

AP BOARD INTERMEDIARY 1^{ST} YEAR PREVIOUS YEAR PAPER MATHEMATICS 1(A) - 2017

Total No. of Questions – 24 Regd.
Total No. of Printed Pages - 4 No.

Part – III MATHEMATICS, Paper – I(A) (English Version)

Time: 3 Hours [Max. Marks: 75

Note: This question paper consists of three Sections - A, B and C.

 $10 \times 2 = 26$

- I. Very Short Answer Type questions:
 - (i) Answer all questions.
 - (ii) Each question carries two marks.
 - 1. If $A = \{-2, -1, 0, 1, 2\}$, and $f: A \rightarrow B$ is a surjection defined by $f(x) = x^2 + x + 1$, then find B.
 - 2. Find the domain of the real valued function $f(x) = \sqrt{9 x^2}$.
 - 3. Construct a 3×2 matrix whose elements are defined by $a_{ij} = \frac{1}{2} |i 3j|$.
 - 4. If $A = \begin{bmatrix} 2 & 4 \\ -1 & k \end{bmatrix}$ and $A^2 = 0$, then find the value of k.
 - 5. If α , β , γ are the angles made by the vector $3\vec{i} 6\vec{j} + 2\vec{k}$ with the positive directions of the co-ordinate axes, then find $\cos \alpha$, $\cos \beta$, $\cos \gamma$.

AP BOARD INTERMEDIARY 1ST YEAR PREVIOUS YEAR PAPER MATHEMATICS 1(A) – 2017

- 6. Find the vector equation of the plane passing through the points $\vec{i} = 2\vec{j} + 5\vec{k}$, $-5\vec{j} \vec{k}$ and $-3\vec{i} + 5\vec{j}$.
- 7. If $\vec{a} = \vec{i} \vec{j} \vec{k}$ and $\vec{b} = 2\vec{i} 3\vec{j} + \vec{k}$, then find the projection vector of \vec{b} on \vec{a} .
- 8. If $\cos \theta = t$ (0 < t < 1) and θ does not lies in the first quadrant, find the values $\sin \theta$ and $\tan \theta$.
- 9. Find the maximum and minimum values of $13 \cos x + 3\sqrt{3} \sin x 4$.
- 10. Show that $\tan h^{-1} \left(\frac{1}{2}\right) = \frac{1}{2} \log_e 3$.

SECTION - B

 $5 \times 4 = 20$

- II. Short Answer Type questions:
 - (i) Answer any five questions.
 - (ii) Each question carries four marks.
 - If A is a non-singular matrix, then prove that $A^{-1} = \frac{\text{adj } A}{|A|}$.
 - 12. If \vec{a} , \vec{b} , \vec{c} are non-coplanar vectors, then prove that the four points $-\vec{a} + 4\vec{b} 3\vec{c}$, $3\vec{a} + 2\vec{b} 5\vec{c}$, $-3\vec{a} + 8\vec{b} 5\vec{c}$ and $-3\vec{a} + 2\vec{b} + \vec{c}$ are coplanar.

AP BOARD INTERMEDIARY 1ST YEAR PREVIOUS YEAR PAPER MATHEMATICS 1(A) – 2017

- 13. Find the unit vector perpendicular to the plane and passing through the points (1, 2, 3), (2, -1, 1) and (1, 2, -4).
- 14. Prove that $\sqrt{3}$ cosec 20° sec 20° = 4.
- 15. Solve the equation $1 + \sin^2\theta = 3 \sin \theta \cos \theta$.
- 16. Show that $\tan^{-1}\frac{1}{2} + \tan^{-1}\frac{1}{5} + \tan^{-1}\frac{1}{8} = \frac{\pi}{4}$.
- 17. If $\cot \frac{A}{2}$: $\cot \frac{B}{2}$: $\cot \frac{C}{2} = 3:5:7$, then show that a:b:c=6:5:4 (In $\triangle ABC$)

$$5 \times 7 = 35$$

III. Long Answer Type questions:

- (i) Answer any five questions.
- (ii) Each question carries seven marks.
- 18. If $f: A \to B$ be a bijection, then prove that (i) $f \circ f^{-1} = \mathbf{1}_B$ (ii) $f^{-1} \circ f = \mathbf{1}_A$.
- 19. Show that $49^n + 16n 1$ is divisible by 64 for all positive integers n.

20. Show that
$$\begin{vmatrix} 1 & a^2 & a^3 \\ 1 & b^2 & b^3 \\ 1 & c^2 & c^3 \end{vmatrix} = (a - b) (b - c) (c - a) (ab + bc + ca).$$

21. Solve x + y + z = 9, 2x + 5y + 7z = 52 and 2x + y - z = 0 by using matrix inversion method.

AP BOARD INTERMEDIARY 1^{ST} YEAR PREVIOUS YEAR PAPER MATHEMATICS 1(A)-2017

- 22. If A = (1, -2, -1), B = (4, 0, -3), C = (1, 2, -1) and D = (2, -4, -5), then find the shortest distance between the lines \overrightarrow{AB} and \overrightarrow{CD} .
- 23. If $A + B + C = 180^{\circ}$, then show that $\cos 2A + \cos 2B + \cos 2C = -4 \cos A \cdot \cos B \cdot \cos C 1.$
- 24. If $r_1 = 8$, $r_2 = 12$, $r_3 = 24$, then find the values of a, b, c (in $\triangle ABC$).