

Chapter 4 - Energy

A. Objective Questions

1. Write true or false for each statement
(a) A coolie does no work against the force of gravity while carrying a luggage on a road
Solution: True.
(b) The energy stored in water of a dam is the kinetic energy.
Solution: False.
(c) The energy of a flying kite is kinetic energy.
Solution: True.
(d) Work done by a boy depends on the time in which he does work.
Solution: False.
(e) Power spent by a body depends on the time for which it does work.
Solution: True.
Question 2.

Fill in the blanks:

- (a) Work is said to be done by a forte only when the body moves.
- (b) Work done = Force x distance moved in direction of force.
- (c) The energy of a body is its capacity to do work.
- (d) The S.I. unit of energy is joule.

- (e) The potential energy is due to its <u>state rest of position</u> and kinetic energy of body is due to its <u>state of</u> motion.
- (f) Gravitational potential energy $U = mass \times force$ of gravity on unit mass $\times height$.
- (g) Kinetic energy = $\frac{1}{2}$ × mass × (speed)²
- (h) Power P = work done/time taken.
- (i) The S. I. unit of power is watt
- (j) I.H.P. = **746 W**

Question 3.

Match the following:

Column A Column B

- (a) A stone at a height (i) power
- (b) A moving ball (ii) joule
- (c) Energy (iii) work done in 1s
- (d) Power (iv) potential energy
- (e) watt (v) kinetic energy

Solution:

Column A Column B

- (a) A stone at a height (iv) potential energy
- (b) A moving ball (v) kinetic energy
- (c) Energy (ii) joule
- (d) Power (iii) work done in 1s
- (e) watt (i) power

Question 4.

Select the correct alternative

(a) The S.I. unit of work is
1. second
2. metre
3. joule
4. newton
Solution: 3. joule
(b) No work is done by a force if the body
1. moves in direction of force
2. does not move
3. moves in opposite direction
4. none of the these
Solution: 2. does not move
(c) Two coolies A and B do some work in time 1 minute and 2 minute respectively. The power spent is
1. same by both coolies
2. is more by coolie A than by B
3. is less by coolie A than by B
4. nothing can be said.
Solution: 2. is more by coolie A than by B
(d) The expression of power P is
1. P=mgh
2. $P=P=1/2MV^2$

3. P=F×d
4. $P=F\times d/t$
Solution: 4. P=F×d/t
(e) 1 H.P is equal to
1. 1 W
2. 1 J
3. 746 J
4. 746 W
Solution: 4. 746 W
(f) When a boy doubles his speed, his kinetic energy becomes
1. half
2. double
3. four times
4. no change
Solution: 3. four times
(g) A boy lifts a luggage from height 2 m to 4 m. The potential energy will become
1. half
2. double
3. one-third
4. one-fourth
Solution: 2. double