Maharashtra State Board
 Class X Maths Algebra
 Answers Set-1

Time : 2 Hours

Q 1. (A)
(1) $\mathrm{A}^{\prime}=\{1,11,9,17\}$
(2) $2 \sqrt{12} \times \sqrt{3}=2 \sqrt{36}=12$
(3) $x^{2}=4 \times 25=100 \quad \therefore x=10$
(4)

$$
\begin{aligned}
x+y & =5 \\
x-y & =7 \\
\hline 2 x & =12 \\
x & =6
\end{aligned}
$$

(5) $8000 \times \frac{3}{100}=$ Rs. 240
(6) \quad Class mark $=\frac{\text { Lower class limit }+ \text { Upper class limit }}{2}$

$$
=\frac{80+90}{2}=85
$$

(B)
(1) $m^{2}+5 m+6$
$=m^{2}+3 m+2 m+6$
$=m(m+3)+2(m+3)$
$=(m+2)(m+3)$
(2) Let the numbers be x and y,
\therefore from the given conditions,

$$
\begin{aligned}
& x+y=20 \\
&+\begin{aligned}
x-y & =4 \\
\hline 2 x & =24 \\
x & =12
\end{aligned}, ~
\end{aligned}
$$

$\therefore 12+y=20$
$\therefore y=8$

The numbers are 12 and 8
(3) $\angle \mathrm{Q}$ and $\angle \mathrm{R}$ is a pair of adjacent angles of parallelogram PQRS .
$\therefore \angle \mathrm{Q}$ and $\angle \mathrm{R}=180^{\circ}$
$\therefore \angle \mathrm{Q}=180-60=120$
$\therefore \angle \mathrm{R}: \angle \mathrm{Q}=60: 120=1: 2$

Q 2. (A)
(1) (D) 5
(2) (B) $x^{2}\left(\frac{1}{x}-2\right)=\frac{7}{2}$
(3) (D) 40
(4) (B) 9%
(B)
(1) $s=\{\mathrm{HH}, \mathrm{HT}, \mathrm{TH}, \mathrm{TT}\}$
$n(s)=4$
$\mathrm{A}=\{\mathrm{HH}, \mathrm{HT}, \mathrm{TH}\}$
$n(\mathrm{~A})=3$
$\mathrm{p}(\mathrm{A})=\frac{n(\mathrm{~A})}{n(\mathrm{~S})}=\frac{3}{4}$
(2) The roots of the quadratic equation are real and equal.

$$
\begin{aligned}
\therefore b^{2}-4 a c & =0 \\
(-6)^{2}-4 \times 2 \times k & =0 \\
-8 k & =-36 \\
k & =\frac{9}{2}
\end{aligned}
$$

(3) $101 x+99 y=501$

$$
\begin{equation*}
99 x+101 y=499 \tag{I}
\end{equation*}
$$

Adding equations (I) and (II) and dividing by 200

$$
\begin{equation*}
x+y=5 \tag{III}
\end{equation*}
$$

Subtracting (II) from (I) and dividing by 2

$$
\begin{equation*}
x-y=1 \tag{IV}
\end{equation*}
$$

Solving equations (III) and (IV),

$$
\begin{aligned}
& x=3 \\
& y=2
\end{aligned}
$$

Q 3. (A)
(1) $\mathrm{s}_{n}=\frac{n}{2}[2 \mathrm{a}+(\mathrm{n}-1) \mathrm{d}]$

$$
\begin{aligned}
\mathrm{s}_{12} & =\frac{12}{2}[10+11 \times 4] \\
& =\frac{12}{2}[10+44] \\
& =6 \times 54 \\
\mathrm{~s}_{n} & =324
\end{aligned}
$$

(ii) $\mathrm{D}=8, \quad x=\frac{\mathrm{D} x}{\mathrm{D}}=\frac{0}{8}=0=24-24=0, \mathrm{D}_{\mathrm{y}}=36-12=24$
$x=\frac{\mathrm{D} x}{\mathrm{D}}=\frac{0}{8}=0$
$y=\frac{\mathrm{D} y}{\mathrm{D}}=\frac{24}{8}=3$
(iii) $\mathrm{s}=\{\mathrm{A}, \mathrm{B}, \mathrm{C}, \mathrm{D}, \mathrm{E}, \mathrm{O}\}$
$n(\mathrm{~s})=6$
$\mathrm{M}=\{\mathrm{A}, \mathrm{E}, \mathrm{O}\}$
$n(\mathrm{M})=3$
$\mathrm{P}(\mathrm{M})=\frac{n(\mathrm{M})}{n(\mathrm{~S})}=\frac{3}{6}=\frac{1}{2}$
(B)
(1)

Types of vehicle	Measure of central angle
Bicycle	36°
Two wheeler	108°
Car	72°
Bus	72°
Rickshaw	72°

(2) Amount spent to purchase 100 shares $=45 \times 100=$ ₹. 4500

Brokerage $=4500 \times \frac{2}{100}=₹ .90$
GST on brokerage $=90 \times \frac{18}{100}=₹ .16 .20$
\therefore Total amount $=4500+90+16.20=₹ .4606 .20$
(3) The arrangement of chairs is $20,22,24,26$, \qquad
Which is an A. P.
Here, $a=20, d=2$. We want to find t_{21}.
$\mathrm{t}_{\mathrm{n}}=\mathrm{a}+(\mathrm{n}-1) \mathrm{d}$
$\therefore \mathrm{t}_{21}=20+(21-1) \times 2$
$=20+40$
$=60$
\therefore There are 60 chairs in the $21^{\text {st }}$ row.

Q 4.
(1) $7 y=-3 y^{2}-4$
$\therefore 3 y^{2}+7 y+4=0$
Here $a=3, b=7, c=4$
$\therefore y=\frac{-\mathrm{b} \pm \sqrt{\mathrm{b}^{2}-4 \mathrm{ac}}}{2 \mathrm{a}}$
Alternate Method

$$
\begin{gathered}
3 y^{2}+3 y+4 y+4=0 \\
\therefore 3 y(y+1)+4(y+1)=0 \\
\therefore(3 y+4)(y+1)=0 \\
\therefore y=-1 \text { or } y=-\frac{4}{3}
\end{gathered}
$$

$\therefore y=\frac{-7+1}{6}$ or $y=\frac{-7-1}{6}$
$\therefore y=-1$ or $y=-\frac{8}{6}=-\frac{4}{3}$
(2) $\mathrm{s}=\{1,2,3,4,5,6,7,8\}$
$\therefore \mathrm{n}(\mathrm{s})=8$
$\mathrm{A}=\{1,3,5,7\}$
$\therefore \mathrm{n}(\mathrm{A})=4$
$\therefore \mathrm{p}(\mathrm{A})=\frac{\mathrm{n}(\mathrm{A})}{\mathrm{n}(\mathrm{S})}:=\frac{4}{8}=\frac{1}{2}$
$\mathrm{B}=\{2,3,5,7\}$
$\therefore \mathrm{n}(\mathrm{B})=4$
$\therefore \mathrm{p}(\mathrm{B})=\frac{n(\mathrm{~B})}{n(\mathrm{~S})}=\frac{4}{8}=\frac{1}{2}$
$\mathrm{C}=\{2,4,6,8\}$
$\therefore \mathrm{n}(\mathrm{C})=4$
$\mathrm{P}(\mathrm{C})=\frac{\mathrm{n}(\mathrm{c})}{\mathrm{n}(\mathrm{s})}=\frac{4}{8}=\frac{1}{2}$
(3) The numbers divisible by 4 between 1 and 145 are
$4,8,12,16$, \qquad .144 ; which is an A. P.
Here, $a=4, d=4, t_{\mathrm{n}}=144$ we have to find n .

$$
t_{n}=a+(n-1) d \quad \text { Alternate Method }
$$

$\therefore \mathrm{t}_{\mathrm{n}}=4+(\mathrm{n}-1) \times 4$
$\therefore 144=4 n$
$\therefore \quad \mathrm{n}=36$
Now, $s_{n}=\frac{n}{2}\left[\mathrm{t}_{1}+\mathrm{t}_{\mathrm{n}}\right]$
$=12 \times 6 \times 37$
$=444 \times 6$
$\therefore \quad \mathrm{S}_{36}=\frac{36}{2}[4+144]$ $=18 \times 148=2664$
\therefore The sum of numbers between 1 and 145 divisible by 4 is 2664 .
(4) $\quad \Sigma f i=\mathrm{N}=250 \quad \therefore \frac{\mathrm{~N}}{2}=125 \quad \therefore f=90$

Also, c. f. $=63$ and $h=50$ and $\mathrm{L}=150$

$$
\begin{aligned}
\text { Median }=\mathrm{L} & +\left[\frac{\frac{\mathrm{N}}{2}-\text { C.F. }}{f}\right] \times \mathrm{h} \\
& =150+\left[\frac{125-63}{90}\right] \times 50 \\
& =150+34.4=184.4
\end{aligned}
$$

Q 5 .
(1) Suppose, the age of the son six year before was x
\therefore mother's age six year before was x^{2}
\therefore present age of the son is $(x+6)$ and
present age of the mother is $\left(x^{2}+6\right)$
Three years hence, son's age will be $(x+9)$ and mother's age will be $\left(x^{2}+9\right)$
by given condition,
$x^{2}+9=3(x+9)$
$\therefore x^{2}-3 x+9-27=0$
$\therefore x^{2}-3 x-18=0$
$\therefore(x-6)(x+3)=0$
$\therefore x=6$ or $x=-3$
But age cannot be negative $\therefore x \neq-3$
\therefore son's present age $=x+6=6+6=12$ years.
mother's present age $=x^{2}+6=36+6=42$ years.
(2)

Class (Age of blood donor)	Class mark	Frequency (No. of donors)	co-ordinates
$15-20$	17.5	0	$(17.5,0)$
$20-25$	22.5	30	$(22.5,30)$
$25-30$	27.5	45	$(27.5,45)$
$30-35$	32.5	52	$(32.5,52)$
$35-40$	37.5	35	$(37.5,38)$
$40-45$	42.5	20	$(42.5,20)$
$45-50$	47.5	12	$(47.5,12)$
$50-55$	52.5	0	$(52.5,0)$

Draw the axes. Plot points choosing a proper scale. Draw the frequency polygon.

Q 6.
(1)
(a) Draw the graph of $x+y=6$

$x+y=6$			
x	6	3	0
y	0	3	6
(x, y)	$(6,0)$	$(3,3)$	$(0,6)$

(b) In $\Delta \mathrm{AOB}$, by Pythagoras theorem,

$$
\mathrm{AB}^{2}=\mathrm{OB}^{2}+\mathrm{OA}^{2}=6^{2}+6^{2}=2 \times 36
$$

$\therefore \mathrm{AB}=6 \sqrt{2}$
$\mathrm{OR}, \mathrm{A}(6,0)$ and $\mathrm{B}(0,6)$

$$
\begin{aligned}
\therefore \mathrm{d}(\mathrm{~A}, \mathrm{~B})= & \sqrt{\left(x_{2}-x_{1}\right)^{2}+\left(y_{2}-y_{1}\right)^{2}} \\
& =\sqrt{(0-6)^{2}+(6-0)^{2}}=\sqrt{36+36}=\sqrt{72}=6 \sqrt{2}
\end{aligned}
$$

$$
\begin{aligned}
\mathrm{A}(\Delta \mathrm{AOB}) & =\frac{1}{2} \times \text { product of sides making right angle } \\
& =\frac{1}{2} \times 6 \times 6=18 \text { sq. unit }
\end{aligned}
$$

(2) The price of one unit $=\frac{400 \text { crore }}{8 \text { crore }}=₹ .50$
(a) No. of units by investing ₹. $10,000=\frac{10,000}{50}=200$
(b) If the market value is increased by 10% by selling one unit, the profit will be

$$
50 \times \frac{10}{100}=₹ .5
$$

\therefore By selling 200 units, the profit will be $200 \times 5=₹ .1000$.

