Maharashtra State Board Class X Maths Algebra Answers Set-1

Time : 2 Hours

Marks 40

4

4

Q 1. (A) (1) $A' = \{1, 11, 9, 17\}$ (2) $2\sqrt{12} \times \sqrt{3} = 2\sqrt{36} = 12$ (3) $x^2 = 4 \times 25 = 100$ $\therefore x = 10$ (4) x + y = 5x - y = 72x = 12x = 6(5) 8000 × $\frac{3}{100}$ = Rs. 240 (6) Class mark = $\frac{\text{Lower class limit} + \text{Upper class limit}}{-1}$ 2 $=\frac{80+90}{2}$ 85 (B) (1) $m^2 + 5m + 6$ $= m^2 + 3m + 2m + 6$ = m (m +3)+2(m+3)= (m + 2) (m + 3)(2) Let the numbers be x and y, \therefore from the given conditions, x + y = 20 $\frac{1}{2}x - y = 4}{2x - 24}$

$$2x = 24$$

 $x = 12$

1

 $\therefore 12 + y = 20$ The numbers are 12 and 8

$$\therefore y = 8$$

4

(3) ∠Q and ∠ R is a pair of adjacent angles of parallelogram PQRS.
∴ ∠Q and ∠ R = 180°
∴ ∠Q = 180 - 60 = 120
∴ ∠ R : ∠Q = 60 : 120 = 1 : 2

Q 2. (A)

- (1) (D) 5
- (2) (B) $x^2 \left(\frac{1}{x} 2\right) = \frac{7}{2}$
- (3) (D) 40
- (4) (B) 9%
- (B)

(1)
$$s = \{HH, HT, TH, TT\}$$

 $n(s) = 4$
 $A = \{HH, HT, TH\}$
 $n(A) = 3$
 $p(A) = \frac{n(A)}{n(S)} = \frac{3}{4}$

(2) The roots of the quadratic equation are real and equal.

 $\therefore b^2 - 4ac = 0$ $(-6)^2 - 4 \times 2 \times k = 0$ - 8k = -36 $k = \frac{9}{2}$

2

(3)
$$101x + 99y = 501$$
(1)
 $99x + 101y = 499$ (11)
Adding equations (1) and (II) and dividing by 200
 $x + y = 5$ (III)
Subtracting (II) from (I) and dividing by 2
 $x - y = 1$ (IV)
Solving equations (III) and (IV),
 $x = 3$
 $y = 2$
Q 3. (A)
(1) $s_n = \frac{n}{2} [2a + (n - 1)d]$
 $s_{12} = \frac{12}{2} [10 + 11 \times 4]$
 $= \frac{12}{2} [10 + 44]$
 $= 6 \times 54$
 $s_n = 324$
(ii) D = 8, $x = \frac{Dx}{D} = \frac{0}{8} = 0 = 24 - 24 = 0$, D_y = 36 - 12 = 24
 $x = \frac{Dx}{D} = \frac{0}{8} = 0$
 $y = \frac{Dy}{D} = \frac{24}{8} = 3$
(iii) S = {A, B, C, D, E, O}
 $n(M) = 3$
 $P(M) = \frac{n(M)}{n(s)} = \frac{3}{6} = \frac{1}{2}$

(B)

(1)

Types of vehicle	cle Measure of central angle	
Bicycle	36°	
Two wheeler	108°	
Car	72°	
Bus	72°	
Rickshaw	72°	

(2) Amount spent to purchase 100 shares = $45 \times 100 = ₹$. 4500 Brokerage = $4500 \times \frac{2}{100} = ₹$. 90

GST on brokerage = $90 \times \frac{18}{100} = ₹$. 16.20 ∴ Total amount = 4500 + 90 + 16.20 = ₹. 4606.20

(3) The arrangement of chairs is 20, 22, 24, 26, Which is an A. P. Here, a = 20, d = 2. We want to find t_{21} . $t_n = a + (n-1)d$ $\therefore t_{21} = 20 + (21-1) \times 2$ = 20 + 40= 60

 \therefore There are 60 chairs in the 21st row.

Q 4.

(1)
$$7y = -3y^2 -4$$

 $\therefore 3y^2 + 7y + 4 = 0$
Here $a = 3, b = 7, c = 4$
 $\therefore y = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$
 $= \frac{-7 \pm \sqrt{49 - 48}}{6}$
 $= \frac{-7 \pm \sqrt{1}}{6}$

Alternate Method

$$3y^2 + 3y + 4y + 4 = 0$$

 $\therefore 3y(y + 1) + 4(y + 1) = 0$
 $\therefore (3y + 4) (y + 1) = 0$
 $\therefore y = -1 \text{ or } y = -\frac{4}{3}$

9

4

$$\therefore y = \frac{-7+1}{6} \text{ or } y = \frac{-7-1}{6}$$

$$\therefore y = -1 \text{ or } y = -\frac{8}{6} = -\frac{4}{3}$$

(2) $s = \{1, 2, 3, 4, 5, 6, 7, 8\}$

$$\therefore n(s) = 8$$

 $A = \{1, 3, 5, 7\}$

$$\therefore n(A) = 4$$

$$\therefore p(A) = \frac{n(A)}{n(S)} = \frac{4}{8} = \frac{1}{2}$$

 $B = \{2, 3, 5, 7\}$

$$\therefore n(B) = 4$$

$$\therefore p(B) = \frac{n(B)}{n(S)} = \frac{4}{8} = \frac{1}{2}$$

 $C = \{2, 4, 6, 8\}$

$$\therefore n(C) = 4$$

 $P(C) = \frac{n(c)}{n(s)} = \frac{4}{8} = \frac{1}{2}$

(3) The numbers divisible by 4 between 1 and 145 are 4, 8, 12, 16,144; which is an A. P. Here, a = 4, d = 4, $t_n = 144$ we have to find n. $\mathbf{t}_{n} = \mathbf{a} + (\mathbf{n} - 1) \mathbf{d}$ Alternate Method $\therefore t_n = 4 + (n - 1) \times 4$ 4 + 8 + 12 + + 144 $= 4(1 + 2 + 3 + \dots + 36)$ $\therefore 144 = 4n$ $= \frac{4 \times 36 \times 37}{2}$ n = 36... Now, $s_n = \frac{n}{2} \left[t_1 + t_n \right]$ $= 12 \times 6 \times 37$ $= 444 \times 6$ \therefore S₃₆ = $\frac{36}{2}$ [4+144] = 2664 This is also possible. $= 18 \times 148 = 2664$

... The sum of numbers between 1 and 145 divisible by 4 is 2664.

(4)
$$\Sigma fi = N = 250 \therefore \frac{N}{2} = 125 \therefore f = 90$$

Also, c. f. = 63 and $h = 50$ and L = 150
Median = L + $\left[\frac{\frac{N}{2} - C.F.}{f}\right] \times h$
 $= 150 + \left[\frac{125 - 63}{90}\right] \times 50$
 $= 150 + 34.4 = 184.4$

(1) Suppose, the age of the son six year before was x
∴ mother's age six year before was x²
∴ present age of the son is (x + 6) and present age of the mother is (x² + 6)
Three years hence, son's age will be (x + 9) and mother's age will be (x² + 9)
by given condition,
x² + 9 = 3(x + 9)
∴ x² - 3x + 9 - 27 = 0
∴ x² - 3x - 18 = 0
∴ (x - 6) (x + 3) = 0
∴ x = 6 or x = -3
But age cannot be negative ∴ x ≠ -3
∴ son's present age = x + 6 = 6 + 6 = 12 years.

mother's present age = $x^2 + 6 = 36 + 6 = 42$ years.

1	\mathbf{r})
l	4	J

Class (Age of	Class mark	Frequency	co-ordinates
blood donor)		(No. of donors)	
15-20	17.5	0	(17.5, 0)
20-25	22.5	30	(22.5, 30)
25-30	27.5	45	(27.5, 45)
30-35	32.5	52	(32.5, 52)
35-40	37.5	35	(37.5, 38)
40-45	42.5	20	(42.5, 20)
45-50	47.5	12	(47.5, 12)
50-55	52.5	0	(52.5, 0)

Draw the axes. Plot points choosing a proper scale. Draw the frequency polygon.

7

- Q 6.
 - (1)
 - (a) Draw the graph of x + y = 6

x + y = 6				
x	6	3	0	
У	0	3	6	
(x, y)	(6, 0)	(3, 3)	(0, 6)	

(b) In
$$\triangle$$
 AOB, by Pythagoras theorem,
 $AB^2 = OB^2 + OA^2 = 6^2 + 6^2 = 2 \times 36$
 $\therefore AB = 6\sqrt{2}$
OR, A(6, 0) and B(0, 6)
 $\therefore d(A, B) = \sqrt{(x_2 - x_1)^2 + (y_2 - y_1)^2}$
 $= \sqrt{(0 - 6)^2 + (6 - 0)^2} = \sqrt{36 + 36} = \sqrt{72} = 6\sqrt{2}$
 $A(\triangle AOB) = \frac{1}{2} \times \text{product of sides making right angle}$
 $= \frac{1}{2} \times 6 \times 6 = 18 \text{ sq. unit}$

(2) The price of one unit = $\frac{400 \text{ crore}}{8 \text{ crore}} = ₹.50$

- (a) No. of units by investing $\overline{\mathbf{x}}$. 10,000 = $\frac{10,000}{50}$ = 200 (b) If the market value is increased by 10% by selling one unit, the profit will be

$$50 \times \frac{10}{100} = ₹.5$$

∴ By selling 200 units, the profit will be $200 \times 5 = ₹.1000$.