# Answers

|    | E                          | <b>KERCISE</b>                                           | 1.1             |                     |         |                                                |               |                   | K            |
|----|----------------------------|----------------------------------------------------------|-----------------|---------------------|---------|------------------------------------------------|---------------|-------------------|--------------|
| 1. | a.                         | $-5, \frac{22}{7}, \frac{-2}{20}$                        | 2013<br>014     |                     |         |                                                |               | Ø                 |              |
|    | b.                         | A number w                                               | hich c          | an be written in    | the for | $\operatorname{rm} \frac{p}{q}$ where $q \neq$ | 0; <i>p</i> , | q are inte        | gers, called |
|    |                            | a rational nu                                            | mber.           |                     |         |                                                |               |                   |              |
| 2. | (i)                        | $\frac{3}{7}$                                            |                 |                     | (ii)    | 0                                              | (iii)         | -5                |              |
|    | (iv)                       | 7                                                        |                 |                     | (v)     | -3                                             |               |                   |              |
| 3. | $\frac{3}{2}, \frac{3}{4}$ | $\frac{5}{4}, \frac{9}{8}, \frac{17}{16}, \frac{17}{16}$ | $\frac{33}{32}$ |                     | 4.      | $\frac{19}{30}, \frac{13}{20}, \frac{79}{120}$ | )             |                   |              |
| 5. | ←                          | $-\frac{-8}{5}$                                          | ++              | + + + + + + + + - 0 | + +-    | $\frac{8}{5}$                                  | 2             |                   |              |
| 6. | I. (i)                     | 0.242                                                    | (ii)            | 0.708               | (iii)   | 0.4                                            | (iv)          | 28.75             |              |
|    | II.(i)                     | 0.6                                                      | (ii)            | -0.694              | (iii)   | 3.142857                                       | (iv)          | 1.2               |              |
| 7. | (i)                        | $\frac{9}{25}$                                           | (ii)            | $\frac{77}{5}$      | (iii)   | $\frac{41}{4}$                                 | (iv)          | $\frac{13}{4}$    |              |
| 8. | (i)                        | $\frac{5}{9}$                                            | (ii)            | $\frac{35}{9}$      | (iii)   | $\frac{12}{33}$                                | (iv)          | $\frac{563}{180}$ |              |
| 9. | (i)                        | Yes                                                      | (ii)            | No                  | (iii)   | Yes                                            | (iv)          | No                |              |
|    | E                          | KERCISE -                                                | 1.2             | 2                   |         |                                                |               |                   |              |
| 1. | (i)                        | Irrational                                               | (ii)            | Rational            | (iii)   | Irrational                                     |               |                   | SEA          |
|    | (iv)                       | Rational                                                 | (v)             | Rational            | (vi)    | Irrational                                     |               |                   | 2 Mil        |

ANSWERS 329

| 2.  | Rati       | onal numbers              | :-1, <del>-</del> | $\frac{3}{7}$ , 1.25, 21. $\overline{8}$ , 0 | C     |                          |               |                       |
|-----|------------|---------------------------|-------------------|----------------------------------------------|-------|--------------------------|---------------|-----------------------|
|     | Irrat      | ional numbers             | $s:\sqrt{2}$      | $\sqrt{7}, \sqrt{7}, \pi, 2.131$             | 415   | , 1.101001000            | 01            |                       |
| 3.  | Infin      | ite, $\frac{\sqrt{5}}{3}$ |                   |                                              |       |                          |               |                       |
| 4.  | 0.71       | 727374, 0                 | .7616             | 61666                                        | 5.    | $\sqrt{5} = 2.236$       |               |                       |
| 6.  | 2.64       | 5751                      | 8.                | $\sqrt{6}$ , $\sqrt{2\sqrt{6}}$              |       |                          |               |                       |
| 9.  | (i)        | True                      | (ii)              | True                                         | (iii) | False $\sqrt{3}$         | (iv)          | False $\sqrt{6}$      |
|     | (v)        | True $\sqrt{8}$           | (vi)              | False $\frac{3}{7}$                          |       |                          |               |                       |
|     | E          | XERCISE -                 | 1.4               |                                              | X     | 1.1                      | 2             |                       |
|     |            |                           |                   | 6                                            |       |                          |               | AND                   |
| 1.  | (i)        | $10 + 5\sqrt{5} +$        | $2\sqrt{7}$       | $+\sqrt{35}$                                 | (ii)  | 20                       |               |                       |
|     | (iii)      | $10 + 2\sqrt{21}$         |                   |                                              | (iv)  | 4                        |               |                       |
| 2.  | (i)        | Irrational                | (ii)              | Irrational                                   | (iii) | Irrational               | (iv)          | Rational              |
|     | (v)        | Irrational                | (vi)              | Irrational                                   | (vii) | Rational                 |               |                       |
| 3.  | (i)        | Irrational                | (ii)              | Rational                                     | (iii) | Irrational               | (iv)          | Irrational            |
|     | (v)        | Irrational                | (vi)              | Rational                                     |       |                          |               |                       |
| 4.  | Beca       | use either c or           | dis ir            | rational number                              |       |                          |               |                       |
| 5.  | (i)        | $\frac{3-\sqrt{2}}{7}$    | (ii)              | $\sqrt{7} + \sqrt{6}$                        | (iii) | $\frac{\sqrt{7}}{7}$     | (iv)          | $3\sqrt{2}+2\sqrt{3}$ |
| 6.  | (i)        | $1 - 12\sqrt{2}$          | (ii)              | $1 - \sqrt{35}$                              | 7.    | 0.55725                  |               |                       |
| 8.  | (i)        | 2                         | (ii)              | 2                                            | (iii) | 5                        | (iv)          | 64                    |
|     | (v)        | 9                         | (vi)              | $\frac{1}{6}$                                | 9.    | -8                       |               |                       |
| 10. | (i)        | a = 5, b = 2              |                   | 0                                            | (ii)  | $a = \frac{-19}{7}, b =$ | $\frac{5}{7}$ |                       |
|     | E          | XERCISE -                 | 2.1               |                                              |       |                          |               |                       |
| 1.  | (i)<br>(v) | 5<br>2                    | (ii)<br>(vi)      | 2                                            | (iii) | 0                        | (iv)          | 6                     |
|     | ~ /        |                           | ` '               |                                              |       |                          |               |                       |

FREE DISTRIBUTION BY A.P. GOVERNMENT

#### 330 IX-CLASS MATHEMATICS

| 2. | (i)               | Polynomial                   | (ii)    | Polynomial       | (iii)    | No because it ha | as two  | variables                   |
|----|-------------------|------------------------------|---------|------------------|----------|------------------|---------|-----------------------------|
|    | (iv)              | Not polynom                  | nial be | cause exponent   | is nega  | ative.           |         |                             |
|    | (v)               | Not polynom                  | nial be | ecause exponent  | of x is  | not a non negat  | ive int | egers.                      |
|    | (vi)              | Not polynom                  | nial in | one variable bed | cause i  | t has two variab | les.    |                             |
| 3. | (i)               | 1                            | (ii)    | -1               | (iii)    | $\sqrt{2}$       | (iv)    | 0                           |
|    | (v)               | $\frac{\pi}{2}$              | (vi)    | -1               | (vii)    | 0                | (viii)  | 0                           |
| 4. | (i)               | Quadratic                    | (ii)    | Cubic            | (iii)    | Quadratic        | (iv)    | Linear                      |
|    | (v)               | Linear                       | (vi)    | Quadratic        |          |                  |         |                             |
| 5. | (i)               | True                         | (ii)    | False            | (iii)    | False            | (iv)    | False                       |
|    | (v)               | True                         | (vi)    | True             |          |                  |         |                             |
|    | -                 |                              | ~ (     |                  |          |                  |         |                             |
|    | E                 | KERCISE -                    | 2.2     | 2                | 5        |                  |         |                             |
|    |                   |                              |         |                  |          |                  |         | SCA                         |
| 1. | (i)               | 3                            | (ii)    | 12               | (iii)    | 9                | (iv)    | $\frac{3}{2}$               |
|    | <i>(</i> <b>)</b> |                              |         |                  |          |                  |         | 2                           |
| 2. | (1)               | 1, 1, 3                      | (11)    | 2, 4, 4          | (111)    | 0, 1, 8          | (1V)    | -1, 0, 3                    |
| _  | (v)               | 2, 0, 0                      |         |                  | <u> </u> |                  |         |                             |
| 3. | (i)               | No                           | (ii)    | No               | (iii)    | Yes              | (iv)    | Yes                         |
|    | (v)               | Yes                          | (vi)    | Yes              | (vii)    | Yes, No          | (viii)  | No, Yes                     |
| 4. | (i)               | -2                           | (ii)    | 2                | (iii)    |                  | (iv)    | 3                           |
|    | ()                |                              | (1)     | ) -              | (11)     | 2                | (1)     | 2                           |
|    | (iv)              | 0                            | (vi)    | 0                | (vii)    | $\frac{-q}{n}$   |         |                             |
|    |                   | -2                           |         |                  |          | P                |         |                             |
| 5. | a = -             | 7                            |         |                  | 6.       | a = 1, b = 0     |         |                             |
|    |                   |                              |         |                  |          |                  |         |                             |
|    | E                 | KERCISE -                    | 2.3     | 3                |          |                  |         |                             |
| 1  | (i)               | 0                            | (ii)    | 27               | (iii)    | 1                |         | Sale a                      |
| 1, | (1)               | 0                            | (ш)     | 8                | (111)    |                  |         |                             |
|    | (iv)              | $-\pi^{3}+3\pi^{2}-3\pi^{2}$ | +1      |                  | (v)      | $\frac{-27}{8}$  |         |                             |
| 2. | 5 <i>a</i>        |                              | 3.      | Not a factor     | 4.       | -3               | 5.      | $\frac{-13}{2}$             |
|    |                   |                              |         |                  |          |                  |         | 3                           |
| 6. | $\frac{-13}{3}$   |                              | 7.      | 8                | 8.       | $\frac{21}{8}$   | 9.      | <i>a</i> = 7, <i>b</i> = 12 |

FREE DISTRIBUTION BY A.P. GOVERNMENT

ANSWERS 331

|            | E                                                                                | XERCISE -                                                              | 2.4                                          | 4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                     |                    |                               |
|------------|----------------------------------------------------------------------------------|------------------------------------------------------------------------|----------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------|--------------------|-------------------------------|
| 1.<br>2.   | (i)<br>(i)<br>(v)                                                                | Yes<br>Yes<br>Yes                                                      | (ii)<br>(ii)                                 | No<br>No                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | (iii)<br>(iii)          | No<br>Yes                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | (iv)<br>(iv)        | Yes<br>Yes         |                               |
| 7.<br>9.   | (i)<br>(iii)<br>a = 3                                                            | (x-1)(x+)(x+1)(x+)                                                     | 1) (x<br>2) (x<br>10.                        | (y-2)<br>+ 10)<br>(y-2)(y+3)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | (ii)<br>(iv)            | $(x + 1)^2 (x - 5)^2 (y + 1) (y + 1)^2 (x - 5)^2 (x - 5)^2 (y + 1) (y + 1)^2 (y + 1)^$ | 5)<br>(y - 1        | 1)                 |                               |
|            | E                                                                                | XERCISE -                                                              | 2.                                           | 5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                     | 0                  |                               |
| 1.         | (i)<br>(iii)                                                                     | $x^2 + 7x + 10$ $9x^2 - 4$                                             | )<br>(iv)                                    | $x^4 - \frac{1}{x^4}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | (ii)<br>(v)             | $x^{2} - 10x + 25$<br>$1 + 2x + x^{2}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                     |                    |                               |
| 2.         | (i)<br>(iv)                                                                      | 9999<br>251001                                                         | (ii)<br>(v)                                  | 998001<br>899.75                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | (iii)                   | $\frac{9999}{4} = 249$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | $9\frac{3}{4}$      |                    |                               |
| 3.         | (i)                                                                              | $(4x+3y)^2$                                                            | (ii)                                         | $(2y-1)^2$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | (iii)                   | $\left(2x+\frac{y}{5}\right)\left(2x\right)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | $-\frac{y}{5}$      |                    |                               |
| 4.         | <ul> <li>(iv)</li> <li>(vi)</li> <li>(i)</li> <li>(ii)</li> <li>(iii)</li> </ul> | 2 (3a + 5) (2)  3 (P - 6) (P)  x2 + 4y2 + 1  8a3 - 36a2b  4a2 + 25b2 - | 3a - 5<br>-2)<br>$6z^2 + 54$<br>$+9c^2 - 54$ | $5)  4xy + 16yz + 8  ab^2 - 27b^3  - 20ab - 30bc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | (v)<br>dxz<br>+ 12a     | (x+3)(x+2)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | )                   |                    |                               |
|            | (iv)                                                                             | $\frac{a^2}{16} + \frac{b^2}{4}$                                       | + 1 -                                        | $-\frac{ab}{4} - b + \frac{ab}{4}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | $\frac{a}{2}$           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                     |                    |                               |
|            | (v)                                                                              | $p^3 + 3p^2 + 3$                                                       | <i>p</i> + 1                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | (vi)                    | $x^3 - 2x^2y + \frac{4}{3}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | $xy^2$ -            | $\frac{8}{27}y^3$  |                               |
| 5.         | (i)<br>20                                                                        | (-5x + 4y +                                                            | $(2z)^2$                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | (ii)                    | (3a + 2b - 4c)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 2                   |                    |                               |
| 0.<br>7.   | (i)                                                                              | 970299                                                                 | (ii)                                         | 1,0,61,208                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | (iii)                   | 99,40,11992                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | (iv)                | 100,3              | 0,03,001                      |
| 8.         | (i)                                                                              | $(2a+b)^{3}$                                                           | (ii)                                         | $(2a-b)^{3}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | (iii)                   | $(1-4a)^3$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | (iv)                | $\left(2p+\right)$ | $\left(+\frac{1}{5}\right)^3$ |
| 10.<br>11. | (i)<br>(3 <i>x</i> -                                                             | (3a+4b) (9)<br>+ y + z) (9x <sup>2</sup> -                             | $a^2 - 1$<br>+ $y^2$ +                       | $2ab + 16b^2)$ $z^2 - 3xy - yz - 3xy - 3xy - yz - 3xy - $ | (ii)<br>- 3 <i>xz</i> ) | (7 <i>y</i> – 10) (49)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | y <sup>2</sup> + 70 | 0y + 10            | 0)                            |

FREE DISTRIBUTION BY A.P. GOVERNMENT

| 14.     | (i)            | -630                              | (ii)         | 16380                                | (iii)          | $\frac{-5}{12}$                         | (iv)  | -0.018          |        |
|---------|----------------|-----------------------------------|--------------|--------------------------------------|----------------|-----------------------------------------|-------|-----------------|--------|
| 15.     | (i)            | (2a+3)(2a                         | -1)          |                                      | (ii)           | (5a-3)(5a-                              | 4)    |                 |        |
| 16.     | (i)            | 3x(x-2)(x                         | ; + 2)       |                                      | (ii)           | 4(3y+5)(y-                              | 1)    |                 |        |
|         |                |                                   |              |                                      |                |                                         | -     |                 |        |
|         | E              | KERCISE -                         | 3.1          | ]                                    |                |                                         |       |                 | R      |
| 1.      | (i)            | 3                                 | (ii)         | 13                                   | (iii)          | Surface                                 | (iv)  | 180°            | SALO.  |
|         | (v)            | Defined                           |              |                                      |                |                                         |       |                 |        |
| 2.      | a)             | False                             | b)           | True                                 | c)             | True                                    | d)    | True            |        |
|         | e)             | True                              |              |                                      |                |                                         |       |                 |        |
| 9.      | ∠1 +           | $\angle 2 = 180^{\circ}$          |              |                                      |                |                                         |       |                 |        |
|         | _              |                                   |              |                                      | $ \frown $     |                                         | 2     |                 |        |
|         | E              | KERCISE -                         | 4.1          |                                      |                | 101                                     |       |                 | K-     |
| 2       | (i)            | Reflex angle                      | (ii)         | Rightangle                           | (iii)          | A cute angle                            |       |                 | Sillen |
| 2.<br>3 | (I)<br>(i)     | False                             | (II)<br>(ii) | True                                 | (III)<br>(iii) | False                                   | (iv)  | False           |        |
| 5.      | $(\mathbf{v})$ | True                              | (II)<br>(vi) | True                                 | (m)<br>(vii)   | False                                   | (IV)  | True            |        |
| 4       | (i)            | Right angle                       | (ii)         | Straight angle                       | (iii)          | Obtuse angle                            | (111) | mue             |        |
|         | ()             | 1                                 | (11)         | ~ ~ ~ B B                            | ()             | 000000000000000000000000000000000000000 |       |                 |        |
|         | E              | KERCISE -                         | 4.2          | Q.                                   |                |                                         |       |                 |        |
| 1       | r - 3          | 60                                |              | $y = 54^{\circ}$                     |                | $7 - 00^{\circ}$                        |       |                 | SIA    |
| 1.<br>2 | x - 3          | $r = 23^{\circ}$                  | (ii)         | $y = 54^{\circ}$<br>$r = 59^{\circ}$ | (iii)          | $z = 90^{\circ}$<br>$r = 20^{\circ}$    | (iv)  | $r = 8^{\circ}$ |        |
| 2.      | /BC            | $E = 30^{\circ} \cdot \text{Ref}$ | lex an       | $r = \frac{1}{2}$                    | 250°           | л <u>20</u>                             | (1)   | л               |        |
| 4.      | ∠C =           | = 126°                            |              | 510 01 2 0 0 2                       |                |                                         |       |                 |        |
| 8.      | ZXY            | $Q = 122^{\circ}$                 |              |                                      | ZQY            | $YP = 302^{\circ}$                      |       |                 |        |
|         |                |                                   |              |                                      |                |                                         |       |                 |        |
|         | E              | KERCISE -                         | 4.3          | <b>.</b>                             |                |                                         |       |                 |        |
| 2       | r = 1          | 26°                               |              |                                      |                |                                         |       |                 | Sila   |
| 3.      |                | $E = 126^{\circ}$                 |              | $\angle GEF = 360^{\circ}$           |                | $\angle FGE = 54^{\circ}$               |       |                 | a hand |
| 4.      | ZOF            | $RS = 60^{\circ}$                 | 5.           | $\angle ACB = \angle z =$            | <i>= ∠x</i> +  | - ∠v                                    |       |                 |        |
| 6.      | a=4            | 0°;                               | <i>b</i> = 1 | .00°                                 |                | -7                                      |       |                 |        |
| 7.      | (i)            | ∠3, ∠5, ∠7,                       | ,∠9,         | ∠11, ∠13, ∠15                        | 5              |                                         |       |                 |        |
|         | (ii)           | ∠4, ∠6, ∠8                        | ,∠10         | ,∠12,∠14,∠1                          | 6              |                                         |       |                 |        |

FREE DISTRIBUTION BY A.P. GOVERNMENT

# EXERCISE - 5.1

 $\angle ABC = 72^{\circ}$ 

(iii)  $\angle DAB = 27^{\circ}$ 

- Water Tank Mr. 'J' house 1. (i) (ii) (iii) In street-2, last house on right side while going in east directioni.
  - In street 4, first building on right side while going in east direction. (iv)
  - In street 4, the last building on left side while going in east direction (v)

### EXERCISE - 5.2

- 1. (i) **Q**<sub>2</sub> (ii) Y-axis (v) (vi)
- $Q_4$ X-axis

 $(iii) Q_1$ (vii) X-axis

 $( \bullet )$ 

(iv) Q<sub>3</sub> (viii) Y-axis

(iii)  $y = 80^{\circ}$ 

5.  $x = 40^{\circ}$ 

 $\angle YOZ = 121^{\circ}$ 

 $x = 30^{\circ}$ 

 $z = 60^{\circ}$ 

(iii)  $\angle CED = 78^{\circ}$ 

 $\angle A = 50^{\circ};$ 

 $\angle ACB = 72^{\circ}$ 

 $\angle EAC = 32^{\circ}$ 



 $y = 10^{\circ}$ 

 $y = 75^{\circ}$ 

 $\angle B = 75^{\circ}$ 

۲

# EXERCISE - 4.4

(ii)

3.

 $y = 40^{\circ}$ 

 $y = 53^{\circ}$ 

 $y = 120^{\circ}$ 

 $z = 130^{\circ}$ 

9.  $\angle OZY = 32^{\circ};$ 

11.  $\angle SQT = 60^{\circ}$ 

(ii)  $\angle ADE = 67^{\circ}$ 

 $x = 35^{\circ}, y = 51^{\circ}$ 

7.

12.

14.

(ii)

(iv)

 $x = 110^{\circ}$ 

1. (i)

۲

2.  $\angle 1 = 60^{\circ}$ 

8.  $\angle PRQ = 65^{\circ}$ 

10.  $\angle DCE = 92^{\circ}$ 

6.  $x = 70^{\circ}$ 

13.  $x = 37^{\circ}$ 

15. (i) 78°

17.  $x = 96^{\circ}$ 

16. (i)

| 8.  | $x = 60^{\circ}$                                | $y = 59^{\circ}$  |       |                                  |                     |                   |
|-----|-------------------------------------------------|-------------------|-------|----------------------------------|---------------------|-------------------|
| 9.  | $x = 40^{\circ}$                                | $y = 40^{\circ}$  |       |                                  |                     |                   |
| 10. | $x = 60^{\circ}$                                | $y = 28^{\circ}$  |       |                                  |                     |                   |
| 11. | $x = 68^{\circ}$                                | $y = 11^{\circ}$  |       |                                  |                     |                   |
| 13. | $x = 50^{\circ}$                                | $y = 77^{\circ}$  |       |                                  |                     |                   |
| 15. | (i) $x = 36^{\circ};$                           | <i>y</i> = 180°   | (ii)  | $x = 35^{\circ}$                 | (iii)               | $x = 29^{\circ}$  |
| 16. | $\angle 1 = \angle 3 = \angle 5 = \angle 7 = 3$ | 80°;              |       | $\angle 2 = \angle 4 = \angle 6$ | $\delta = \angle 8$ | $8 = 100^{\circ}$ |
| 17. | $x = 20^{\circ}$                                | $y = 60^{\circ}$  |       | $z = 120^{\circ}$                |                     |                   |
| 18. | $x = 55^{\circ}$                                | $y = 35^{\circ}$  |       | $z = 105^{\circ}$                |                     |                   |
| 19  | (i) $x = 140^{\circ}$ (ii)                      | $x = 100^{\circ}$ | (iii) | $r = 250^{\circ}$                |                     |                   |

ANSWERS 333

| 2. | (i)   | abscissa : 4<br>ordinate : -8 | (ii)   | abscissa : -5<br>ordinate : 3 | (iii) | abscissa : 0<br>ordinate : 0 | (iv) | abscissa : 5<br>ordinate : 0 |
|----|-------|-------------------------------|--------|-------------------------------|-------|------------------------------|------|------------------------------|
|    | (v)   | abscissa : 0<br>ordinate : -8 |        |                               |       |                              |      |                              |
| 3. | (ii)  | (0, 13) : Y-ax                | is     |                               | (iv)  | (-2, 0) : X-axis             |      |                              |
|    | (v)   | (0, -8): Y-axi                | is     |                               | (vi)  | (7,0):X-axis                 |      |                              |
|    | (vii) | (0, 0): on bot                | th the | axis.                         |       |                              |      |                              |
| 4. | (i)   | -7                            | (ii)   | 7                             | (iii) | Р                            | (iv) | Q                            |
|    | (v)   | 4                             | (vi)   | -3                            |       |                              |      |                              |
| 5. | (i)   | False                         | (ii)   | True                          | (iii) | True                         | (iv) | False                        |
|    | (v)   | False                         | (vi)   | True                          |       |                              |      |                              |

# EXERCISE - 5.3

- 2. No. (5, -8) lies in  $Q_4$  and (-8, 5) lies in  $Q_2$
- 3. All given points lie on a line parallel to Y-axis at a distance of 1 unit.
- 4. All points lie on a line parallel to X-axis at a distance of 4 units.

# EXERCISE - 6.1

۲

| 1. | (i)          | <i>a</i> = 8    | <i>b</i> = 5      | <i>c</i> = -3         |
|----|--------------|-----------------|-------------------|-----------------------|
|    | (ii)         | <i>a</i> = 28   | <i>b</i> = -35    | <i>c</i> = 7          |
|    | (iii)        | <i>a</i> = 93   | <i>b</i> = 15     | <i>c</i> = -12        |
|    | (iv)         | <i>a</i> = 2    | <i>b</i> = 5      | c = 0                 |
|    | (v)          | $a=\frac{1}{3}$ | $b = \frac{1}{4}$ | <i>c</i> = -7         |
|    | (vi)         | $a=\frac{3}{2}$ | <i>b</i> = 1      | c = 0                 |
|    | (vii)        | <i>a</i> = 3    | <i>b</i> = 5      | $c = -7.\overline{2}$ |
| 2. | (i)          | <i>a</i> = 2    | <i>b</i> = 0      | <i>c</i> = -5         |
|    | (ii)         | a = 0           | <i>b</i> = 1      | <i>c</i> = -2         |
|    | (iii)        | a = 0           | $b = \frac{1}{7}$ | <i>c</i> = -3         |
|    | (iv)         | <i>a</i> = 1    | b = 0             | $c = \frac{14}{13}$   |
| 3. | (i) <i>x</i> | +y = 34         |                   | (ii) $2x - y +$       |



۲

FREE DISTRIBUTION BY A.P. GOVERNMENT

10 = 0

ANSWERS 335

(iii) x - 2y - 10 = 0(iv) 2x + 15y - 100 = 0(v) x + y - 200 = 0(vi) x + y - 11 = 0EXERCISE - 6.2 2. (i)  $(0, -34); (\frac{17}{4}, 0)$ (0,3);(-7,0)(ii) (iii)  $(0, \frac{3}{2}); (\frac{-3}{5}, 0)$ 3. (i) Not a solution Solution Solution (iii) (ii) (iv) Not a solution Not a solution (v)5.  $\alpha = \frac{8}{5}$ 4. K = 7 3 6. EXERCISE - 6.3 2. (i) Yes (ii) Yes 3. 3 4. (i) (ii) -5 6 5. (i)  $(\frac{3}{2}, 3)$ (ii) (-3, 6)6. (i) (2, 0): (0, -4)(ii) (-8, 0); (0, 2)(iii) (-2, 0); (0, -3)7. x + y = 10008. x + y = 5000 9. f = 6a10. 39.2 11. 5x = 3y; 2000; 480 (No. of voters who cast their vote = x, Total no. of voters = y) 12. x - y = 25; 50; 15 (Father age = x, Rupa's age = y) 14. x + 4y = 27; 5, 1113. y = 8x + 715. y = 10x + 30; 60; 90; 5 hr. (No. of hours = x; Parking charges = y) 16. d = 60 t (d = distance, t = time); 90 km.; 120 km.; 210 km.17. y = 8x;  $\frac{3}{2}$  or  $1\frac{1}{2}$ ; 12 18.  $y = \frac{5}{7}x$ (Quantity of mixture = x; Quantity of milk = y); 20 35° C 19. (ii) 86° F (iii) (iv) -40

۲

FREE DISTRIBUTION BY A.P. GOVERNMENT

| Exercise - (                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | <b>3.4</b>                            |                            |                    |               |         |        |              |      |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------|----------------------------|--------------------|---------------|---------|--------|--------------|------|
| 4. (i) $y = -3$ (i)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | ii) $y = 4$                           | ł                          | (iii)              | <i>y</i> = -5 |         | (iv)   | <i>y</i> = 4 | EA   |
| 5. (i) $x = -4$ (i                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | ii) $x = 2$                           | 2                          | (iii)              | <i>x</i> = 3  |         | (iv)   | x = -2       | 1 ~~ |
| Exercise - 7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 7.4                                   |                            |                    |               |         |        |              |      |
| 6. 7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                       |                            | 7.                 | No.           |         |        |              |      |
| Exercise - 8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 8.1                                   |                            |                    |               |         |        | 0            |      |
| 1. (i) True (i                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | ii) True                              |                            | (iii)              | False         |         | (iv)   | True         |      |
| (v)  False  (v)  (v | vi) False<br>No No                    | 2                          | (b)                | No Ver        | . Vec   | Ves V  | AC           |      |
| (c) No Yes Yes Y                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Yes Yes                               |                            | (d)                | No Yes        | s Yes   | Yes Y  | es           |      |
| (e) No. Yes. Yes. Y                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Yes. Yes                              |                            | (d)<br>(f)         | No. Yes       | s. Yes. | Yes. Y | es           |      |
| (g) No, No, No, Y                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | es, Yes                               |                            | (h)                | No, No        | , Yes,  | No, Ye | es           |      |
| (i) No, No, No, Y                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | es, Yes                               |                            | (j)                | No, No        | , Yes,  | No, Ye | es.          |      |
| Exercise - 8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 8.3                                   |                            |                    |               |         |        |              |      |
| <ol> <li>Angles of parallelog</li> <li>Angles of parallelog</li> </ol>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | $ram = 73^{\circ}$ $ram = 52^{\circ}$ | 2, 107°, 73<br>2, 128°, 52 | °, 107°<br>°, 128° | 0             |         |        |              | A A  |
| Exercise - 8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 8.4                                   |                            |                    |               |         |        |              |      |
| 1. BC = 8 cm.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                       |                            |                    |               |         |        |              |      |
| Exercise - S                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 9.1                                   |                            |                    |               |         |        |              |      |
| 1. Marks                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 5                                     | 6                          | 7                  |               | 8       | 9      | 1            | 0    |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 5                                     | 6                          | 8                  | 1             | 2       | 9      | 4            | 5    |
| Frequency (f)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                       |                            |                    |               |         |        |              |      |
| 2. Blood Group                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | A                                     | В                          | AE                 | 3   (         | C       |        |              |      |
| <ul> <li>Prequency (f)</li> <li>Blood Group</li> <li>Frequency (f)</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | A<br>10                               | B<br>9                     | AE<br>2            | <u> </u>      | )<br>5  |        |              |      |

FREE DISTRIBUTION BY A.P. GOVERNMENT

 3.
 No. of Heads
 0
 1
 2
 3

 Frequency (f) 3
 10
 10
 7

| 4. | Options         | А  | В  | С  |
|----|-----------------|----|----|----|
|    | Frequency $(f)$ | 19 | 35 | 10 |

Total appropriate answers = 64

۲

Majority of people's opinion = B (Prohibition in public place only)

۲

5.Type of VehiclesCarBikesAutosCyclesNo. of Vehicles (f)25453040

6. Scale: on X-axis = 1 cm. = 1 class interval

on X-axis = 1 cm. = 10 number of students

| Class                 | Ι  | Π  | III | IV | V  | VI |
|-----------------------|----|----|-----|----|----|----|
| No. of students $(f)$ | 40 | 55 | 65  | 50 | 30 | 15 |

10-20 20-30 30-40 40-50 50-60 60-70 Marks 70-80 7. 0-10 (Class interval) 3 7 7 7 No. of students (f)1 4 1 0

| 8. | Electricity Bills (in₹)<br>(Class Interval) | No. of Houses $(f)$ |
|----|---------------------------------------------|---------------------|
|    | 150 - 225                                   | 4                   |
|    | 225 - 300                                   | 3                   |
|    | 300 - 375                                   | 7                   |
|    | 375 - 450                                   | 7                   |
|    | 450 - 525                                   | 0                   |
|    | 525 - 600                                   | 1                   |
|    | 600 - 675                                   | 1                   |
|    | 675 - 750                                   | 2                   |

| 9. | Life time (in years) | 2-2.5 | 2.5-3.0 | 3.0-3.5 | 3.5-4.0 | 4.0-4.5 | 4.5-5.0 |
|----|----------------------|-------|---------|---------|---------|---------|---------|
|    | (Class Interval)     |       |         |         |         |         |         |
|    | No. of Batteries     | 2     | 6       | 14      | 11      | 4       | 3       |

FREE DISTRIBUTION BY A.P. GOVERNMENT

EXERCISE - 9.2 1. x = 852.  $x = 1.71 \square 2 = 3.$ K = 104.  $\bar{x} = 17.7$ 5. (i) ₹359, ₹413, ₹195, ₹228, ₹200, ₹837 (ii)  $\mathbf{\overline{\xi}}444$  saving per school. 6. Boy's height = 152 cm.; Girl's height = 152 cm. 7. x = 11.18; Mode = 5 ; Median = 108. x = 80; Median = 75; Mode = 509. 37 kgs 10. ₹11.25, Median = ₹ 10; Mode = ₹ 10 11.  $1^{st} = 2$ ;  $2^{nd} = 6$ ;  $3^{rd} = 19$ ;  $4^{th} = 33$ EXERCISE - 10.1 1. (i)  $96 \,\mathrm{cm}^2$ (ii) 236 cm<sup>2</sup> 2.  $3375 \text{ m}^2$ 3.  $330 \,\mathrm{m}^2$ 8 m. 4. 5. (i) 4 times of original area 9 times of original area (ii) 3750 liters 6.  $60 \text{ cm}^3$ 7. 16 m<sup>3</sup> 8. EXERCISE - 10.2 1.  $6.90 \text{ m}^2$  $4851 \text{ cm}^2$ 3. 176 cm<sup>2</sup>; 253 cm<sup>2</sup> 2. 4. r = 7.5 cm. 5. h = 25 m.6. (i)  $968 \text{ cm}^2$ (ii)  $1064.8 \text{ cm}^2$ (iii)  $2032.8 \text{ cm}^2$ 7. ₹338.80 8.  $1584 \,\mathrm{m}^2$ (ii) **₹**4400 9. (i)  $110 \text{ m}^2$  $59.4 \, \text{m}^2$ (ii)  $64.8 \text{ m}^2$ 11. 517.44 liters 12. h = 20 cm. 10. (i) EXERCISE - 10.3 1. h = 6 cm. h = 9 cm. 2.  $1232 \text{ cm}^{3}$ 3. (i) 7 cm. (ii)  $462 \,\mathrm{cm}^2$ 4.  $3394 \frac{2}{7} \text{ cm}^3$ 5.  $1018.3 \text{ cm}^3$ ₹7920 7. 6. 8.  $241.89 \text{ m}^2$  (approximate)

۲

۲

Answers 339

|           | Exercise -                                                                          | 10.                     | .4                                     |                |                                           |         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |      |
|-----------|-------------------------------------------------------------------------------------|-------------------------|----------------------------------------|----------------|-------------------------------------------|---------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|
| 1.<br>3.  | 154 cm <sup>2</sup> ; 179.67 c<br>616 cm <sup>2</sup>                               | 2m <sup>3</sup><br>4.   | 6930 cm <sup>2</sup>                   | 2.<br>5.       | 3054.86 cm <sup>3</sup><br>4 : 9 ; 8 : 27 |         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |      |
| 6.<br>10. | 942 cm <sup>2</sup><br>5 cm.                                                        | 7.<br>11.               | 1:4<br>303.19 cm <sup>3</sup>          | 8.<br>12.      | 121:100<br>No. of bottles =               | 9.<br>9 | 4.4 kg.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |      |
|           | Exercise -                                                                          | 11.                     | .1                                     |                |                                           |         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |      |
| 1.        | $19.5  \text{cm}^2$                                                                 | 2.                      | 131 cm <sup>2</sup>                    | 3.             | 36 cm <sup>2</sup>                        |         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |      |
|           | Exercise -                                                                          | 11.                     | .2                                     |                | . 0                                       |         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |      |
| 1.        | 8.57 cm                                                                             | 2.                      | 6.67 cm                                |                | 101                                       |         | A Contraction of the second se | A Ju |
|           | Exercise -                                                                          | 12.                     | 1                                      |                |                                           |         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |      |
| 1.        | <ul><li>(i) Radius</li><li>(iv) Chord</li><li>(vii) Minor arc</li></ul>             | (ii)<br>(v)<br>(viii)   | Diametre<br>Major arc<br>Minor segment | (iii)<br>(vi)  | Minor arc<br>Semi-circle                  |         | ÷.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |      |
| 2.        | <ul><li>(i) True</li><li>(v) False</li></ul>                                        | (ii)<br>(vi)            | True<br>True                           | (iii)<br>(vii) | True<br>True                              | (iv)    | False                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |      |
|           | Exercise -                                                                          | 12.                     | .2                                     |                |                                           |         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |      |
| 1.        | 90°                                                                                 | 2.                      | 48°, 84°                               |                |                                           |         | A CONTRACTOR                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | A Ju |
|           | Exercise -                                                                          | 12.                     | .4                                     |                |                                           |         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |      |
| 1.<br>6.  | 130°<br>6 cm.                                                                       | 2.<br>7.                | 40°<br>4 cm.                           | 3.<br>9.       | 60°, 120°<br>70°, 55°, 55°                | 5.      | 5 cm.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |      |
|           | Exercise 1                                                                          | 2.5                     |                                        |                |                                           |         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |      |
| 1.        | (i) $x^{\circ} = 75^{\circ}; y^{\circ}$<br>(ii) $x^{\circ} = 90^{\circ}; y^{\circ}$ | $= 75^{\circ}$<br>= 40° | )                                      | (ii)           | $x^{\circ} = 70^{\circ} ; y^{\circ} = 9$  | 95°     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | A Ju |
| 4.        | (a), (b), (e), (f)                                                                  | =Pos                    | ssible;                                | (c)=           | Not possible                              |         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |      |



### EXERCISE - 15.1

۲

1. (i) Always false. There are minimum 27 days in a month. Usually we have months of 30 and 31 days.



- (ii) Ambiguous. In a given year, Makara Sankranthi may or may not fall on friday.
- (iii) Ambiguous. At some time in winter, there can be a possibility that Hyderabad have 2°C temperature.
- (iv) True, to the known fact, so far we can say this but it can be changed if scientists find evidances of life on other planets.
- (v) Always false. Dogs cannot fly.
- (vi) Ambiguous. In a leap year, February has 29 days.
- 2. (i) False, the sum of the interior angles of a quadrilateral is  $360^{\circ}$ .
  - (ii) False eg. all negative numbers.
  - (iii) True- Rhombus has opposite side parallel to each other therefore rhombus is parallelogram.
  - (iv) True
  - (v) No, all square number can not be written as a sum of two odd numbers, eg. 9 = 4+5 (But we can write all square numbers as a sum of odd, eg. 9 = 1+3+5 numbers)

- 3. (i) Only natural number
  - (ii) Two time a natural number is always even.

[eg.  $2 \times \frac{5}{2} = 5$  (odd number)]

(iii) For any x > 1, 3x + 1 > 4 (iv) For any  $x \ge 0$ ,  $x^3 \ge 0$ 

۲

- (v) In an equilateral triangle, a median is also an angle bisector.
- 4. Take any negative number

$$x^2 = -2 \times -2 = 4$$
 (here  $x^2 < y^2$ )  
 $y^2 = -3 \times -3 = 9$ 

### **EXERCISE - 15.2**

- 1. (i) Jeevan is mortal
  - (ii) No, X could be any other state person lke marathi, gujarati, punjabi etc.
  - (iii) Gulag has red tongue.
  - (iv) All smarts need not be a president. Here we have given only that all presidents are smart. There could be some other people like some of the teachers, students who are smart too.

V

-2 > -3

х

- 2. You need to turn over B and 8. If 8 has an even number on the other side, then the rule has been broken. Similarly, if 8 has a consonant on the other side, then the rule has been broken.
- 3. The answer is 35.

۲

- Statement 'a' does not help because by following the other clues you can tell that you need more than on digit.
- Statement 'b' does not help because the one digit has to be larger than the tens-digit and the only multiple of 7 and 10 is 70 and 0 is smaller than the 7.
- Statement 'c' helps because being a multiple of 7 concels out a lot of numbers that could have been possibilities.
- Statement 'd' helps because being an odd number it too ancels out a lot of other possibilities.
- Statement 'e' does not help because the only multiple of 7 and 11 is 77 and the ones digit has to bigger than the tens digit.
- Statement 'f' does not help.
- Statement 'g' helps because by using it there will be few numbers left.
- Statement 'h' helps by using it only 35 remains.

So - 3, 4, 7 and 8 heops and they only are enough to get the number.

### EXERCISE - 15.3

- 1. (i) The possible three conjucture are:
  - a) The product of any three consecutive odd number is odd.
  - b) The product of any three consecutive odd number is divisible by 3.
  - c) The sum of all the digits present in product of three consecutive odd numbers is even.
  - (ii) The possible three conjuctures are:
    - a) The sum of any three consecutive number is always even.
    - b) The sum of any three consecutive number is always divided by 3.
    - c) The sum of any three consecutive number is always divided by 6.
- 4.  $111111^2 = 12345654321$
- $11111111^2 = 1234567654321$

Conjecture is true

6. Conjecture is false because you can not find a composite number for x = 41.

### **Exercise - 15.4**

- 1. (i) No (ii) Yes (iii) No
  - (iv) Yes (v) No
- 2. (i) A rectangle has equal angles but may not be a square.
  - (ii) For x = 2; y = 3, the statement is not true. (It is only true for x = 0; y = 1 or x = 0, y = 0)
  - (iii) For n = 11,  $2n^2 + 11 = 253$  which is not a prime number.
  - (iv) You can give any two triangles with the same angles but of different sides.
  - (v) A rhombus has equal sides but may not be a square.
- 3. Let *x* and *y* be two odd numbers. Then x = 2m + 1 for some natural number *m* and y = 2n + 1 for some natural number *n*.

x + y = 2 (m + n + 1). Therefore, x + y is divisible by 2 and is even.

4. Let x = 2m and y = 2n

Product xy = (2m)(2n)

= 4 *mn* 

6. (i) Let your original number be *n*. Then we are doing the following operations:

$$n \rightarrow 2n \rightarrow 2n + 9 \rightarrow +n = 3n + 9 \rightarrow \frac{3n + 9}{3} = n + 3 \rightarrow n + 3 + 4 = n + 7 \rightarrow n + 7 - n = 7$$

(ii) Note that  $7 \times 11 \times 13 = 1001$ . Take any three digit number say, *abc*. Then abc  $\times 1001 = abcabc$ . Therefore, the six digit number *abcabc* is divisible by 7, 11 and 13.





|                                                                                 | SYLLABUS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |  |
|---------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
| Number System (50 hrs<br>(i) Real numbers                                       | <ul> <li>(i) Real numbers</li> <li>Review of representation of natural numbers, integers, and rational numbers on the number line.</li> <li>Representation of terminating / non terminating recurring decimals, on the number line through successive magnification.</li> <li>Rational numbers as recurring / terminating decimals.</li> <li>Finding the square root of √2, √3, √5 correct to 6-decimal places by division method</li> <li>Examples of nonrecurring / non terminating decimalssuch as 1.01011011101111— <ol> <li>1.1211211121112—</li> <li>and √2, √3, √5 etc.</li> </ol> </li> <li>Existence of non-rational numbers (irrational numbers) such as √2, √3 and their representation on the number line.</li> <li>Existence of each real number on a number line by using Pythogorian result.</li> <li>Concept of a Surd.</li> </ul> |  |
| Algebra (20 hrs)<br>(i) Polynomials<br>(ii) Linear Equations i<br>TwoVariables· | <ul> <li>(i) Polynomials         <ul> <li>Definition of a polynomial in one variable, its coefficients, with examples and counter examples, its terms, zero polynomial.</li> <li>Constant, linear, quadratic, cubic polynomials; monomials, binomials, trinomials. Zero / roots of a polynomial / equation.</li> <li>State and motivate the Remainder Theorem with examples and analogy to positive integers (motivate).</li> <li>Statement and verification of the Factor Theorem. Factorization of ax<sup>2</sup> + bx + c, a ≠ 0 where a, b, c are real numbers and of cubic polynomials using the Factor Theorem.</li> </ul> </li> </ul>                                                                                                                                                                                                       |  |

344 IX-CLASS MATHEMATICS

|                                                                                                                                                                                                                                               | <ul><li>Recall of algebraic expressions and identities.</li><li>Further identities of the type:</li></ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                                                                                                                                                                                                                                               | $(x + y + z)^{2} \equiv x^{2} + y^{2} + x^{2} + 2xy + 2yz + 2zx$<br>$(x \pm y)^{3} \equiv x^{3} \pm y^{3} \pm 3xy (x \pm y)$<br>$x^{3} + y^{3} + z^{3} - 3xyz \equiv (x + y + z)(x^{2} + y^{2} + z^{2} - xy - yz - zx)$<br>$x^{3} + y^{3} \equiv (x + y)(x^{2} - xy + y^{2})$<br>$x^{3} - y^{3} \equiv (x - y)(x^{2} + xy + y^{2})$                                                                                                                                                                                                                                                                                                                                                              |
|                                                                                                                                                                                                                                               | and their use in factorization of polynomials. Simple                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|                                                                                                                                                                                                                                               | (ii) Linear Equations in TwoVariables                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|                                                                                                                                                                                                                                               | • Recall of linear equations in one variable.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|                                                                                                                                                                                                                                               | • Introduction to the equation in two variables.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
|                                                                                                                                                                                                                                               | • Solution of a linear equation in two variables                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
|                                                                                                                                                                                                                                               | • Graph of a linear equation in two variables.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|                                                                                                                                                                                                                                               | • Equations of lines parallel to x-axis and y-axis.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|                                                                                                                                                                                                                                               | • Equations of x-axis and y-axis.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| Coordinate geometry                                                                                                                                                                                                                           | Coordinate geometry                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| Coordinate geometry<br>(5 hrs)                                                                                                                                                                                                                | Coordinate geometry  Cartesian system                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| Coordinate geometry<br>(5 hrs)                                                                                                                                                                                                                | Coordinate geometry  Cartesian system  Plotting a point in a plane if its co-ordinates are given.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Coordinate geometry<br>(5 hrs)<br>Geometry (40 hrs)                                                                                                                                                                                           | Coordinate geometry  Cartesian system  Plotting a point in a plane if its co-ordinates are given.  (i) The Elements of Geometry                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| Coordinate geometry<br>(5 hrs)<br>Geometry (40 hrs)<br>(i) The Elements of<br>Geometry<br>(ii) Lines and Angles<br>(iii) Triangles<br>(iii) Triangles<br>(iv) Quadrilaterals<br>(v) Area<br>(vi) Circles<br>(vi) Geometrical<br>Constructions | <ul> <li>Coordinate geometry <ul> <li>Cartesian system</li> <li>Plotting a point in a plane if its co-ordinates are given.</li> </ul> </li> <li>(i) The Elements of Geometry <ul> <li>History – Euclid and geometry in India. Euclid's method of formalizing observed phenomenon onto rigorous mathematics with definitions, common / obvious notions, axioms / postulates, and theorems. The five postulates of Euclid. Equivalent varies of the fifth postulate. Showing the relationship between axiom and theorem.</li> <li>Given two distinct points, there exists one and only one line through them.</li> <li>(Prove) Two distinct lines cannot have more than one</li> </ul> </li> </ul> |



#### (ii) Lines and Angles

- (Motivate) If a ray stands on a line, then the sum of the two adjacent angles so formed is 180<sup>0</sup> and the converse.
- (Prove) If two lines intersect, the vertically opposite angles are equal.
- (Motivate) Results on corresponding angles, alternate angles, interior angles when a transversal intersects two parallel lines.
- (Motivate) Lines, which are parallel to given line, are parallel.
- (Prove) The sum of the angles of a triangle is  $180^{\circ}$ .
- (Motivate) If a side of a triangle is produced, the exterior angle so formed is equal to the sum of the two interior opposite angles.

#### (iii) Triangles

- (Motivate) Two triangles are congruent if any two sides and the included angle of one triangle is equal to any two sides and the included angle of the other triangle (SAS Congruence).
- (Prove) Two triangles are congruent if any two angles and the included side of one triangle is equal to any two angles and the included side of the other triangle (ASA Congruence).
- (Motivate) Two triangles are congruent if the three sides of one triangle are equal to three sides of the other triangle (SSS Congruence).
- (Motivate) Two right triangles are congruent if the hypotenuse and a side of one triangle are equal respectively to the hypotenuse and a side of the other triangle.
- (Prove) The angles opposite to equal sides of a triangle are equal.
- (Motivate) The sides opposite to equal angles of a triangle are equal.
- (Motivate) Triangle inequalities and relation between 'angle and facing side'; inequalities in a triangle.

 $( \bullet )$ 

346 IX-CLASS MATHEMATICS

|            | (iv) Quadrilaterals                                                                                                                                  |
|------------|------------------------------------------------------------------------------------------------------------------------------------------------------|
|            | • (Prove) The diagonal divides a parallelogram into two congruent triangles.                                                                         |
|            | • (Motivate) In a parallelogram opposite sides are equal and conversely.                                                                             |
|            | • (Motivate) In a parallelogram opposite angles are equal and conversely.                                                                            |
|            | • (Motivate) A quadrilateral is a parallelogram if one pair of its opposite sides are parallel and equal.                                            |
|            | • (Motivate) In a parallelogram, the diagonals bisect each other and conversely.                                                                     |
|            | • (Motivate) In a triangle, the line segment joining the mid<br>points of any two sides is parallel to the third side and<br>(motivate) its converse |
|            |                                                                                                                                                      |
|            | (v) Area                                                                                                                                             |
|            | Review conceptor area, area or planar regions.     Basell area of a restangle                                                                        |
| (C)        | <ul> <li>Figures on the same base and between the same norallels.</li> </ul>                                                                         |
|            | • (Prove) Parallelograms on the same base and between                                                                                                |
|            | the same parallels have the same area.                                                                                                               |
| <u>k</u> O | • (Motivate) Triangles on the same base and between the                                                                                              |
|            | same parallels are equal in area and its converse.                                                                                                   |
| 0          | (vi) Circles                                                                                                                                         |
| ~          | • Through examples, arrive at definitions of circle related                                                                                          |
|            | concepts radius, circumference, diameter, chord, arc,                                                                                                |
|            | subtended angle.                                                                                                                                     |
|            | • (Prove) Equal chords of a circle subtend equal angles at                                                                                           |
|            | the centre and (motivate) its converse.                                                                                                              |
|            | • (Motivate) The perpendicular from the centre of a circle                                                                                           |
|            | through the centre of circle to bisect a chord is                                                                                                    |
|            | perpendicular to the chord.                                                                                                                          |
|            |                                                                                                                                                      |

### 

|                                                                              | <ul> <li>(Motivate) There is one and only one circle passing through three given non-collinear points.</li> <li>(Motivate) Equal chords of a circle (or of congruent circles) are equidistant from the centre (s) and conversely.</li> <li>(Prove) The angle subtended by am arc at the centre is double the angle subtended by it at any point on the remaining part of the circle.</li> <li>(Motivate) Angles in the same segment of a circle are equal.</li> <li>(Motivate) Aline segment joining any two points subtends equal angles at two other points lying on the same side of it then the four points are concyclic.</li> <li>(Motivate) The sum of the either pair of the opposite angles of a cyclic quadrilateral is 180<sup>0</sup> and its converse.</li> </ul> |
|------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| C                                                                            | <ul> <li>(vii) Constructions</li> <li>Construction of a triangle given its base, sum / difference of the other two sides and one base angles.</li> <li>Construction of a triangle when its perimeter and base angles are given.</li> <li>Construct a circle segment containing given chord and given an angle.</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| Mensuration (15 hrs)<br>(i) Surface Areas and<br>Volumes                     | <ul> <li>(i) Surface Areas and Volumes</li> <li>Revision of surface area and volume of cube, cuboid.</li> <li>Surface areas of cylinder, cone, sphere, hemi sphere.</li> <li>Volume of cylinder, cone, sphere. (including hemi spheres) and right circular cylinders/ cones.</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| Statistics and Probability<br>(15 hrs)<br>(i) Statistics<br>(ii) Probability | <ul> <li>(i) Statistics <ul> <li>Revision of ungrouped and grouped frequency distributions.</li> <li>Mean, Median and Mode of ungrouped frequency distribution (weighted scores).</li> </ul> </li> <li>(ii) Probability <ul> <li>Feel of probability using data through experiments. Notion of chance in events like tossing coins, dice etc.</li> <li>Tabulating and acounting accurrences of 1 through 6 in a</li> </ul> </li> </ul>                                                                                                                                                                                                                                                                                                                                         |
|                                                                              | • Tabulating and counting occurrences of 1 through 6 in a number of throws                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |

348 IX-CLASS MATHEMATICS

|                                         | • Comparing the observation with that for a coin. Observing strings of throws, notion of randomness.                                                                                               |
|-----------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                                         | • Consolidating and generalizing the notion of chance in eventslike tossing coins, dice etc.                                                                                                       |
|                                         | • Visual representation of frequency outcomes of repeated throws of the same kind of coins or dice.                                                                                                |
|                                         | • Throwing a large number of identical dice/coins together<br>and aggregating the result of the throws to get large number<br>of individual events.                                                |
|                                         | • Observing the aggregating numbers over a large number<br>of repeated events.Comparing with the data fora coin.<br>Observing strings of throws, notion of randomness.                             |
| <b>Proofs in Mathematics</b>            | (i) Proofs in Mathematics                                                                                                                                                                          |
|                                         |                                                                                                                                                                                                    |
| (5 hrs)                                 | Mathematical statements, verifying them.                                                                                                                                                           |
| (5 hrs)<br>(i) Proofs in                | <ul><li>Mathematical statements, verifying them.</li><li>Reasoning Mathematics, deductive reasoning</li></ul>                                                                                      |
| (5 hrs)<br>(i) Proofs in<br>Mathematics | <ul> <li>Mathematical statements, verifying them.</li> <li>Reasoning Mathematics, deductive reasoning</li> <li>Theorems, conjectures and axioms.</li> </ul>                                        |
| (5 hrs)<br>(i) Proofs in<br>Mathematics | <ul> <li>Mathematical statements, verifying them.</li> <li>Reasoning Mathematics, deductive reasoning</li> <li>Theorems, conjectures and axioms.</li> <li>What is a mathematical proof.</li> </ul> |

# **Academic Standards**

۲

Academic standards are clear statements about what students must know and be able to do. The following are categories on the basis of which we lay down academic standards

#### **Problem Solving**

Using concepts and procedures to solve mathematical problems

#### (a) Kinds of problems:

Problems can take various forms- puzzles, word problems, pictorial problems, procedural problems, reading data, tables, graphs etc.

#### (b) Problem Solving

- Reads problems
- Identifies all pieces of information/data
- Separates relevant pieces of information
- Understanding what concept is involved
- Recalling of (synthesis of) concerned procedures, formulae etc.
- Selection of procedure
- Solving the problem
- Verification of answers of raiders, problem based theorems.

#### (c) Complexity:

۲

The complexity of a problem is dependent on

- Making connections( as defined in the connections section)
- Number of steps
- Number of operations
- Context unraveling
- Nature of procedures

#### **Reasoning Proof**

- Reasoning between various steps (involved invariably conjuncture).
- Understanding and making mathematical generalizations and conjectures

( )

• Understands and justifies procedures · Examining logical arguments.

- Understanding the notion of proof
- Uses inductive and deductive logic
- Testing mathematical conjectures

#### Communication

• Writing and reading, expressing mathematical notations (verbal and symbolic forms)

۲

Ex: 3 + 4 = 7, 3 < 5,  $n_1 + n_2 = n_2 + n_1$  Sum of angles  $= 180^{\circ}$ 

- Creating mathematical expressions
- Explaining mathematical ideas in her own words like- a square is closed figure having four equal sides and all equal angles
- Explaining mathematical procedures like adding two digit numbers involves first adding the digits in the units place and then adding the digits at the tens place/keeping in mind carry over.
- Explaining mathematical logic

#### Connections

۲

- Connecting concepts within a mathematical domain- for example relating adding to multiplication, parts of a whole to a ratio, to division. Patterns and symmetry, measurements and space
- Making connections with daily life
- Connecting mathematics to different subjects
- Connecting concepts of different mathematical domains like data handling and arithmetic or arithmetic and space
- Connecting concepts to multiple procedures

#### **Visualization & Representation**

- Interprets and reads data in a table, number line, pictograph, bar graph, 2-D figures, 3-D figures, pictures
- Making tables, number line, pictograph, bar graph, pictures.
- Mathematical symbols and figures.