293

Total No. of Questions-24
Total No. of Printed Pages-4
Regd. No.

Part III

MATHEMATICS

Paper II(B)
(English Version)
Time: 3 Hours
Max. Marks : 75
Note :-This question paper consists of THREE sections A, B and C.

SECTION A

$10 \times 2=20$
I. Very Short Answer Type Questions
(i) Attempt ALL questions.
(ii) Each question carries TWO marks.

1. Obtain the parametric equation of circle $(x-3)^{2}+(y-4)^{2}=8^{2}$.
2. Find the equation of the normal at $\mathrm{P}(3,5)$ of the circle $\mathrm{S} \equiv x^{2}+y^{2}-$ $10 x-2 y+6$.
3. If $x^{2}+y^{2}-5 x-14 y-34=0, x^{2}+y^{2}+2 x+4 y+k=0$ circles are orthogonal, then find ' k '.
4. Find the value of k if the line $2 y=5 x+k$ is a tangent to the parabola $y^{2}=6 x$.
5. Find the eccentricity and length of the latus rectum of the hyperbola $16 y^{2}-9 x^{2}=144$.
6. Evaluate :

$$
\int \frac{\sin \left(\tan ^{-1} x\right)}{1+x^{2}} d x, x \in \mathbf{R}
$$

7. Evaluate

$$
\int e^{x}\left[\frac{1+x \log x}{x}\right] d x \text { on }(0, \infty)
$$

8. Evaluate ;

$$
\int_{0}^{\pi} \sqrt{2+2 \cos \theta} d \theta
$$

9. Find :

$$
\int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} \sin ^{2} x \cos ^{4} x d x
$$

10. Find the order and degree of :.

$$
x^{1 / 2}\left[\frac{d^{2} y}{d x^{2}}\right]^{1 / 3}+x \frac{d y}{d x}+y=0
$$

SECTION B
$5 \times 4=20$
II. Short Answer Type Questions :
(i) Attempt ANY FIVE questions.
(ii) Each question carries FOUR marks.
11. Find the length of the chord intercepted by the circle $x^{2}+y^{2}-x+3 y$
$-22=0$ on the line $y=x-3$.
12. Find the radical centre of the three circles :
(i) $x^{2}+y^{2}-4 x-6 y+5=0$
(ii) $x^{2}+y^{2}-2 x-4 y-1=0$
(iii) $x^{2}+y^{2}-6 x-2 y=0$.
13. Find the equation of the ellipse in the standard form whose distance between foci is 2 and the length of latus rectum is $\frac{15}{2}$.
14. If a tangent to the ellipse $\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}=1(a>b)$ meets. its major axis and minor axis at M and N respectively, then prove that $\frac{a^{2}}{(\mathrm{CM})^{2}}+\frac{b^{2}}{(\mathrm{CN})^{2}}=1$ where C is the centre of the ellipse.
15. Find the centre, foci, eccentricity, equation of the directrices, length of the latus rectum of the hyperbola $x^{2}-4 y^{2}=4$.
16. Find the area bounded by the curves $y=\sin x$ and $y=\cos x$ between any two consecutive points of intersection.
17. Solve :

$$
\left(1+x^{2}\right) \frac{d y}{d x}+y=e^{\tan ^{-1}} \cdot x
$$

SECTION C
$5 \times 7=35$
III. Long Answer Type Questions :
(i) Attempt ANY FIVE questions,
(ii) Each question carries SEVEN marks.
18. Find the equation of circle passing through the three points $(3,4),(3,2)$, (1, 4).
19. Find the direct common tangents of the circles $x^{2}+y^{2}+22 x-4 y-100$ $=0$ and $x^{2}+y^{2}-22 x+4 y+100=0$.
20. Prove that the area of the triangle formed by the tangents at $\left(x_{1}, y_{1}\right)$, $\left(x_{2}, y_{2}\right)$ and $\left(x_{3}, y_{3}\right)$ to the parabola $y^{2}=4 a x(a>0)$ is $\left.\frac{1}{16 a} \right\rvert\,\left(y_{1}-y_{2}\right)$ $\left(y_{2}-y_{3}\right)\left(y_{3}-y_{1}\right) \mid$ sq. units.
21. Evaluate :

$$
\int \frac{2 \cos x+3 \sin x}{4 \cos x+5 \sin x} d x
$$

22. Obtain reduction formula for $\mathrm{I}_{n}=\int \tan ^{n} x d x, n$ being a positive integer $n \geq 2$ and deduce the value of $\int \tan ^{6} x d x$.
23. Show that :

$$
\int_{0}^{\frac{\pi}{2}} \frac{x}{\sin x+\cos x} d x=\frac{\pi}{2 \sqrt{2}} \log (\sqrt{2}+1)
$$

24. Solve :

$$
\left(x^{2} y-2 x y^{2}\right) d x=\left(x^{3}-3 x^{2} y\right) d y
$$

