.4

- **Q.** 2 (A) (1) D (2) C (3) B (4) D
 - (B) 4
 - (1)(i) In \triangle PQB and \triangle ADB,

$$\angle B \cong \angle B$$

 $\angle PQB \cong \angle ADB$ (each right angle)

 $\therefore \frac{A(\Delta PQB)}{A(\Delta ADB)} = \frac{PQ^2}{AD^2} = \frac{4^2}{6^2} = \frac{16}{36} = \frac{4}{9} \quad \dots \text{(Theorem of areas of similar triangle)}$

- (ii) $\frac{A(\Delta PBC)}{A(\Delta ABC)} = \frac{PQ}{AD} = \frac{4}{6} = \frac{2}{3}$ (triangles having equal bases)
- (2) Diagonal of square = 20 cm.

Let side of square = x

 \therefore $x^2 + x^2 = 20^2$ (By Pythagoras theorem)

 $\therefore 2x^2 = 400$

$$x^2 = 200$$

$$\therefore \qquad x = 10\sqrt{2} \text{ cm}.$$

Perimeter of square = $4 \times 10\sqrt{2} = 40\sqrt{2}$

- (i) Side of square = $10\sqrt{2}$ cm.
- (ii) Perimeter of square = $40\sqrt{2}$ cm.

(3) In figure,
$$PQ = 12$$
, $PR = 8$

$$PQ^2 = PR \times PS$$
(Tangent secant theorem)

$$\therefore$$
 12² = 8 × PS

$$\therefore$$
 144 = 8 × PS

$$\therefore PS = \frac{144}{8}$$

$$\therefore$$
 PS = 18

Q. 3 (A)

A)

- (1) From the figure,
 - (i) $m(\text{arc AXB}) = 110^{\circ}$
 - (ii) $m(\text{arc CAB}) = 155^{\circ}$
 - (iii) ∠COB = 155°
 - (iv) $m(\text{arc AYB}) = 250^{\circ}$
- (2) ABCD is a cyclic quadrilateral.

$$\therefore$$
 \angle ADC + \angle ABC = 180°

$$\therefore 120 + \angle ABC = 180^{\circ}$$

$$\therefore$$
 $\angle ABC = \boxed{60^{\circ}}$

But $\angle ACB = 90^{\circ}$ (Angle in semicircle)

In \triangle ABC,

$$\angle BAC + \angle ACB + \angle ABC = 180^{\circ}$$

$$\therefore \angle BAC + 90^{\circ} + 60^{\circ} = 180^{\circ}$$

$$\therefore$$
 \angle BAC + $\boxed{150^{\circ}}$ = 180°

$$\therefore$$
 $\angle BAC = 180^{\circ} - 150^{\circ}$

$$\therefore$$
 $\angle BAC = 30^{\circ}$

3

(3) From the graph

Sr.	First point	Second point	Co-ordinates of first point (x_1, y_1)	Co- ordinates of second point (x_2, y_2)	$\frac{y_2 - y_1}{x_2 - x_1}$
1	С	E	(1, 0)	(3, 4)	$\frac{4}{2}$ =2
2	A	В	(-1,-4)	(0,-2)	$\frac{2}{1}$ =2
3	В	D	(0,-2)	(2, 2)	$\frac{4}{2}$ = 2

.. For any two points (x_1, y_1) and (x_2, y_2) on a line graph, the ratio $\frac{y_2 - y_1}{x_2 - x_1}$ is always constant.

Q. 3 (B)

(1) If
$$tan\theta = \frac{3}{4}$$

$$1 + \tan^2\theta = \sec^2\theta$$

$$\therefore 1 + \left(\frac{3}{4}\right)^2 = \sec^2\theta$$

$$\therefore 1 + \frac{9}{16} = \sec^2\theta$$

$$\therefore \quad \frac{25}{16} = \sec^2 \theta$$

$$\therefore \sec\theta = \frac{5}{4}$$

(2) Measure of arc =
$$90^{\circ}$$

Radius of circle = 14 cm

Length of arc
$$= \frac{\theta}{360} \times 2\pi r$$
$$= \frac{90}{360} \times 2 \times \frac{22}{7} \times 14$$

(3)
$$MN = 5$$
, $PN = 7$, $MQ = 2.5$, $QP = ?$

From the figure $\frac{MN}{NP} = \frac{MQ}{QP}$ (Angle bisector theorem)

$$\therefore \frac{5}{2.5} = \frac{7}{QP}$$

$$\therefore 5 \times QP = 7 \times 2.5$$

$$\therefore \qquad QP = \frac{7 \times 2.5}{5}$$

$$\therefore \qquad QP = 3.5$$

Q. 4

(1)

 $PC = \frac{1}{3} BC, AB = 6$

 Δ ABC is an equilateral triangle.

$$\therefore$$
 AB = BC = AC = 6

:. PC =
$$\frac{1}{3}$$
 BC = $\frac{1}{3}$ × 6 = 2

Draw Seg AD \perp Seg BC.

In \triangle DAC, \angle ADC = 90°, \angle ACB = 60° \therefore \angle DAC = 30°

:.DC =
$$\frac{1}{2}$$
 × AC = $\frac{1}{2}$ × 6 = 3(30°,60°,90° theorem)

$$\therefore$$
 DP = DC - PC = 3 - 2 = 1.

Now, AD =
$$\frac{\sqrt{3}}{2}$$
 × AC = $\frac{\sqrt{3}}{2}$ × 6 = $3\sqrt{3}$

In \triangle ADP

$$AP^2 = AB^2 + DP^2$$
(Pythagoras theorem)

$$= (3\sqrt{3})^2 + 1^2$$

$$= 9 \times 3 + 1$$

$$\therefore AP = \sqrt{28} = 2\sqrt{7} cm$$

(2)
$$3AX = 2BX$$

$$\frac{AX}{BX} = \frac{2}{3}$$

$$\therefore \frac{AX + BX}{BX} = \frac{3+2}{3}$$
 (By componando)

$$\therefore \frac{AB}{BX} = \frac{5}{3}$$

In Δ BCA and Δ BYX,

$$\angle B \cong \angle B$$

$$\angle BCA \cong \angle BYX$$
 (Corresponding angles)

$$\therefore \frac{BA}{BX} = \frac{AC}{XY}$$

$$\therefore \qquad \frac{5}{3} = \frac{AC}{9}$$

$$\therefore$$
 3 × AC = 45

$$\therefore$$
 AC = 15

(3) D(5,-4) C(8,5) A(-4,-7) B(-1,2)

$$AD = \sqrt{(x_2 - x_1)^2 + (y_2 - y_1)^2}$$

$$= \sqrt{(5+4)^2 + (-4+7)^2}$$

$$= \sqrt{81+9}$$

$$= \sqrt{90}$$

$$= 3\sqrt{10}$$
(1)

BC =
$$\sqrt{(8+1)^2 + (5-2)^2}$$

= $\sqrt{81+9}$
= $\sqrt{90}$
= $3\sqrt{10}$ (2)

$$AB = \sqrt{(-1+4)^2 + (2+7)^2}$$

$$= \sqrt{9+81}$$

$$= \sqrt{90}$$

$$= 3\sqrt{10}$$

$$CD = \sqrt{(8-5)^2 + (5+4)^2}$$

$$= \sqrt{9+81}$$

$$= \sqrt{90}$$

$$= 3\sqrt{10}$$
(4)

From (1), (2), (3) and (4); AB = BC = CD = DA

 \therefore ABCD is a rhombus.

(4)

As shown in the figure, suppose AB and CD are the buildings. Distance between AB and CD is 15 m. Angle of elevation at point C is 30°.

$$\angle$$
ECA = 30° EC \perp AB.

BD = 15 m.
$$\therefore$$
 EC = 15 m.

$$CD = 12 \text{ m}.$$
 $\therefore BE = 12 \text{ m}.$

In \triangle AEC,

$$tan30 = \frac{AE}{EC}$$

$$\therefore \frac{1}{\sqrt{3}} = \frac{AE}{15}$$

$$\therefore \qquad AE = \frac{15}{\sqrt{3}} \times \frac{\sqrt{3}}{\sqrt{3}} = 5\sqrt{3}$$

Height of the second building = BE + AE = $(12+5\sqrt{3})$ m.

Q. 5 (1)

4

Draw seg CD.

 $\angle DAB = \angle ACD \dots (1)$ Tangent secant

 $\angle DBA = \angle DCB \dots (2)$ angle theorem

From (1) and (2)

 $\angle DAB + \angle DBA = \angle ACD + \angle DCB$

Now, $\angle ACB = \angle ACD + \angle DCB \dots$ (3)

In \triangle ADB,

 \angle DAB + \angle DBA + \angle ADB = 180°.... (Sum of angles of a triangle.)

- \therefore \angle ACD + \angle DCB + \angle ADB = 180°From (1) and (2)
- \therefore \angle ACB + \angle ADB = 180°.....From (3)

(2)

Q. 6

3

- (1) For barrel: Height = 50 cm, Radius of base = 20 cm
 - ... Volume of barrel = $\pi r^2 h = \pi \times (20)^2 \times 50 = 400 \times 50 \times \pi$ For mug: Height = 15 cm, Diameter of base = 10 cm
 - :. Radius of Base = 5 cm
 - $\therefore \text{ Volume of mug} = \pi r^2 h = \pi \times (5)^2 \times 15 = 25 \times 15 \times \pi$ $\frac{\text{Volume of barrel}}{\text{Volume of mug}} = \frac{400 \times 50 \times \pi}{25 \times 15 \times \pi} = \frac{160}{3} = 53\frac{1}{3}$
 - ... when 54th mug is poured in the barrel it will overflow.

(2)

Seg BD \perp Seg AC

- $\therefore \Delta$ ADB is a right angled triangle.
- .. Seg AB is a diameter of the circle passing through the points A,B and D
- ∴ Seg MB is a radius of the circle.∠MBC is a right angle(Given)
- :. line CB is a tangent of the circle.