Maharashtra State Board Class X Maths Algebra Answers Set-2

Q 1. (A)

(1)
$$A = \{1, 2, 3, 4, 5\}, B = \{5,6,7\}$$

 $\therefore AUB = \{1,2,3,4,5,6,7\}$

$$(2) \quad \sqrt{50} \quad = \sqrt{25 \times 2}$$
$$= 5\sqrt{2}$$

(3) Any trinomal of degree 7. For example, $2x^7 + x - 10$

(4)
$$15:20 = \frac{15}{20} = \frac{15 \times 5}{20 \times 5} = \frac{75}{100}$$
 That is, 75%

(5)
$$3x + 5y = 9$$
(1)
 $5x + 3y = 7$ (2)
 $8x + 8y = 16$ Adding (1) and (2)
 $x + y = 2$ dividing by 8

(6) The lower and upper class limits of class 35 to 40 are 35 and 40 respectively.

(1) Mean =
$$\frac{10+7+5+3+9+6+9}{7}$$

= $\frac{49}{7}$

... Mean of yield per acre prouce is 7 quintals.

(2) Suppose, the amount sent to Alka every month is x. She spends 90% of it.

∴ She saves 10 % of the amount, which is ₹ 120

$$\therefore 120 = x \times \frac{10}{100}$$

$$\therefore 120 \times 10 = x$$

$$x = 1200$$

∴ Amount sent to Alka every month is ₹ 1200.

(3)
$$P(y) = y^{2}-2y + 5$$

$$\therefore P(2) = 2^{2}-2 \times 2 + 5$$

$$= 4 - 4 + 5$$

$$= 5$$

- (1) C
- (2) A
- (3) A

(4) C

(B)

(1) Let A be the event that a card selected at random is a spade. In given example, n(S) = 52

$$\therefore n(A) = 13$$

:.
$$P(A) = \frac{n(A)}{n(S)} = \frac{13}{52} = \frac{1}{4}$$

(2)

Age Group (Yrs.)	No. of persons	Measure of central angle
20-25	80	$\frac{80}{200} \times 360 = 144^{\circ}$
25-30	60	$\frac{60}{200} \times 360 = 108^{0}$
30-35	35	$\frac{35}{200} \times 360 = 63^{\circ}$
35-40	25	$\frac{25}{200} \times 360 = 45^{\circ}$
Total	200	

(3) The MV of a share is Rs. 200

 $\therefore \text{ Brokerage} = 200 \times \frac{0.3}{100} = 0.60 \text{ rupees.}$

∴ Purchase value of a share = 200 + 0.60 = ₹200.60

Q. 3 (A)

4

(1) x - y = 1

X	0	1
y	-1	0
(x, y)	(0,-1)	(1,0)

(2) In the A.P. 1,3,5,...,149
$$a = 1, d = 2, t_n = 149$$

$$t_n = a + (n-1)d$$

$$149 = 1 + (n-1) \times 2$$

$$149 = 1 + 2n - 2$$

$$149 = 2n - 1$$

$$\therefore 2n = 150$$

$$\therefore n = \boxed{75}$$

(3)
$$\therefore n(S) = \boxed{42}$$

$$\therefore n(A) = \boxed{3}$$

$$\therefore P(A) = \boxed{\frac{n(A)}{n(S)}}$$

$$\therefore P(A) = \boxed{\frac{1}{14}}$$

Q. 3 (B)

(1)
$$5m^2 - 22m - 15 = 0$$

 $\therefore 5m^2 - 25m + 3m - 15 = 0$
 $\therefore 5m (m - 5) + 3(m - 5) = 0$
 $\therefore (m - 5) (5m + 3) = 0$
 $\therefore m - 5 = 0 \text{ or } 5m + 3 = 0$
 $\therefore m = 5 \text{ or } m = \frac{-3}{5}$

$$(2) \quad 3x - 4y = 10$$
$$4x + 3y = 5$$

$$\therefore Dx = \begin{vmatrix} 10 & -4 \\ 5 & 3 \end{vmatrix} = 10 \times 3 - 5 \times (-4) = 30 + 20 = 50$$

$$\therefore Dy = \begin{vmatrix} 3 & 10 \\ 4 & 5 \end{vmatrix} = 3 \times 5 - 4 \times 10 = 15 - 40 = -25$$

(3)
$$a = 10,000, d = 2000, S_{12} = ?$$

$$S_n = \frac{n}{2} [2a + (n-1)d]$$

$$S_{12} = \frac{12}{2} [2 \times 10,000 + (12-1) \times 2000]$$

$$= 6(20,000 + 11 \times 2000)$$

$$= 6(20,000 + 22,000)$$

$$= 6 \times 42,000$$

$$= 2,52,000$$

(1)
$$x^{2}-2x-7=0$$
Here, $a = 1, b = -2, c = -7$

$$\alpha + \beta = \frac{-b}{a} = \frac{-(-2)}{1} = 2$$

$$\alpha \beta = \frac{c}{a} = \frac{-7}{1} = -7$$

$$\alpha^{2} + \beta^{2} = (\alpha + \beta)^{2} - 2 \alpha \beta$$

$$= (2)^{2} - 2 \times (-7)$$

$$= 4 + 14$$

$$= 18$$

(2) In three digit natural numbers, the numbers divisible by 5 are 100, 105, ..., 995.

This is an A.P. with a = 100, d = 5 and $t_n = 995$

$$t_n = a + (n - 1) d$$

$$\therefore 995 = 100 + (n-1)5$$

$$\therefore$$
 995 - 100 = $(n - 1)$ 5

$$\therefore \frac{895}{5} = n - 1$$

$$\therefore 179 = n - 1$$

$$\therefore$$
 $n = 180$ \therefore there are 180 numbers.

(3) Histogram

(4) The sample space,

$$S = \{10,12,13,14,20,21,23,24,30,31,32,34,40,41,42,43\}$$

n(S) = 16

Let A be the event that the number is a prime.

- $A = \{13, 23, 31, 41, 43\}$
- $\therefore n(A) = 5$ $\therefore P(A) = \frac{n(A)}{n(S)} = \frac{5}{16}$

Q. 5

(1) Suppose, Vivek completes a work in x days. Yogesh completes the same work in (x + 3) days.

... Work done by Vivek in one day
$$=\frac{1}{x}$$
 and work done by Yogesh in one day $=\frac{1}{x+3}$

Work done by both of them together in one day = $\frac{1}{2}$

from the given condition,

$$\frac{1}{x} + \frac{1}{x+3} = \frac{1}{2}$$

$$\therefore \frac{x+3+x}{x(x+3)} = \frac{1}{2}$$

$$\therefore \frac{2x+3}{x^2+3x} = \frac{1}{2}$$

$$\therefore x^2 + 3x = 2(2x + 3)$$

$$\therefore x^2 + 3x = 4x + 6$$

$$\therefore x^2 + 3x - 4x - 6 = 0$$

$$\therefore x^2 - x - 6 = 0$$

$$\therefore x^2 - 3x + 2x - 6 = 0$$

$$\therefore x(x-3) + 2(x-3) = 0$$

$$(x-3)(x+2) = 0$$

$$\therefore x - 3 = 0$$
 or $x + 2 = 0$

$$\therefore$$
 $x = 3$ or $x = -2$

or,
$$a = 1, b = -1, c = -6$$

$$\therefore x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$$

$$= \frac{1 \pm \sqrt{(-1)^2 - 4(1)(-6)}}{2}$$

$$= \frac{1 \pm \sqrt{25}}{2}$$

$$\therefore x = \frac{1+5}{2} = 3$$
 or $x = \frac{1-5}{2} = -2$

but the number of days is not negative

$$\therefore x = 3$$

$$\therefore x + 3 = 3 + 3 = 6$$

:. Vivek completes the work in 3 days and Yogesh in 6 days.

(2)

Age (Yrs.)	No. of patients	Cumulative frequency
	(Frequency)	(Less than)
10-20	40	40
20-30	32	72
30-40	35	107
40-50	45	152
50-60	33	185
60-70	15	200

Here N = 200 : the number $\frac{N}{2}$ = 100 which is included in the class 30-40

... median class is 30 - 40

$$\therefore$$
 L = 30, $cf = 72$, $f = 35$, $h = 10$

Median = =L+
$$\left[\frac{\frac{N}{2}-cf}{f}\right] \times h$$

= $30 + \left(\frac{100-72}{35}\right) \times 10$
= $30 + \frac{28 \times 2}{7}$
= $30 + 4 \times 2$
= $30 + 8 = 38$

:. median of ages of patients is 38.

Q. 6 (1)

(1)For Krishna Electronics:

Marked price of TV set = ₹ 50000

Discount =
$$50000 \times \frac{10}{100} = ₹.5000$$

The taxable value of the TV set = 50000 - 5000 = ₹45000

Input Tax =
$$36000 \times \frac{18}{100} = ₹ 6480$$

Output tax =
$$45000 \times \frac{18}{100} = ₹8100$$

(2) Example: The sum of present ages of Madhu and Raju is 11 years. Madhu is elder than Raju by 9 years. Find their present ages. Solution: Let the present age of Madhu be x years and the age of Raju be y years..

$$x + y = 11$$
(I)
 $x - y = 9$ (II)
 $2x = 20$ adding (I) and (II)

$$\therefore$$
 $x = 10$

$$x + y = 11$$

:. $10 + y = 11$

$$\therefore$$
 $y = 11 - 10$

$$\therefore$$
 $y = 1$

... Present age of Madhu is 10 years and of Raju is 1 year.