Maharashtra State Board
 Class X Maths Algebra
 Answers Set-2

Q 1. (A)
(1)

$$
\begin{array}{rlrl}
\mathrm{A} & =\{1,2,3,4,5\}, \quad \mathrm{B}=\{5,6,7\} \\
\therefore \mathrm{AUB} & =\{1,2,3,4,5,6,7\} &
\end{array}
$$

(2) $\sqrt{50}=\sqrt{25 \times 2}$

$$
=5 \sqrt{2}
$$

(3) Any trinomal of degree 7. For example, $2 x^{7}+x-10$
(4) $15: 20=\frac{15}{20}=\frac{15 \times 5}{20 \times 5}=\frac{75}{100}$ That is, 75%
(5) $3 x+5 y=9$
$\frac{5 x+3 y=7}{8 x+8 y=16}$
$x+y=2$
\qquad Adding (1) and (2)
(6) The lower and upper class limits of class 35 to 40 are 35 and 40 respectively.
(B)
(1) Mean $=\frac{10+7+5+3+9+6+9}{7}$

$$
=\frac{49}{7}
$$

\therefore Mean of yield per acre prouce is 7 quintals.
(2) Suppose, the amount sent to Alka every month is x. She spends 90% of it.
\therefore She saves 10% of the amount, which is ₹ 120
$\therefore 120=x \times \frac{10}{100}$
$\therefore 120 \times 10=x$
$\therefore x=1200$
\therefore Amount sent to Alka every month is ₹ 1200 .
(3) $\mathrm{P}(y)=y^{2}-2 y+5$

$$
\begin{aligned}
\therefore P(2) & =2^{2}-2 \times 2+5 \\
& =4-4+5 \\
& =5
\end{aligned}
$$

Q. 2 (A)
(1) C
(2) A
(3) A
(4) C
(B)
(1) Let A be the event that a card selected at random is a spade.

In given example, $n(S)=52$
$\therefore n(\mathrm{~A})=13$
$\therefore \mathrm{P}(\mathrm{A})=\frac{n(\mathrm{~A})}{n(\mathrm{~S})}=\frac{13}{52}=\frac{1}{4}$
(2)

Age Group (Yrs.)	No. of persons	Measure of central angle
$20-25$	80	$\frac{80}{200} \times 360=144^{0}$
$25-30$	60	$\frac{60}{200} \times 360=108^{\circ}$
$30-35$	35	$\frac{35}{200} \times 360=63^{0}$
$35-40$	25	$\frac{25}{200} \times 360=45^{0}$
Total	200	

(3) The MV of a share is Rs. 200
\therefore Brokerage $=200 \times \frac{0.3}{100}=0.60$ rupees .
\therefore Purchase value of a share $=200+0.60=₹ 200.60$
Q. 3 (A)
(1) $x-y=1$

x	0	$\boxed{1}$
y	-1	0
(x, y)	$(0,-1)$	$(1,0)$

(2) In the A.P. 1,3,5,...., 149

$$
\begin{aligned}
& a=1, d \equiv 2, \mathrm{t}_{\mathrm{n}}=149 \\
& \mathrm{t}_{\mathrm{n}}=a+(n-1) d \\
& 149=1+(n-1) \times 2 \\
& 149=1+2 n-2 \\
& 149=2 n-1 \\
& \therefore 2 n=150 \\
& \therefore n=75
\end{aligned}
$$

(3) $\quad \therefore n(\mathrm{~S})=42$
$\therefore n(\mathrm{~A})=3$
$\therefore \mathrm{P}(\mathrm{A})=\frac{n(\mathrm{~A})}{n(\mathrm{~S})}$
$\therefore \mathrm{P}(\mathrm{A})=\frac{1}{14}$
Q. 3 (B)
(1) $5 m^{2}-22 m-15=0$

$$
\begin{aligned}
& \therefore 5 m^{2}-25 m+3 m-15=0 \\
& \therefore 5 m(m-5)+3(m-5)=0 \\
& \therefore(m-5)(5 m+3)=0 \\
& \therefore m-5=0 \text { or } 5 m+3=0 \\
& \therefore m=5 \text { or } m=\frac{-3}{5}
\end{aligned}
$$

(2) $3 x-4 y=10$

$$
4 x+3 y=5
$$

$$
\therefore \mathrm{D} x=\left|\begin{array}{rr}
10 & -4 \\
5 & 3
\end{array}\right|=10 \times 3-5 \times(-4)=30+20=50
$$

$$
\therefore \mathrm{D} y=\left|\begin{array}{rr}
3 & 10 \\
4 & 5
\end{array}\right| \quad=3 \times 5-4 \times 10=15-40=-25
$$

(3) $a=10,000, \quad d=2000, \quad S_{12}=$?

$$
\begin{aligned}
\mathrm{S}_{\mathrm{n}} & =\frac{n}{2}[2 a+(n-1) \mathrm{d}] \\
\therefore \mathrm{S}_{12} & =\frac{12}{2}[2 \times 10,000+(12-1) \times 2000] \\
& =6(20,000+11 \times 2000) \\
& =6(20,000+22,000) \\
& =6 \times 42,000 \\
& =2,52,000
\end{aligned}
$$

Q. 4
(1)

$$
\begin{aligned}
& \begin{array}{l}
x^{2}-2 x-7=0 \\
\text { Here, } a=1, b=-2, c=-7 \\
\alpha+\beta=\frac{-b}{a}=\frac{-(-2)}{1}=2 \\
\alpha \beta
\end{array} \\
& \begin{array}{rl}
a & c \\
a & \frac{-7}{1}=-7 \\
\alpha^{2}+\beta^{2} & =(\alpha+\beta)^{2}-2 \alpha \beta \\
& =(2)^{2}-2 \times(-7) \\
& =4+14 \\
& =18
\end{array}
\end{aligned}
$$

(2) In three digit natural numbers, the numbers divisible by 5 are 100, 105, ..., 995.
This is an A.P. with $a=100, d=5$ and $\mathrm{t}_{\mathrm{n}}=995$

$$
\begin{aligned}
\quad \mathrm{t}_{\mathrm{n}} & =a+(n-1) \mathrm{d} \\
\therefore 995 & =100+(n-1) 5 \\
\therefore 995 & -100=(n-1) 5 \\
\therefore & \frac{895}{5}
\end{aligned}=n-1 .
$$

(3) Histogram

(4) The sample space, $S=\{10,12,13,14,20,21,23,24,30,31,32,34,40,41,42,43\}$
$\therefore \quad n(\mathrm{~S})=16$
Let A be the event that the number is a prime.
$\therefore A=\{13,23,31,41,43\}$
$\therefore n(\mathrm{~A})=5$
$\therefore \quad \mathrm{P}(\mathrm{A})=\frac{\mathrm{n}(\mathrm{A})}{\mathrm{n}(\mathrm{S})}=\frac{5}{16}$
Q. 5
(1) Suppose, Vivek completes a work in x days.

Yogesh completes the same work in $(x+3)$ days.
\therefore Work done by Vivek in one day $=\frac{1}{x}$
and work done by Yogesh in one day $=\frac{1}{x+3}$
Work done by both of them together in one day $=\frac{1}{2}$
from the given condition,

$$
\begin{aligned}
& \frac{1}{x}+\frac{1}{x+3}=\frac{1}{2} \\
& \therefore \frac{x+3+x}{x(x+3)}=\frac{1}{2} \\
& \therefore \frac{2 x+3}{x^{2}+3 x}=\frac{1}{2} \\
& \therefore x^{2}+3 x=2(2 x+3) \\
& \therefore x^{2}+3 x=4 x+6 \\
& \therefore x^{2}+3 x-4 x-6=0 \\
& \therefore x^{2}-x-6=0 \\
& \therefore x^{2}-3 x+2 x-6=0 \\
& \therefore x(x-3)+2(x-3)=0 \\
& \therefore(x-3)(x+2)=0 \\
& \therefore x-3=0 \text { or } x+2=0 \\
& \therefore x=3 \text { or } x=-2
\end{aligned}
$$

$$
\text { or, } a=1, b=-1, c=-6
$$

$$
\therefore x=\frac{-b \pm \sqrt{b^{2}-4 a c}}{2 a}
$$

$$
=\frac{1 \pm \sqrt{(-1)^{2}-4(1)(-6)}}{2}
$$

$$
=\frac{1 \pm \sqrt{25}}{2}
$$

$$
\therefore x=\frac{1+5}{2}=3 \quad \text { or } \quad x=\frac{1-5}{2}=-2
$$

but the number of days is not negative
$\therefore x=3$
$\therefore x+3=3+3=6$
\therefore Vivek completes the work in 3 days and Yogesh in 6 days.
(2)

Age (Yrs.)	No. of patients (Frequency)	Cumulative frequency (Less than)
$10-20$	40	40
$20-30$	32	72
$30-40$	35	107
$40-50$	45	152
$50-60$	33	185
$60-70$	15	200

Here $\mathrm{N}=200 \therefore$ the number $\frac{\mathrm{N}}{2}=100$ which is included in the class 30-40
\therefore median class is $30-40$
$\therefore \mathrm{L}=30, c f=72, f=35, h=10$

$$
\begin{aligned}
& \text { Median }==\mathrm{L}+\left[\frac{\mathrm{N}}{2}-c f\right. \\
& f
\end{aligned} \times h
$$

\therefore median of ages of patients is 38 .
Q. 6 (1)
(1)For Krishna Electronics :

Marked price of TV set = ₹ 50000
Discount $=50000 \times \frac{10}{100}=₹ .5000$
The taxable value of the TV set = 50000-5000=₹ 45000
Input Tax $=36000 \times \frac{18}{100}=₹ 6480$
Output tax $=45000 \times \frac{18}{100}=₹ 8100$
(2) Example : The sum of present ages of Madhu and Raju is 11 years. Madhu is elder than Raju by 9 years. Find their present ages.
Solution : Let the present age of Madhu be x years and the age of Raju be y years..

$$
\begin{align*}
& \therefore \quad x+y=11 \tag{I}\\
& x-y=9 \tag{II}\\
& \therefore \quad x=10 \\
& x+y=11 \\
& \therefore 10+y=11 \\
& \therefore \quad y=11-10 \\
& \therefore \quad y=1
\end{align*}
$$

\therefore Present age of Madhu is 10 years and of Raju is 1 year.

