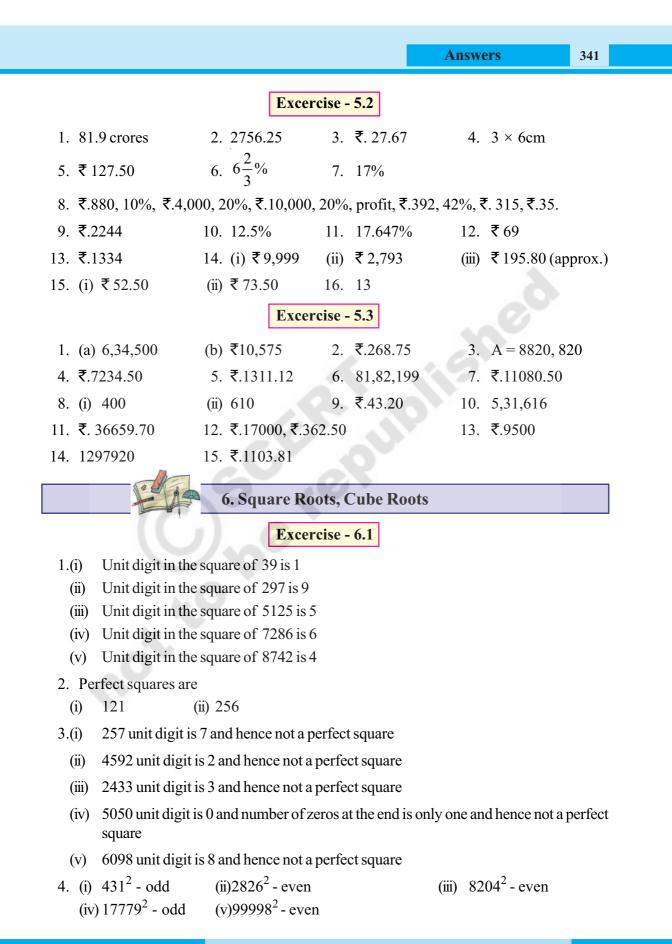
Answers


	Rational Number	ers
	Excercise - 1.1	
I.		
(i) Additive Identity		
(ii) Distributive law		Aultiplicative identity
(iv) Multiplicative identity	(v) (Commtative law of addition
(vi) Closure law in multiplica	ation (vii) A	Additive inverse law
(viii) Multiplicative inverse	(ix) I	Distributive
2. (i) $\frac{3}{5}, \frac{-5}{3}$ (ii) -1, 1	(iii) 0, undefined	d (iv) $\frac{-7}{9}, \frac{9}{7}$
(v) 1, −1		
3. (i) $\frac{-12}{5}$ (ii) 0	(iii) $\frac{9}{11}$	(vi) $\frac{6}{7}$
(v) $\frac{3}{4}, \frac{1}{3}$ (vi) 0	4. $\frac{-28}{55}$	
5. Multiplicative Associative, mult	iplicative inverse, multi	plicative identity, closure with addition.
7. $\frac{28}{15}$ 8. (i) $\frac{-5}{12}$	(ii) $\frac{58}{13}$	(iii) $\frac{45}{7}$
9. $\frac{-7}{8}$ 10. $\frac{53}{6}$		
11. Not associative Since $\left(\frac{1}{2} - \frac{1}{3}\right)$	$(1) - \frac{1}{2} \neq \frac{1}{2} - (\frac{1}{2} - \frac{1}{2})$	

Free Distribution by A.P. Government

	338 Mathematics VI	II			
		Γ	Excercise	- 1.3	
	1. (i) $\frac{57}{100}$	(ii) $\frac{22}{125}$			$\frac{201}{8}$
	2. (i) 1	(ii) $\frac{19}{33}$	(iii) $\frac{361}{495}$	(vi)	<u>553</u> 45
	3. (i) $\frac{7}{13}$	(ii) $\frac{-7}{5}$			
	41	5. $\frac{1400}{9}$	6. $5\frac{1}{10}$		₹. 1.66
	8. $161\frac{1}{5}m^2$	9. $\frac{3}{4}$	10. $\frac{16}{9}$	n 11.	15
	20	2. I	Linear Equ	ations in one vai	riable
		29	Excercise	- 2.1	
\bigoplus	1.(i) 2	(ii) -3	(iii) -6	(iv)	6
	(v) $\frac{-3}{2}$	(vi) -21	(vii) 27	(viii)	5
	(ix) $\frac{7}{3}$	(x) 1	(xi) $\frac{1}{2}$	(xii)	0
	(xiii) $\frac{25}{7}$	(xiv) $\frac{21}{16}$	(xv) $\frac{8}{3}$	(xvi)	$\frac{13}{6}$
	1.(i) 67^0 (v) 20^0	(ii) 17 ⁰	Excercise (iii) 125		19 ⁰
	2. 5	3. 43, 15	4. 27,	29	
	5. 252, 259, 266	6. 20 km	7. 99g	, 106g, 95g 8.	113m, 87m
	9. 16m, 12m	10. 21m, 21			
	11. 39^{0}	12. 28 years		40 14	50.0.20.5.0
	 13. 126 17. 186, 187. 	14. 80, 10	15. 60,	40 16.	59 ft, 29.5 ft

				A	nswers		339	
	[Excer	cise - 2.3					
	L							
1. 1	2. 2	3.	$\frac{11}{4}$	4	. –1			
5. $\frac{-9}{5}$	6. 1	7.	7	8	$\frac{-4}{7}$			
9. $\frac{9}{2}$	10. $\frac{11}{3}$	11.	1	12	. –96			
13. 3	3 14. 8							
		Exerc	cise - 2.4					
1. 25	2. 7	3.	63	4	. 40, 25,	15		
5. 12	6. 4, 2	7.	16	8	. 10,000	9.	40	
		Exerc	cise - 2.5					
1.(i) $\frac{145}{21}$	(ii) 168	(iii)	12	(iv)	25			
(v) $\frac{127}{12}$	(vi) 1	(vii)	$\frac{9}{2}$	(viii	$\frac{5}{12}$			۲
(ix) $\frac{9}{23}$	(x) -1	(xi)	$\frac{-1}{7}$		(xii)	$\frac{21}{47}$		
2. 30	3. 48	4.	$\frac{3}{7}$	5	$\frac{7675}{173}$			
6. 25	7.5	8.	One Rupe	e:30; 50]	paisa coin	s = 10		
9. 30 days	10. 20 km	11.	36					
12. 860	13. 16							
	4. Ex	ponen	ts and Po	wers				
قل		Excer	<mark>cise - 4.1</mark>					
1.(i) $\frac{1}{64}$	(ii) -128	(iii)	$\frac{64}{27}$	(iv)	$\frac{1}{81}$			
2.(i) $\left(\frac{1}{2}\right)^{15}$	(ii) (-2) ¹⁴	(iii)	5 ⁴	(iv)	5 ⁵	(v) (-2	1) ⁴	
3.(i) $2^4 \times 3$	(ii) $\frac{1}{2}$							
		Free l	Distribution k	oy A.P. Gover	nment			

340 Mathematics VIII
4.(i) 10 (ii) 40^3 (iii) $\frac{13}{16}$ (iv) $\frac{2}{81}$
(v) $\frac{17}{6}$ (vi) $\frac{16}{81}$ 5. (i) 625 (ii) 625
6.(i) 10 (ii) -10 (iii) 2 7.3
8. $\frac{4^5}{3^4 \times 5}$ 9. (i) 1 (ii) 72 (iii) -24
10. $\frac{16}{49}$
Excercise - 4.2
1.(i) 9.47×10^{-10} (ii) 5.43×10^{11} (iii) 4.83×10^{7} (iv) 9.298×10^{-5}
(v) 5.29×10^{-5}
2.(i) 4,37,000 (ii) 58,00,000 (iii) 0.00325 (iv) 37152900 (v) 0.03789 (vi) 0.02436
(v) 0.03789 (vi) 0.02436 3.(i) 4×10^{-7} m (ii) 7×10^{-6} mm (iii) 3×10^{8} m/sec (iv) 3.84467×10^{8}
(v) 1.6×10^{-8} coulombs (vi) 1.6×10^{-3} cm (vii) 5×10^{-6} cm
4. 1.0008×10^2 mm
5.(i) No (ii) No (iii) No (iv) No (v) No
5. Comparing Quantities using Proportion
Excercise - 5.1
1.(i) 3:4 (ii) 32:3 (iii) 1:2 2. (i) 168
3. 8 4. 48 5. 20 6. $\frac{4}{3}, \frac{3}{4}, \frac{4}{5}, \frac{5}{4}, \frac{3}{5}, \frac{5}{3}$
7. 3.5 8. 1:3 or 4:7 9. 10320
10. $\frac{1}{2}, \frac{1}{2}, \frac{1}{2}, \frac{1}{2}$, yes 11. ₹. 28.5, ₹. 92, ₹. 257.6, ₹. 132, ₹. 88
12. (a) 83 (b) 1992 13. 2064 14. 70

Free Distribution by A.P. Government

	34	2	Mathematics VIII									
	5	(i) 50	(ii) 1	12	(iii)	214					
) 25	(ii) 8			169					
	-	. (-) ==	(_	Excer		67				
	1	G) 21	(;;)	20	Exter			(m)	0.4		
		. (t) . 5) 21 3.		28 120		(iii) 4.		(iv)	84 39		
		. 3 . 3			120	1		89		$4608 \mathrm{m}^2$		
	0	. 5	ı	7.	1- T , 9	Excer).	TOUG III		
	1	G	× 22		10	Excer				70		
	1) 33 7) 95	(11)	48		(iii)	88	(iv)	/8		
	?) 1.6	(ii)	4.3		(iii)	8.3	(iv)	9.2		
		.u .3			ч. <i>3</i> 67 ст			91		1024		
		· · ·			(i)			(ii)	16			
					()	Excer		1				
					1005	Excer	-					
۲) 512		4096			926		27000		
	2	. i) 					ii)		- Not a perfect c			
		iii V	, i				VI)	8000	0 - a perfect cub	e		
	3	• . 2			17		5.	5	6.	6	7.2	
	5	. 2		C	17	P			0.	0	1. 2	
				<i>(</i> 1)	0	Excer						
) 7	(ii)			. ,	11	(iv)			
) 16 False		13 False		(iii) iii)	15 True	(iv)	18		
	3) False		False			Fals				
		•										
				7.	Frequ	ency D	istrik	oution	n Tables and Gi	raphs		
			reaction of the second se			Exer	cise '	7.1				
	1	. ₹	.11060.83	2. \overline{x}	=7		3. \overline{x}	= 27	4. \overline{x}	= 43		
	5	\overline{x}	$\overline{z} = 30$ years	6. 5	2 years							
	7	\overline{x}	$\overline{z} = 12 \text{ sum of dev}$	iatior	s from	$\overline{x} = 0$						

						A	Inswer	S	34
8.	5	9. $\overline{x} =$	13.67 sa	me in all case	es.	10). 15.5	marks	
11.	$\overline{x} = 30$	12. Mee	dian = 3.4	4		13	x = 1	18	
14.	Mode = 10	15. Mo	de = x -	3		16	. Mod	le = 1	
17.	12, 16, 16, 16	18. 42	1	9. 8		20). 20		
			E	xercise - 7.2					
1.	Class Interval	5-14	15-24	4 25-34	-	35-44	45	-54	55-64
	Frequency	9	9	9		6		7	5
2.	No of Students	15-19	19-23	23-27	27-3	31 31	-35	35-39	39-43
	Frequency	5	6	7	5		5	1	1
3.	Class intervals	4-11	12-19	20-27	28-3	35 36	-43	44-51	52-59
	Boundaries	3.5-11.5	11.5-19.5	19.5-27.5	27.5-3	35.5 35.5	-43.5 4	3.5-51.5	51.5-59
4.	Class Marks	Freque cu.f		Class Interva cu.f	als	Less	than	Great	er than
	10	6		4-16		(5		75
	22	14		16-28		2	0	(59
	34	20	0	28-40		4	0	4	55
	46	21	OT	40-52		6	1		35
	58	9		52-64		7	0]	14
	70	5		64-76		7	5		5
5.	CI (Marks)	0-10	10-20	20-30	3	0-40	40-5	50	
	Fr(Students)	2	10	4		9	10		
6.	Class Interval (Ages)	Freque (No.of ch	•	Class Boundries		LEss Cu.free			er than equency
	1 - 3	10		0.5 - 3.5		10		4	59
	4 - 6	12		3.5 - 6.5		2	2		19
	7 - 9	15		6.5 - 9.5		3	7	3	37
	10 - 12	13		9.5 - 12.5		5	0	2	22
	13 - 15	9		12.5 - 15.5	5	5	9		9

Free Distribution by A.P. Government

344 Mathematics VIII

7. CI	0-10	10-20	20-30	30-40	40-50
Eufr	3	8	19	25	30
Frequency	3	5	11	6	5
Given frequenci	es are less	than cumila	tive frequen	icies.	
8. CI	1-10	11-20	21-30	31-40	41-50
G.Cu fr	42	36	23	14	6
Frequency	6	13	9	8	6
E.	8	3.Explorin	g Geome	trical Figu	ires
		Exce	ercise - 8.1		
1.(a) True	(b) Fal	se (c)	False	(d) False
(e) False	(f) Fal		False		
(c) Yaise2. (a) Yes; any two				nilar.	
(b) Yes; the simil	-	10 AV			
3. $AB = NM;$ 2					
BC = MO;					
CA = ON;					
4. (i) True	(ii) Tru		True	(iv) False
(v) True					
7. 1.5 m, 3m, 4.5n	n, 6m, 7.5	m, 9m			
8. 9m					
-		9. Area o	f Plane Fi	gures	
	1			1	
		Exe	ercise 9.1		
2. (i) 20 sqcm	(ii) 424	4 sqcm (iii)	384 sqcn	n	
3. 55 sqcm.	4.80	sqcm 5. (i)	10700 sc	ım (ii) 11450 sqm
6. (ii) $x = 75 \text{ cm}, 4$	5 cm				
7. 675 cm^{2} , 810					
8. 337.5 sqcm.					

Answers 345 Exercise - 9.2 1. (i) 900 sqcm, (ii) 361 sq cm 2. 616 sqcm. (ii) $259.87 \,\mathrm{cm}^2$ 3. (i) 4536 sqcm. 5. 309 cm^2 6. $10.5 \,\mathrm{cm}^2$ 7. $6.8 \,\mathrm{cm}^2$ 4. 5544 cm^2 8. (i) $\frac{6}{7}a^2$ (ii) $462 \, \text{cm}^2$ 9. 6.125 cm^2 10. 346.5 m^2 10. Direct and Inverse Proportion Exercise 10.1 1. ₹. 84, ₹. 168, ₹. 420, ₹. 546 2. 32, 56, 96, 160 6. 6m, 8.75 m 4. ₹. 2,100/-5. 21 m 3. ₹. 12,600/-9. $25 \text{ cm}, \frac{10}{3} \text{ cm}.$ 10. $\frac{9}{20} \text{ cm}.$ 11. 2:1 7. 168 cm 8.750 Exercise - 10.2 2. 120, 60, 80, 80 1. (iii) Exercise - 10.3 1. 4 kg 2. 50 days 3. 48 4. 4 5. 4 6. 15 7. 24 11. Algebraic Expressions Excercise - 11.1 (iii) $15t^4$ 1. (i) 42K (iv) 18mn (ii) 6*lm* (v) $10p^3$ 3. $60a^2c$ $24m^3n$ $36 k^3 l^3$ $24p^2q^2r^2$ 4. i) $x^4 y^3$ iii) $k^3 l^3 m^3$ iv) $p^2 q^2 r^2$ ii) a⁶b⁶ v) $72a^2bcd$

۲

۲

۲

Free Distribution by A.P. Government

 (\bullet)

Exercise - 11.2 1. (ii) $3k^2l + 3klm + 3kmn$ (iii) $a^{2}b^{2} + ab^{4} + cb^{2}c^{3}$ (iv) $x^2yz - 2xy^2z + 3xyz^2$ (v) $a^4b^3c^3 + a^2b^4c^3d - a^3b^3c^2d^2$ 2. $12y^2 + 16y$ 3. i) -2ii) 0 5. $x^2 - y^2 - z^2 + 2xy - yz + zx - xr + vr$ 4. $a^2 + b^2 + c^2 - ab - bc - ca$ 7. $-3k^2 + 21kl - 3km$ 6. $-7x^2 + 8xy$ 8. $a^3 + b^3 + c^3 - a^2b + b^2a - b^2c + c^2b + a^2c - c^2a$ Excercise - 11.3 1. (i) $6a^2 - 19a - 36$ (ii) $2x^2 - 5xy + 2y^2$ (iii) $k^2l - kl^2 - l2m + k/m$ (iv) $m^3 + m^2n - mn^2 - n^3$ 2. (i) $2x^2 - 3xy + 3x^2y + 3xy^2 - 5y^2$ (ii) $3a^{2}b^{2} - a^{3}b - 2ab^{3} - 3a^{2}bc + 30b^{2}c$ (iii) klmn - $lm^2n - k^2l^2 + kl^2m + k^2lm - klm^2$ (iv) $p^4 - 5p^3q + 6p^3r + pq^3 + 6q^3p - 5q^4$ 3. i) $10x^2 - 14xy$ ii) $m^3 + n^3$ iii) $19ca - 37ab - 19a^2$ iv) $p^2q^2 - q^2r^2 + pq^2r - pq^2r + p^2qr + pqr^2 - p^2q - pq^2 - p^2r + pr^2$ 4.8 Exercise - 11.4 ii) $a^2x^4 + 2abx^2y^2 + b^2y^4$ 1. i) $pk^2 + 24kl + 16l^2$ iii) $49d^2 - 126de + 81e^2$ iv) $m^4 - 2m^2n^2 + n^4$ v) $9t^2 - 81s^2$ vi) $k^2 l^2 - m^2 n^2$ viii) $4b^2 - 2ab + 2bc - ca$ vii) $36x^2 + 66x + 30$ 2. i) 92416 ii) 259081 iii) 9,84,064 iv) 6,38,401 v) 89,984 vi) 6391 vii) 11,772 viii) 42,024 12. Factorisation Excercise - 12.1

 1. (i) 2, 4, 8
 (ii) 3, a
 (iii) 7, x, y
 (iv) 2, m

 (v) 5
 (vi) 2, x
 (vii) 2, 3, 6, x, y

۲

 \bigcirc

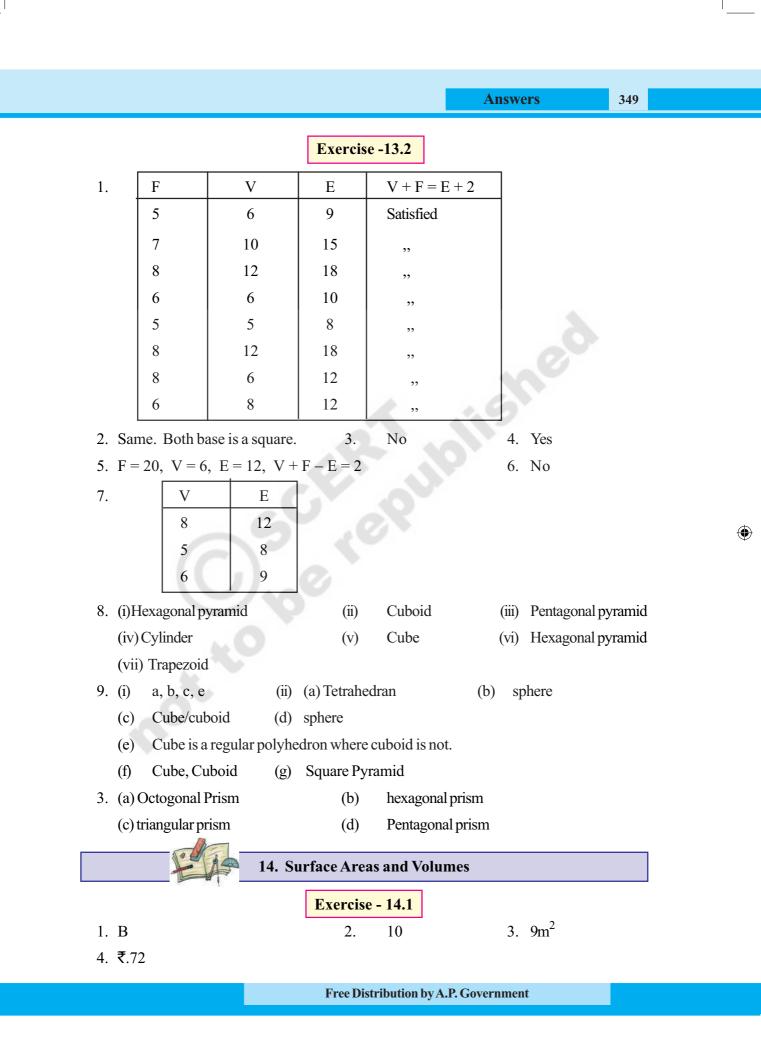
Answers 347 2. i) 5x(x-5y) (ii) 3a(3a-2x) (iii) 7p(p+7q)iv) $12a^{2}b(3-5c)$ (v) 3abc(a+2b+3c)vi) $p(4p + 5q - 6q^2)$ (vii) t(u+at)3. (i) (3x-4b)(a-2y)(ii) $(x^2+5)(x+2)$ (iii) (m+4)(m-n)(iv) $(a^2 - b) (a - b^2)$ (v) $(p-1)(pq-r^2)$ Excercise - 12.2 1. (i) $(a+5)^2$ (ii) $(l-8)^2$ (iii) $(6x+8y)^2$ (iv) $(5x-3y)^2$ (v) $(5m-4n)^2$ (vi) $(9x-11y)^2$ (vii) $(x-y)^2$ (viii) $(l^2+2m^2)^2$ (iii) (m+11)(m-11)2. (i) (x+6)(x-6) (ii) (7x+5y)(7x-5y)(vi) 6(x+3)(x-3)(iv) (9+8x) (9-8x)(v) (xy+8) (xy-8)(viii) $2x(1+4x^2)(1+2x)(1-2x)$ (vii) (x+9)(x+3)(x-3)(ix) $x^{2}(9x+11)(9x-11)$ (x) (p-q+r)(p-q-r)(xi) 4xy 3. (i) x(lx+m) (ii) $7(y^2+5z^2)$ (iii) $3x^2(x^2+2xy+3z)$ (vi) (x-a) (x-b) (v) (3a+4b) (x-2y)(vi) (m+1)(n+1)(viii) $(pq - r^2)(p - 1)$ (ix) (y + z)(x - 5)(vii) (b + 2c) (6a - b)(ii) $(a^2+b^2+c^2+2bc)(a+b+c)(a-b-c)$ 4. (i) $(x^2 + y^2)(x + y)(x - y)$ (iv) $\left(7x+\frac{4}{5}\right)\left(7x-\frac{4}{5}\right)$ (iii) (1+m-n)(1-m+n)(v) $(x^2 - y^2)^2$ (vi) (5a - b)(5b - a)5. (i) (a+6)(a+4) (ii) (x+6)(x+3) (iii) (p-7)(p-3)(iv) (x-8) (x+4) = 6.107. 0, 12 Exercise - 12.3 (ii) $\frac{1}{3}x$ (iii) $9a^2b^2c^2$ (iv) $\frac{1}{5}yz^2$ 1. (i) $8a^2$ (v) $-6l^2m$ (ii) $5a^2 - 7b^2$ (iii) x(5x-3) (iv) $l(2l^2 - 3l + 4)$ 2. (i) 3x - 2

۲

 (\bullet)

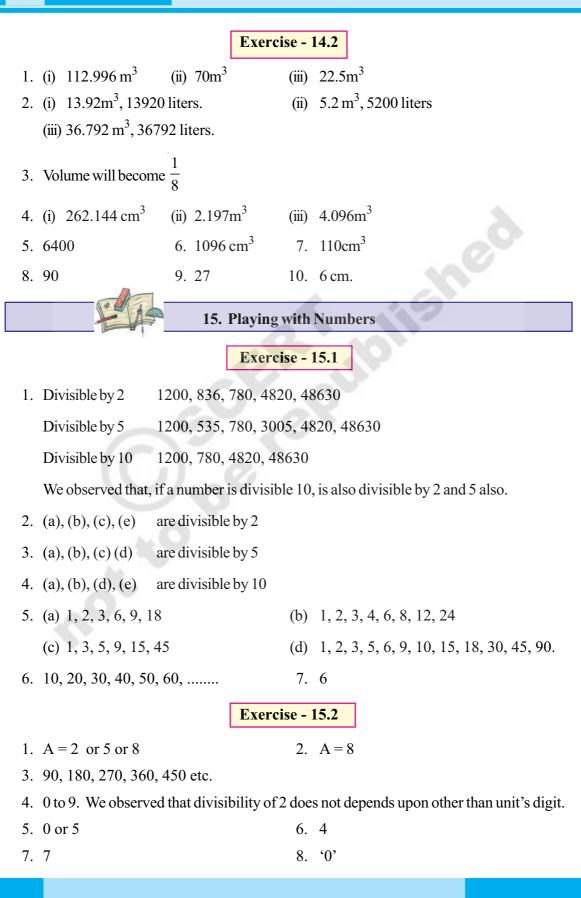
۲

Free Distribution by A.P. Government


348 Mathematics VIII

۲

(vii) $\frac{4}{3}$ (abc + 2bc) (v) 5abc(a - b + c) (vi) $(2q^2 + 3pq - p^2)$ (iii) $\frac{77}{3}$ ab (iv) $\frac{2}{3}l(m+n)$ 3. (i) 7x - 9(ii) 12x (v) $4(x^2 + 7x + 10)$ (vi) (a + 1)(a + 2)(ii) x - 24. (i) x + 4(iii) p+4(iv) 5a(a-5)(v) 10m(p-q) (vi) 4z(4z+3)Exercise - 12.4 (ii) $x(3x+2) = 3x^2 + 2x$ (i) 3(x-9) = 3x - 27(iv) 2x + x + 3x = 6x(iii) 2x + 3x = 5x(v) 4p + 3p + 2p + p - 9p = p(vi) $3x \times 2y = 6xy$ (viii) $(2x)^2 + 5x = 4x^2 + 5x$ (vii) $(3x)^2 + 4x + 7 = 9x^2 + 4x + 7$ (ix) $(2a+3)^2 = 4a^2 + 12a + 9$ (c) -6 (x) (a) 0 (b) 30 (xi) $(x-4)^2 = x^2 - 8x + 16$ (xii) $(x+7)^2 = x^2 + 14x + 49$ (xiii) $(3a+4b)(a-b) = 3a^2 + ab - 4b^2$ (xiv) $(x+4)(x+2) = x^2 + 6x + 8$ (xv) $(x-4)(x-2) = x^2 + 6x + 8$ (xvi) $5x^3 \div 5x^3 = 1$ (xvii) $(2x^3 + 1) \div 2x^3 = 1 + \frac{1}{2x^3}$ (xviii) $(3x+2) \div 3x = 1 + \frac{2}{3r}$ (xix) $(3x+5) \div 3x = x + \frac{5}{3}$ (xx) $\frac{4x+3}{3} = \frac{4}{3}x+1$ 13. Visualising 3 - D in 2 - D Exercise - 13.1 (ii) 9 (iii) 20 3. (i) 5 (iv) 14 4. (i) 3 sq.units (ii) 9 sq.units (iii) 12 sq.units (iv) 9 sq.units


۲

۲

350 Mathematics VIII

۲

()

۲

Answers 351 Exercise - 15.3 1. (a), (d) are divisible by 6

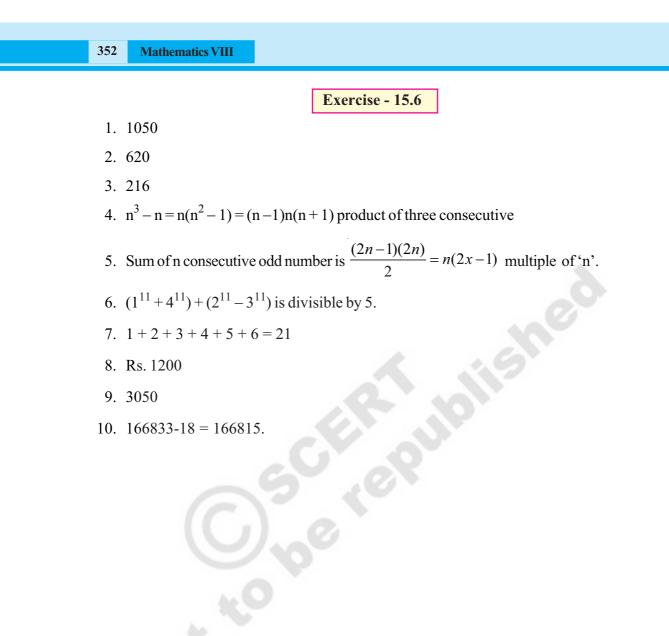
۲

- 2. (a), (b), (c), (d) are divisible by 4
- 3. (a), (c), (d) are divisible by 8
- 4. (a), (b), (c), (d) are divisible by 7
- 5. (a), (b), (c), (d), (e), (i), (j), (k) are divisible by 11
- 6. All multiples of 8 are multiples of 4
- 7. A = 1, B = 9, A + B = 10

Exercise - 15.4

۲

- 1. divisible by 45
- 2. divisible by 81


 $(\mathbf{0})$

- 3. divisible by 36 and by all its factors
- 4. divisible by 42 and by all its factors
- 5. divisible by 11 and 7 and also divisible product of 11 and 7
- 6. divisible by 5 and 7 and also divisible by product of 5 and 7.
- 7. Both numbers and their sum also divisible by 6
- 8. Both the numbers and their difference also divisible by 3
- 9. Divisible by both 2 and 4
- 10. Divisible by both 4 and 8
- 11. A = 3, B = 2

Exercise - 15.5

1. (a) A = 9(b) B = 5(c) A = 3(d) A = 6, sum = 2996(e) A = 4, B = 1(d) A = 6, sum = 29962. (a) A = 5(b) A = 8(c) A = 43. (a) D = 5, E = 0, F = 1(b) C = 1, G = 2, H = 04. (a) K = 6, L = 2(b) M = 5, N = 05. A = 8, B = 7, C = 6

Free Distribution by A.P. Government

SYLLABUS

353

۲

۲

(i) Playing with numbers Number System (50 hrs) • Writing and understanding a 2 and 3 digit number in (i) Playing with numbers generalized form (100a + 10b + c) where a, b, c can be (ii) Rational Numbers only digits (0-9) and engaging with various puzzles (iii) Square numbers, cube concerning this. (Like finding the missing numerals numbers, Square represented by alphabets in problems involving any of roots, Cubes, Cube the four operations) roots. • Number puzzles and games • Understanding the logic behind the divisibility tests of 2,3,4,5,6,7,8,9, and 11 for a two or three digit number expressed in the general form. (ii) Rational Numbers • Properties of rational numbers. (including identities). • Using general form of expression to describe properties. Appreciation of properties. • Representation of rational numbers on the number line • Between any two rational numbers there lies another rational number (Making children see that if we take two rational numbers then unlike for whole numbers, in this case you can keep finding more and more numbers that lie between them.) • Representation of rational numbers as decimal and vice versa (denominators other than 10, 100,) • Consolidation of operations on rational numbers. • Word problems on rational numbers (all operations) • Word problem (higher logic, all operations, including ideas like area) (iii) Square numbers, cube numbers, Square roots, Cubes, Cube roots. • Square numbers and square roots. • Square roots using factor method and division method for numbers containing. no more than 4 digits and b) no more than 2 decimal places

۲

Free Distribution by A.P. Government

 \bigcirc

354	Mathematics VIII
-----	------------------

	 Pythagorean triplets and verification of Pythagoras theorem Cube numbers and cube roots (only factor method for numbers containing at most 3 digits). Estimating square roots and cube roots. Learning the process of moving nearer to the required number. Uses of brackets Simplification of brackets using BODMAS rule.
Algebra (20 hrs)	(i) Exponents & Powers
(i) Exponents & Powers	Integers as exponents.
(ii) Algebraic	Laws of exponents with integral powersStandard form of the numbers
Expressions	Standard form of the numbers
(iii) Linear Equations in one variable	(ii) Algebraic Expressions
iv) Factorisation	• Multiplication algebraic exp. (Coefficient should be integers)
(C)	• Some common errors (e.g. $2 + x \neq 2x$, $7x + y \neq 7xy$)
	• Identities $(a \pm b)^2 = a^2 \pm 2ab + b^2$, $a^2 - b^2 = (a - b)$ (a + b)
C	Geometric verification of identities
	(iii) Linear Equations in one variable
40	 Solving linear equations in one variable in contextual problems involving multiplication and division (word problems)
	(iv) Factorisation
	Factorization (simple cases only)
	• Factorisation by taking out common factor.
	• Factorisation by grouping the terms.
	• Factorisation by using identities.
	• Factors of the form $(x + a) (x + a)$
	Division of algebraic expressions

Syllabus

Arithmetic (20 hrs)	(i) Comparing Quantities using proportion
(i) Comparing	Comparing Quantities using proportion
Quantities using	Compound ratio - Word problems.
proportion	• Problems involving applications on percentages, profit &
(ii) Direct and Inverse proportion	loss, overhead expenses, Discount, tax. (Multiple transactions)
	• Difference between simple and compound interest (compounded yearly up to 3 years or half-yearly up to 3 steps only), Arriving at the formula for compound interest through patterns and using it for simple problems.
	(ii) Direct and Inverse proportion
	• Direct variation - Simple and direct word problems. Inverse variation -Simple and direct word problems. Mixed problems on direct, inverse variation
	• Time & work problems- Simple and direct word problems
	• Time & distance: Simple and direct word problems
Geometry (40 hrs)	(i) Construction of Quadrilaterals
(i) Construction of	• Review of quadrilaterals and their properties.
Quadrilaterals	• Construction of quadrilaterals, given with
(ii) Representing 3-D in 2D	- Four sides and one angle
(iii) Exploring	- Four sides and one diagonal
Geometrical Figures	- Two adjacent sides, three angles
Geometricarrigures	- Three sides and two diagonals.
0	- Three sides and two angles in between them are given
	Construction of special types of quadrilaterals with two diagonals.
	(ii) Representing 3-D in 2D
	• Identify and Match pictures with objects [more complicated e.g. nested, joint 2-D and 3-D shapes (not more than 2)].
	• Drawing 2-D representation of 3-D objects (Continued and extended) with isometric sketches.
	• Counting vertices, edges & faces & verifying Euler's relation for 3-D figures with flat faces (cubes, cuboids, tetrahedrons, prisms and pyramids)

Free Distribution by A.P. Government

356 Mathematics VIII

	 (iii) Exploring Geometrical Figures Congruent figures Similar figures Symmetry in geometrical figures w.r.t. to triangles, quadrilaterals and circles. (i) Area of Plane Figures
Mensuration (15 hrs)	Area of a triangle using Heron's formula (without proof)
(i) Area of Plane Figures	and its application in finding the area of a quadrilateral.
(ii) Surface areas	Area of a trapeziumArea of the quadrilateral and other polygons.
and Volumes	Area of the circle & circular paths.
and volumes	(ii) Surface areas and Volumes
	• Surface area of a cube, cuboid
	• Concept of volume, measurement of volume using a basic unit, volume of a cube, cuboid
	 Volume and capacity.
Data handling (15 hrs)	Frequency Distribution Tables and Graphs
Frequency Distribution	• Revision of Mean, Median and Mode of ungrouped data.
Tables and Graphs	• Determination of mean by deviation method.
0	• Scope and necessity of grouped data.
	• Preparation of frequency distribution tables
	Cumulative frequency distribution tables
0	• Frequency graphs (histogram, frequency polygon, frequency curve, cumulative frequency curves)

Academic Standards

۲

Academic standards are clear statements about what students must know and be able to do. The following are categories on the basis of which we lay down academic standards

Problem Solving

Using concepts and procedures to solve mathematical problems

(a) Kinds of problems:

Problems can take various forms- puzzles, word problems, pictorial problems, procedural problems, reading data, tables, graphs etc.

(b) Problem Solving

- Reads problems
- Identifies all pieces of information/data
- Separates relevant pieces of information
- Understanding what concept is involved
- Recalling of (synthesis of) concerned procedures, formulae etc.
- Selection of procedure
- Solving the problem
- Verification of answers of raiders, problem based theorems.

(c) Complexity:

۲

The complexity of a problem is dependent on

- Making connections(as defined in the connections section)
- Number of steps
- Number of operations
- Context unraveling
- Nature of procedures

Reasoning Proof

- Reasoning between various steps (involved invariably conjuncture).
- Understanding and making mathematical generalizations and conjectures

Free Distribution by A.P. Government

357

358 Mathematics VIII

• Understands and justifies procedures · Examining logical arguments.

۲

- Understanding the notion of proof
- Uses inductive and deductive logic
- Testing mathematical conjectures

Communication

• Writing and reading, expressing mathematical notations (verbal and symbolic forms)

Ex: 3 + 4 = 7, 3 < 5, $n_1 + n_2 = n_2 + n_1$ Sum of angles in a triangle = 180°

- Creating mathematical expressions
- Explaining mathematical ideas in her own words like- a square is closed figure having four equal sides and all equal angles
- Explaining mathematical procedures like adding two digit numbers involves first adding the digits in the units place and then adding the digits at the tens place/keeping in mind carry over.

۲

• Explaining mathematical logic

Connections

۲

- Connecting concepts within a mathematical domain- for example relating adding to multiplication, parts of a whole to a ratio, to division. Patterns and symmetry, measurements and space
- Making connections with daily life
- Connecting mathematics to different subjects
- Connecting concepts of different mathematical domains like data handling and arithmetic or arithmetic and space
- Connecting concepts to multiple procedures

Visualization & Representation

- Interprets and reads data in a table, number line, pictograph, bar graph, 2-D figures, 3-D figures, pictures
- Making tables, number line, pictograph, bar graph, pictures.
- Mathematical symbols and figures.