266

_	_	
	T	1
(
/		_

Total No. of Questions-24

Total No. of Printed Pages-4

Regd. No.

Part III

MATHEMATICS

Paper II(A)

(English Version)

Time: 3 Hours Max. Marks: 75

Note: This question paper consists of THREE sections A, B and C.

SECTION A

 $10 \times 2 = 20$

- I. Very Short Answer Type Questions
 - (i) Answer ALL questions.
 - (ii) Each question carries TWO marks.
- 1. Find the complex conjugate of (2 + 5i) (-4 + 6i).
- 2. If $x + iy = \operatorname{cis} \alpha \cdot \operatorname{cis} \beta$, then find the value of $x^2 + y^2$.
- 3. If ABC are angles of a triangle such that $x = \operatorname{cis} A$, $y = \operatorname{cis} B$, $z = \operatorname{cis} C$, then find the value of xyz.
- 4. For what values of x the expression $x^2 5x 14$ is positive?
- 5. If 1, 1, α are the roots of $x^3 6x^2 + 9x 4 = 0$, then find α .
- 6. Find the number of ways of arranging the letter of the word "MATHEMATICS".
- 7. Find the value of ${}^{10}\text{C}_5$ + ${}^{2.10}\text{C}_4$ + ${}^{10}\text{C}_3$.
- 8. Find the 8th term of $\left(1-\frac{5x}{2}\right)^{-3/5}$.
- 9. Find the mean deviation about the mean for the following data:

3, 6, 10, 4, 9, 10.

(1)

10. If the mean and variance of a binomial variable X are 2.4 and 1.44 respectively, find the parameters of the distribution X. (Binomial).

SECTION B

 $5 \times 4 = 20$

- II. Short Answer Type Questions :
 - (i) Answer ANY FIVE questions.
 - (ii) Each question carries FOUR marks.
- 11. If $(x iy)^{1/3} = a ib$, then show that :

$$\frac{x}{a} + \frac{y}{b} = 4(a^2 - b^2).$$

- 12. Find the maximum value of the function $\frac{x^2 + 14x + 9}{x^2 + 2x + 3}$ over R.
- 13. Find the sum of all 4-digit numbers that can be formed using the digits 1, 3, 5, 7, 9.
- 14. Prove that:

$$^{25}C_4 + \sum_{r=0}^{4} ^{(29-r)}C_3 = ^{30}C_4$$

- 15. Resolve $\frac{x^2 + 5x + 7}{(x-3)^3}$ into partial fractions.
- 16. A and B are events with P(A) = 0.5, P(B) = 0.4 and $P(A \cap B) = 0.3$. Find the probability that:
 - (i) A does not occur
 - (ii) Neither A nor B occurs.
- 17. A problem in calculus is given to two students A and B whose chances of solving it are $\frac{1}{3}$ and $\frac{1}{4}$ respectively. Find the probability of the problem being solved if both of them try independently.

SECTION C

 $5 \times 7 = 35$

- III. Long Answer Type Questions:
 - (i) Answer ANY FIVE questions.
 - (ii) Each question carries SEVEN marks.
- 18. If n is a positive integer, show that:

$$(P + iQ)^{\frac{1}{n}} + (P - iQ)^{\frac{1}{n}} = 2(P^2 + Q^2)^{\frac{1}{2n}} \cdot \cos \left[\frac{1}{n} \tan^{-1} \frac{Q}{P}\right].$$

19. Solve the equation:

$$6x^6 - 25x^5 + 31x^4 - 31x^2 + 25x - 6 = 0.$$

20. For $r = 0, 1, 2, \dots, n$, prove that :

$${\rm C_0C_r}+{\rm C_1C_{r+1}}+{\rm C_2C_{r+2}}+.......+{\rm C_{n-r}}$$
 . ${\rm C_n}={}^{2n}{\rm C_{(n+r)}}$ and hence deduce that :

(i)
$$C_0^2 + C_1^2 + C_2^2 + \dots + C_n^2 = {}^{2n}C_n$$

(ii)
$$C_0C_1 + C_1C_2 + C_2C_3 + \dots + C_{n-1} \cdot C_n = {}^{2n}C_{n+1}$$

21. Find the sum to infinite terms of the series:

$$\frac{7}{5} \left(1 + \frac{1}{10^2} + \frac{1.3}{1.2} \cdot \frac{1}{10^4} + \frac{1.3.5}{1.2.3} \cdot \frac{1}{10^6} + \dots \right)$$

22. Find the mean deviation from the mean of the following data, using the step deviation method:

Marks	No. of Students
0—10	6
10—20	5
20-30	8
30—40	15
40—50	7
50—60	6
6070	3

- 23. (a) State and prove Addition theorem on probability.
 - (b) Find the probability of drawing an ace or a spade from a well shuffled pack of 52.
- 24. If X is a random variable with probability distribution $P(X = k) = \frac{(k+1)C}{2^k}$, $k = 0, 1, 2, 3, \dots$, then find C.