SAMPLE PAPERS

JEE Advanced
Time: 3 Hours

Topics Covered:

Physics : $11^{\text {th }} \& 12^{\text {th }}$ Complete Syllabus
Chemistry : $11^{\text {th }} \& 12^{\text {th }}$ Complete Syllabus
Mathematics : $11^{\text {th }} \& 12^{\text {th }}$ Complete Syllabus

Read the Important Instructions Carefully:

1. You are allowed to take away the Question Paper at the end of the examination.
2. Do not tamper with or mutilate the ORS. Do not use the OMR for rough work.
3. Use a BLACK BALL POINT PEN to darken the bubbles on the ORS.
4. The OMR is machine-gradable. Ensure that the bubbles are darken in the correct way.
5. Darken the bubbles ONLY IF you are sure of the answer. There is NO WAY to erase or "un-darken" a darkened bubble.

PART-I : PHYSICS

SECTION-1 (MAXIMUM MARKS : 28)

> This section contains SEVEN questions
> Each question has FOUR options $(A),(B),(C)$ and (D). ONE OR MORE THAN ONE of these four option(s) is(are) correct
> For each question, darken the bubble(s) corresponding to all the correct option(s) in the ORS
> For each question, marks will be awarded in one of the following categories:

Full Marks	$:$	+4	If only the bubble(s) corresponding to all the correct option(s) is(are) darkened
Partial Marks	$:$	+1	For darkening a bubble corresponding to each correct option, provided NO incorrect option is darkened
Zero Marks	$:$	0	If none of the bubbles is darkened
Negative Marks	$:$	-2	In all other cases

$>$ For example, if $(A),(C)$ and (D) are all the correct options for a question, darkening all these three will results in +4 marks; darkening only (A) and (D) will result in +2 marks; and darkening (A) and (B) results in -2 marks, as a wrong option is also darkened

1. The equations: $y_{1}=a \sin (\omega t-k x)$ and $y_{2}=-a \sin (\omega t+k x)$ are for two waves, then the waves will:
(A) Move in the same direction with equal amplitude
(B) Move in opposite direction with the same speed and the same frequency
(C) Produce beats by superposition
(D) Produce stationary waves by superposition
2. Choose the correct statement(s):

(A) $i_{1}=4 A$, towards left
(B) $i_{1}=4 \mathrm{~A}$, towards right
(C) $i_{2}=2 A$, down
(D) $i_{3}=6 \mathrm{~A}$
3. An object O is placed at a point distance x_{1} from the focus F_{1} of a converging lens of focal length f and its image I is formed at distance x_{2} from the focus F_{2} as shown in figure, then:

(A) magnitude of transverse magnification is $\left|\frac{f}{x_{1}}\right|$
(B) magnitude of transverse magnification is $\left|\frac{\mathrm{x}_{2}}{\mathrm{f}}\right|$
(C) $x_{1} \times x_{2}=f^{2}$
(D) $x_{1}+x_{2} \geq 2 f$
4. The rope shown at an instant is carrying a wave travelling towards right, created by a source vibrating at frequency n Hz . Here $\mathrm{a}, \mathrm{b}, \mathrm{c}, \mathrm{d}$ and e are x co-ordinates. Choose the correct statement(s)

(A) The speed of the wave is $4 n \times(b-a)$
(B) The particle at $x=a$ will be in the same phase as particle at $x=d$ after $\frac{4}{3 n} \mathrm{sec}$.
(C) The phase difference between particles at $\mathrm{x}=\mathrm{b}$ and $\mathrm{x}=\mathrm{e}$ is $\frac{3 \pi}{2}$
(D) Particles at $x=a$ and $x=e$ vibrate in same phase
5. Lenses are constructed by a material of refractive index 1.50. Themagnitude of the radii of curvature are 20 cm and 30 cm . Choose the focal lengths of all the possible lenses with the above specifications:
(A) +24 cm
(B) -24 cm
(C) +120 cm
(D) -120 cm
6. For the situation shown in the figure ($r \gg$ length of dipole) mark out the correct statement(s).

(A) Force acting on the dipole is zero
(B) Force acting on the dipole is approximately $\frac{\mathrm{pQ}}{4 \pi \varepsilon_{0} \mathrm{r}^{3}}$
(C) Torque acting on the dipole is $\frac{\mathrm{pQ}}{4 \pi \varepsilon_{0} \mathrm{r}^{2}}$ in clockwise direction
(D) Torque acting on the dipole is $\frac{\mathrm{pQ}}{4 \pi \varepsilon_{0} \mathrm{r}^{2}}$ in anti-clockwise direction
7. A long U tube is filled with a liquid of density ' ρ ' such that length of the tube above liquid is ' a ' in both arm. One side of tube (right arm) is sealed and the tube is inverted (' P_{0} ' atmospheric pressure).

(A) Liquid will spill out the left tube if $a<\frac{P_{0}}{4 \rho g}$
(B) Liquid will not spill out the left tube for any value of ' a '
(C) Liquid surface in left arm will not move if $a=\frac{P_{0}}{2 \rho g}$
(D) Liquid surface in right arm will come down

SECTION-2 (MAXIMUM MARKS : 15)

> This section contains FIVE questions
> The answer to each question is a SINGLE DIGIT INTEGER ranging 0 to 9, both inclusive
> For each question, darken the bubble corresponding to the correct integer in the ORS
> For each question, marks will be awarded in one of the following categories:

Full Marks	$:$	+3	If only the bubble corresponding to the correct answer is darkened
Zero Marks	$:$	0	If all other cases

8. A stretched rope having linear mass density $5 \times 10^{-2} \mathrm{kgm}^{-1}$ is under a tension of 80 N . Power (in Watts) $=648 \mathrm{n} \pi^{2} \times 10^{-2}$ has to be supplied to the rope to generate harmonic waves at a frequency of 60 Hz and an amplitude of 6 cm . Find the value of n.
9. If the optical axis of convex and concave lenses are separated by a distance 5 mm shown in the figure. If the coordinates of final image formed by the combination of lenses is (x, y) when the parallel beam of light is incident on convex lens. If origin is at the optical centre of convex lens, find $\frac{x}{5 y}$.

10. A boy is moving along a circular track in anticlockwise sense. A girl moves along a regular hexagonal path. The centres of hexagonal track and a circular track coincide as shown in the figure. The girl and the boy starts from point B and A such that $P, A \& B$ always lie on the same radial line. The velocity of boy is $1 \mathrm{~m} / \mathrm{s}$. Given side length of regular hexagon is " a " and radius of circular path is $\frac{\mathrm{a}}{\sqrt{3}}$. Find the speed of Girl at point C .

11. An RLC circuit with $R=100 \Omega$ is connected across ac source of 200 V and angular frequency $300 \mathrm{rad} / \mathrm{s}$. When only capacitance is removed, the current lags behind voltage by 60°. When only inductance is removed, the current leads the voltage by 60°. The current in the circuit is: (in Ampere)
12. As shown in the figure, Two Loudspeakers are located at point A and B. Both are vibrating in phase at a frequency f and P_{1} and P_{2} are their respective power outputs. Point C lies on a line joining the two loudspeakers at a distance of d_{1} from A and d_{2} from B. With both speakers switched on what is the intensity (in W / m^{2}) at point C. Take velocity of sound $=300 \mathrm{~ms}^{-1}$, frequency $f=100 \mathrm{~Hz}$. $d_{1}=1 \mathrm{~m}$ and $d_{2}=1.5 \mathrm{~m} . P_{1}=8 \pi$ watts and $P_{2}=18 \pi$ watts. Also, assume that loudspeakers behave like point isotropic sources. (emit sound uniformly in all directions).

SECTION-3 (MAXIMUM MARKS : 18)

> This section contains SIX questions of matching type
> This section contains TWO tables (each having 3 columns and 4 rows)
> Based on each table, there are THREE questions
> Each question has FOUR options (A), (B), (C), and (D). ONLY ONE of these four options is correct
> For each question, darken the bubble corresponding to the correct option in the ORS
> For each question, marks will be awarded in one of the following categories:

Full Marks	$:$	+3	If only the bubble corresponding to the correct option is darkened
Zero Marks	$:$	0	If none of the bubbles is darkened
Negative Marks	$:$	-1	In all other cases

Answer Q.13, Q. 14 and Q. 15 by appropriately matching the information given in the three columns of the following table.

A charged particle is projected with velocity $\vec{v}=u \hat{i}$ from the origin, in a region having electric field $\overrightarrow{\mathrm{E}}$ and magnetic field \vec{B} both. Value of \vec{B} and \vec{E} are given in column 1 and column 2 respectively and path of the particle is given in column 3.

Column 1 (Magnetic field)		Column 2 (Electric field)		Column 3 (Path of particle)	
(I)	$\overrightarrow{\mathrm{B}}=0$	(i)	$\overrightarrow{\mathrm{E}}=0$	(P)	Circular path
(II)	$\overrightarrow{\mathrm{B}}=\mathrm{B}_{0} \hat{\mathrm{i}}+\mathrm{B}_{0} \hat{\mathrm{j}}$	(ii)	$\overrightarrow{\mathrm{E}}=\mathrm{E}_{0} \hat{\mathrm{i}}$	(Q)	Helical path
(III)	$\overrightarrow{\mathrm{B}}=\mathrm{B}_{0} \hat{\mathrm{j}}+\mathrm{B}_{0} \hat{\mathrm{k}}$	(iii)	$\overrightarrow{\mathrm{E}}=\mathrm{B}_{0} \mathrm{u}(\hat{\mathrm{j}}-\hat{\mathrm{k}})$	(R)	Cycloid
(IV)	$\overrightarrow{\mathrm{B}}=\mathrm{B}_{0} \hat{\mathrm{k}}$	(iv)	$\overrightarrow{\mathrm{E}}=\mathrm{E}_{0} \hat{\mathrm{k}}$	(S)	Straight line

13. In which of the following combination particle moves with uniform speed?
(A) (I) (i) (P)
(B) (II) (ii) (S)
(C) (III) (iii) (S)
(D) None of these
14. In which of the following combination particle moves with non-uniform speed?
(A) (IV) (i) (P)
(B) (III) (i) (P)
(C) (IV) (iv) (R)
(D) (IV) (iv) (Q)
15. Which of the following combination is correct?
(A) (II) (ii) (R)
(B) (II) (i) (Q)
(C) (IV) (i) (S)
(D) None of these

Answer Q.16, Q. 17 and Q. 18 by appropriately matching the information given in the three columns of the following

 table.In below figure two blocks are placed on fixed inclined plane and friction coefficient between the blocks and inclined plane are μ_{1} and μ_{2} respectively as shown in figure. Value of μ_{1} and μ_{2} are given in column 1 and value of a_{1} and a_{2} are given in column 2 and column 3 respectively.

Column 1	Column 2	Column 3			
(I)	$\mu_{1}=0.8$ $\mu_{2}=0.8$	(i)	$\mathrm{a}_{1}=2 \mathrm{~m} / \mathrm{s}^{2}$	(P)	$\mathrm{a}_{2}=2 \mathrm{~m} / \mathrm{s}^{2}$
(II)	$\mu_{1}=0.5$ $\mu_{2}=0.5$	(ii)	$\mathrm{a}_{1}=0.8 \mathrm{~m} / \mathrm{s}^{2}$	(Q)	$\mathrm{a}_{2}=0.8 \mathrm{~m} / \mathrm{s}^{2}$
(III)	$\mu_{1}=0.5$ $\mu_{2}=0.2$	(iii)	$\mathrm{a}_{1}=4.4 \mathrm{~m} / \mathrm{s}^{2}$	(R)	$\mathrm{a}_{2}=4.4 \mathrm{~m} / \mathrm{s}^{2}$
(IV)	$\mu_{1}=0.5$ $\mu_{2}=0.8$	(iv)	$\mathrm{a}_{1}=0$	(S)	$\mathrm{a}_{2}=0$

16. In which of the following combination both blocks will move together and normal between them is zero?
(A) (I) (ii) (P)
(B) (II) (i) (P)
(C) (I) (i) (P)
(D) (IV) (ii) (Q)
17. In which of the following combination both blocks will move together and normal force between them is non-zero?
(A) (II) (i) (P)
(B) (III) (ii) (Q)
(C) (I) (ii) (Q)
(D) (IV) (ii) (Q)
18. Which of the following combination is correct?
(A) (III) (i) (Q)
(B) (III) (iv) (Q)
(C) (III) (i) (R)
(D) (III) (ii) (R)

PART-II : CHEMISTRY

SECTION-1 (MAXIMUM MARKS : 28)

$>$ This section contains SEVEN questions
$>$ Each question has FOUR options (A), (B), (C) and (D). ONE OR MORE THAN ONE of these four option(s) is(are) correct
> For each question, darken the bubble(s) corresponding to all the correct option(s) in the ORS
> For each question, marks will be awarded in one of the following categories:

Full Marks	$:$	+4	If only the bubble(s) corresponding to all the correct option(s) is(are) darkened
Partial Marks	$:$	+1	For darkening a bubble corresponding to each correct option, provided NO incorrect option is darkened
Zero Marks	$: \quad 0$	If none of the bubbles is darkened	
Negative Marks	$:$	-2	In all other cases

$>$ For example, if $(A),(C)$ and (D) are all the correct options for a question, darkening all these three will results in +4 marks; darkening only (A) and (D) will result in +2 marks; and darkening (A) and (B) results in -2 marks, as a wrong option is also darkened
19. The oxidation states of S in sodium tetrathionate $\left(\mathrm{Na}_{2} \mathrm{~S}_{4} \mathrm{O}_{6}\right)$ and $\mathrm{Na}_{2} \mathrm{~S}_{2} \mathrm{O}_{3}$ is:
(A) +5
(B) -2
(C) +6
(D) 0
20. The formal charges on different atoms in lewis structure of N_{3}^{-}are
(A) $-1,+1,-1$
(B) $-1,+1,0$
(C) $-2,+1,0$
(D) $0,+1,-2$
21. Which of the following statement(s) is/are true for diboarane?
(A) $\mathrm{B}_{2} \mathrm{H}_{6}$ is electron-deficient molecule
(B) Hybridization of B atom is sp^{3} and molecule is non-planar
(C) Bridge bonding is found in $\mathrm{B}_{2} \mathrm{H}_{6}$
(D) The electronic distribution of the bridge bond $(\mathrm{B}-\mathrm{H}-\mathrm{B})$ has a banana-like appearance and is also called banana bond
22. A cyclic process ABCD is shown in the $\mathrm{P}-\mathrm{V}$ diagram. Which of the following curves represents the same process?

(A)

(B)

(C)

(D)

23. In which of the following alkyl halide a hydride shift occur upon addition of water?
(A) $\mathrm{CH}_{3}-\stackrel{\substack{\mathrm{Br} \\ \mathrm{l} \\ \mathrm{C} \\ \mathrm{CH} \\ \mathrm{C} \\ \mathrm{C}}}{ }-\mathrm{CH}_{2}-\mathrm{CH}_{3}$

(C) $\mathrm{CH}_{3}-\underset{\mathrm{CH}_{2}-\mathrm{Br}}{\mathrm{CH}}-\mathrm{CH}_{2}-\mathrm{CH}_{3}$
(D) $\mathrm{CH}_{3}-\int_{\mathrm{CH}}^{3} \mathrm{CH}-\mathrm{CH}_{2}-\mathrm{CH}_{2} \mathrm{Br}$
24. $\mathrm{A}+\mathrm{B} 日 \underset{\mathrm{~K}_{2}}{\mathrm{~K}} \mathrm{H} \xrightarrow{\mathrm{K}_{3}} \mathrm{D}$

Which of the following expression is/are correct?
(A) $\frac{\mathrm{d}[\mathrm{C}]}{\mathrm{dt}}=\mathrm{K}_{1}[\mathrm{~A}][\mathrm{B}]$
(B) $\frac{\mathrm{d}[\mathrm{C}]}{\mathrm{dt}}=\mathrm{K}_{1}[\mathrm{~A}][\mathrm{B}]-\mathrm{K}_{2}[\mathrm{C}]-\mathrm{K}_{3}[\mathrm{D}]$
(C) $\frac{-\mathrm{d}[\mathrm{A}]}{\mathrm{dt}}=\mathrm{K}_{1}[\mathrm{~A}][\mathrm{B}]+\mathrm{K}_{2}[\mathrm{C}]$
(D) $\frac{\mathrm{d}[\mathrm{D}]}{\mathrm{dt}}=\mathrm{K}_{3}[\mathrm{C}]$
25. Which of the following is/are product(s) of reaction of aldehyde with amines?
(A) Imines
(B) Enamines
(C) Oximes
(D) Hydrazone

SECTION-2 (MAXIMUM MARKS : 15)

> This section contains FIVE questions
> The answer to each question is a SINGLE DIGIT INTEGER ranging 0 to 9, both inclusive
> For each question, darken the bubble corresponding to the correct integer in the ORS
> For each question, marks will be awarded in one of the following categories:

| Full Marks | $:$ | +3 If only the bubble corresponding to the correct answer is darkened |
| :--- | :--- | :--- | :--- |
| Zero Marks | : | $0 \quad$ If all other cases |

26. The coagulation of 100 mL of gold sol is prevented by addition of 0.25 g of starch to it before adding 1 ml of 10% NaCl solution. If the gold number of starch is x then $\frac{\mathrm{x}}{5}$ is:
27. The number of compounds having $\mathrm{P}-\mathrm{O}-\mathrm{P}$ bond in the following compounds:
$\mathrm{H}_{4} \mathrm{P}_{2} \mathrm{O}_{7},\left(\mathrm{HPO}_{3}\right)_{\mathrm{n}},\left(\mathrm{HPO}_{3}\right)_{3}, \mathrm{H}_{4} \mathrm{P}_{2} \mathrm{O}_{5}, \mathrm{H}_{4} \mathrm{P}_{2} \mathrm{O}_{6}, \mathrm{H}_{3} \mathrm{PO}_{3}, \mathrm{H}_{3} \mathrm{PO}_{4}, \mathrm{H}_{3} \mathrm{PO}_{2}$
28. When 1 mole of $\mathrm{CrCl}_{3} \cdot 6 \mathrm{H}_{2} \mathrm{O}$ is treated with $\mathrm{AgNO}_{3}, \mathrm{x}$ mole of AgCl are obtained. The formula of the compound is $\left[\mathrm{Cr}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}\right] \mathrm{Cl}_{3}$, y is oxidation number of Cr and z is coordination number of compound. Find the value of $2 \mathrm{x}+\mathrm{y}-\mathrm{z}$.
29. $\mathrm{Fe}^{+2}+2 \mathrm{e}^{-} \longrightarrow \mathrm{Fe}$
$\mathrm{Fe}^{+3}+\mathrm{e}^{-} \longrightarrow \mathrm{Fe}^{+2}$
The standard potential corresponding to reaction (i) and (ii) are E_{1} and E_{2}. The value of standard potential corresponding to the reaction $\mathrm{Fe}^{+3}+3 \mathrm{e}^{-} \longrightarrow \mathrm{Fe}$ is $\frac{x E_{1}+y E_{2}}{z}$, then find the value of $x+y+z$.
30. The number of polar aprotic solvent in the following solvents

Acetone, Dimethsulfoxide, Dimethylformamide, water, HMPA, Ethanol, Acetic acid, DMA.
$>$ This section contains SIX questions of matching type
> This section contains TWO tables (each having 3 columns and 4 rows)

- Based on each table, there are THREE questions
$>$ Each question has FOUR options (A), (B), (C), and (D). ONLY ONE of these four options is correct
$>$ For each question, darken the bubble corresponding to the correct option in the ORS
> For each question, marks will be awarded in one of the following categories:

Full Marks	$:$	+3	If only the bubble corresponding to the correct option is darkened
Zero Marks	$:$	0	If none of the bubbles is darkened
Negative Marks	$:$	-1	In all other cases

Answer Q.31, Q. 32 and Q. 33 by appropriately matching the information given in the three columns of the following table.

Column 1: Name and formula of compound
Column 2: Name of the reaction.
Column 3: Major product of reaction.

Column 1		Column 2		Column 3	
(I)		(i)	Nucleophilic addition elimination reaction with R'MgX	(P)	$\mathrm{R}-\mathrm{N} \equiv \mathrm{C}$
(II)	$\mathrm{R}-\mathrm{NH}_{2}$	(ii)	Aldol condensation	(Q)	$\mathrm{R}-\mathrm{NH}_{2}$
(III)		(iii)	Hoffmann-bromamide reaction	(R)	
(IV)		(iv)	Carbylamine reaction	(S)	

31. The only correct combination in which the reaction intermediate is Carbene:
(A) (I) (iv) (P)
(B) (I) (iii) (Q)
(C) (II) (iii) (P)
(D) (II) (iv) (P)
32. The only correct combination in which enolate is formed:
(A) (III) (ii) (S)
(B) (IV) (ii) (S)
(C) (IV) (ii) (R)
(D) (IV) (iii) (P)
33. The only correct combination in which the reaction intermediate is nitrene:
(A) (I) (iii) (P)
(B) (II) (iii) (Q)
(C) (I) (iii) (Q)
(D) (II) (iv) (Q)

Answer Q.34, Q. 35 and $\mathbf{Q} .36$ by appropriately matching the information given in the three columns of the following table.

Column 1: Compound
Column 2: Oxidation state
Column 3: Type of linkage

Column 1		Column 2		Column 3	
(I)	$\mathrm{Na}_{2} \mathrm{~S}_{2} \mathrm{O}_{3}$	(i)	+5	(P)	S-O-S
(II)	$\mathrm{Na}_{2} \mathrm{~S}_{4} \mathrm{O}_{6}$	(ii)	-2	(Q)	$-\mathrm{S}-\mathrm{S}-$
(III)	$\mathrm{H}_{2} \mathrm{~S}_{2} \mathrm{O}_{7}$	(iii)	+6	(R)	$-\mathrm{O}-\mathrm{O}-$
(IV)	$\mathrm{H}_{2} \mathrm{~S}_{2} \mathrm{O}_{8}$	(iv)	+4	(S)	$\mathrm{S}=\mathrm{S}$

34. The only correct combination for Marshall's Acid.
(A) (IV) (iii) (P)
(B) (IV) (iii) (R)
(C) (IV) (iii) (P)
(D) (III) (ii) (R)
35. The only correct combination in which the oxidation state of one of the S is zero:
(A) (II) (i) (P)
(B) (I) (i) (P)
(C) (II) (i) (Q)
(D) (I) (i) (Q)
36. The only correct combination in which the hybridization of one of the S atom is sp^{2} :
(A) (I) (ii) (Q)
(B) (II) (i) (Q)
(C) (I) (ii) (S)
(D) (II) (i) (S)

PART-III : MATHEMATICS

SECTION-1 (MAXIMUM MARKS : 28)

$>$ This section contains SEVEN questions
$>$ Each question has FOUR options (A), (B), (C) and (D). ONE OR MORE THAN ONE of these four option(s) is(are) correct
$>$ For each question, darken the bubble(s) corresponding to all the correct option(s) in the ORS
$>$ For each question, marks will be awarded in one of the following categories:

Full Marks	$:$	+4	If only the bubble(s) corresponding to all the correct option(s) is(are) darkened
Partial Marks	$:$	+1	For darkening a bubble corresponding to each correct option, provided NO incorrect option is darkened
Zero Marks	$:$	0	If none of the bubbles is darkened
Negative Marks	$:$	-2	In all other cases

$>$ For example, if $(A),(C)$ and (D) are all the correct options for a question, darkening all these three will results in +4 marks; darkening only (A) and (D) will result in +2 marks; and darkening (A) and (B) results in -2 marks, as a wrong option is also darkened
37. Let $f(x)$ be a real valued function defined on: $R \rightarrow R$ such that $f(x)=[x]^{2}+[x+1]-3$, where $[x]$ denotes greatest integer less than or equal to x, then which of the following option(s) is/are correct?
(A) $f(x)$ is many-one and into function
(B) $\mathrm{f}(\mathrm{x})$ is many-one and onto function
(C) range of $f(x)$ is $[0, \infty)$
(D) $f(x)=0$ for infinite number of values of x
38. If $(b+c),(c+a),(a+b)$ are in H.P., then which of the following hold(s) good?
(A) $\frac{b+c}{a}, \frac{c+a}{b}, \frac{a+b}{c}$ are in A.P.
(B) $\frac{\mathrm{b}+\mathrm{c}}{\mathrm{a}}, \frac{\mathrm{c}+\mathrm{a}}{\mathrm{b}}, \frac{\mathrm{a}+\mathrm{b}}{\mathrm{c}}$ are in H.P.
(C) a^{2}, b^{2}, c^{2} are in A.P.
(D) a^{2}, b^{2}, c^{2} are in H.P.
39. Let $\mathrm{x}_{1}, \mathrm{x}_{2}, \mathrm{x}_{3}, \mathrm{x}_{4}$ be four non-zero numbers satisfying the equation $\tan ^{-1}\left(\frac{a}{x}\right)+\tan ^{-1}\left(\frac{b}{x}\right)+\tan ^{-1}\left(\frac{c}{x}\right)+\tan ^{-1}\left(\frac{d}{x}\right)=\frac{\pi}{2}$, then which of the following relation hold(s) good?
(A) $\sum_{\mathrm{i}=1}^{4}\left(\mathrm{x}_{\mathrm{i}}\right)=\mathrm{a}+\mathrm{b}+\mathrm{c}+\mathrm{d}$
(B) $\sum_{\mathrm{i}=1}^{4}\left(\frac{1}{\mathrm{x}_{\mathrm{i}}}\right)=0$
(C) $\prod_{i=1}^{4}\left(x_{i}\right)=$ abcd
(D) $\left(\mathrm{x}_{1}+\mathrm{x}_{2}+\mathrm{x}_{3}\right)\left(\mathrm{x}_{2}+\mathrm{x}_{3}+\mathrm{x}_{4}\right)\left(\mathrm{x}_{3}+\mathrm{x}_{4}+\mathrm{x}_{1}\right)\left(\mathrm{x}_{4}+\mathrm{x}_{1}+\mathrm{x}_{2}\right)=a b c d$
40. If $y(x)$ satisfies the differential equation $\frac{d y}{d x}=\sin 2 x+3 y \cot x$ and $y\left(\frac{\pi}{2}\right)=2$, then which of the following statement(s) is/are correct?
(A) y $\left(\frac{\pi}{6}\right)=0$
(B) $\mathrm{y}^{\prime}\left(\frac{\pi}{3}\right)=\frac{9-3 \sqrt{2}}{2}$
(C) $y(x)$ increases in interval $\left(\frac{\pi}{6}, \frac{\pi}{3}\right)$
(D) The value of definite integral $\int_{-\frac{\pi}{2}}^{\pi / 2} \mathrm{y}(\mathrm{x}) \mathrm{dx}$ equals π.
41. Consider the system of equations
$a x+y+z=1$
$x+a y+z=1$
$x+y+a z=1$, then which of the following statement(s) is/are correct?
(A) if $a=2$, then the system has unique solution
(B) if $\mathrm{a}=1$, then the system has infinite solutions
(C) if $\mathrm{a}=-2$, then the system has no solution
(D) if $\mathrm{a}=2$, then the system has infinite solutions
42. A, B, C and D are four points such that $\overrightarrow{A B}=m(2 \hat{i}-6 \hat{j}+2 \hat{k}), \overrightarrow{B C}=m(\hat{i}-2 \hat{j})$ and $\overrightarrow{C D}=n(-6 \hat{i}+15 \hat{j}-3 \hat{k})$. If $\overrightarrow{C D}$ intersects $\overrightarrow{A B}$ at some point E, then which of the following option(s) is/are correct?
(A) $\mathrm{m} \geq \frac{1}{2}$
(B) $\mathrm{n} \geq \frac{1}{3}$
(C) $m=n$
(D) $\mathrm{m}=\frac{1}{4}$
43. Which of the following limit is equal to 0 ?
(A) $\lim _{x \rightarrow 0^{+}}\left(x^{x^{x}}-x^{x}\right)$
(B) $\lim _{x \rightarrow 0^{+}} x^{2} \ln \left(\sqrt{\frac{1}{x}}\right)$
(C) $\lim _{x \rightarrow 0^{+}}(x)^{\ln (x+1)}$
(D) $\lim _{x \rightarrow 0}\left(\frac{10^{x}-2^{x}-5^{x}+1^{x}}{x+\tan x}\right)$

SECTION-2 (MAXIMUM MARKS : 15)

> This section contains FIVE questions
> The answer to each question is a SINGLE DIGIT INTEGER ranging 0 to 9 , both inclusive
> For each question, darken the bubble corresponding to the correct integer in the ORS
> For each question, marks will be awarded in one of the following categories:

Full Marks : +3 If only the bubble corresponding to the correct answer is darkened
 Zero Marks : 0 If all other cases

44. Find the number of solutions of the equation $\sin 2 \theta+\cos 2 \theta+4 \sin \theta=1+4 \cos \theta$ lying in the interval $[-2 \pi, 2 \pi]$.
45. Let $\mathrm{A}=\left[\mathrm{a}_{\mathrm{ij}}\right]$ be a square matrix of order 2 where $\mathrm{a}_{\mathrm{ij}} \in\{0,1,2,3,4,6\}$. The number of matrices A with distinct element such that $\mathrm{AA}^{-1}=\mathrm{I}$, where I is the unit matrix of order 2 , is $\left(\mathrm{a}^{3}+1\right)$. Find the value of a.
46. Line $x+2 y=4$ is translated by $\sqrt{5}$ units closer to the origin and then rotated by angle $\tan ^{-1}\left(\frac{1}{2}\right)$ in the clockwise direction about the point where the shifted line cuts the x-axis. Find the distance of new line from point $M(3,3)$.
47. If ω is the imaginary cube root of unity, then find the member of ordered pairs of integers (a, b) such that $|a \omega+b|=1$.
48. Two numbers x and y are chosen at random (without replacement) from amongst the numbers $1,2,3, \ldots \ldots, 2004$. The probability that $\left(x^{3}+y^{3}\right)$ is divisible by 3 is $\frac{p}{q}(p$ and q are co-prime). Find the value of $(p+q)$.
> This section contains SIX questions of matching type
> This section contains TWO tables (each having 3 columns and 4 rows)

- Based on each table, there are THREE questions
$>$ Each question has FOUR options (A), (B), (C), and (D). ONLY ONE of these four options is correct
$>$ For each question, darken the bubble corresponding to the correct option in the ORS
> For each question, marks will be awarded in one of the following categories:

Full Marks	$:$	+3	If only the bubble corresponding to the correct option is darkened
Zero Marks	$:$	0	If none of the bubbles is darkened
Negative Marks	$:$	$-1 \quad$ In all other cases	

Answer Q.49, Q. 50 and Q. 51 by appropriately matching the information given in the three columns of the following table.
Let S_{1} and S_{2} be circles of radii 1 and $r(r>1)$ respectively touching the coordinate axes.
Column-1: Conditions between circles S_{1} and S_{2}
Column-2: Values of r for conditions in Column-1.
Column-3: Number of common tangents between S_{1} and S_{2} for conditions in column-1.

Column 1 Column 2	Column 3				
(I)	S_{1} passes through the centre of S_{2}.	(i)	3	(P)	1
(II)	S_{1} and S_{2} touch each other	(ii)	$\frac{2+\sqrt{2}}{2}$	(Q)	2
(III)	S_{1} and S_{2} are orthogonal	(iii)	$2+\sqrt{3}$	(R)	3
(IV)	S_{1} andS have longest common chord (iv) $3+2 \sqrt{2}$	(S)	4		

49. Which of the following options is the only CORRECT combination?
(A) (I) (ii) (Q)
(B) (I) (ii) (P)
(C) (I) (ii) (R)
(D) (II) (ii) (S)
50. Which of the following options is the only CORRECT combination?
(A) (II) (ii) (P)
(B) (III) (iv) (S)
(C) (II) (iv) (R)
(D) (II) (iv) (S)
51. Which of the following options is the only CORRECT combination?
(A) (III) (iii) (R)
(B) (IV) (ii) (Q)
(C) (III) (i) (P)
(D) (IV) (i) (Q)

Answer Q.52, Q. 53 and Q. 54 by appropriately matching the information given in the three columns of the following table.

Let $\mathrm{f}(\mathrm{x})=\mathrm{x}^{2} \mathrm{e}^{-3 \mathrm{x}}-\lambda$
Column-1: contains values of λ.
Column-2: contains number of zeroes of $f(x)$.
Column-3: contains monotonic nature of $f(x)$.

Column 1		Column 2		Column 3	
(I)	$\lambda \in(-\infty, 0)$	(i)	0	(P)	$\mathrm{f}(\mathrm{x})$ is increasing in $\left(0, \frac{2}{3}\right)$
(II)	$\lambda \in\left(0, \frac{4}{9 \mathrm{e}^{2}}\right)$	(ii)	1	(Q)	$\mathrm{f}(\mathrm{x})$ is increasing in $\left(\frac{4}{3}, \infty\right)$
(III)	$\lambda \in\left(\frac{4}{9 \mathrm{e}^{2}}, \infty\right)$	(iii)	2	(R)	$\mathrm{f}(\mathrm{x})$ is increasing in $\left(\frac{8}{3}, \infty\right)$
(IV)	$\lambda=\frac{4}{9 \mathrm{e}^{2}}$	(iv)	3	(S)	$\mathrm{f}(\mathrm{x})$ is decreasing in $(-\infty,-2)$

52. Which of the following options is the only CORRECT combination?
(A) (II) (ii) (P)
(B) (III) (ii) (R)
(C) (IV) (iii) (Q)
(D) (IV) (ii) (S)
53. Which of the following options is the only CORRECT combination?
(A) (II) (ii) (S)
(B) (II) (iv) (P)
(C) (III) (i) (P)
(D) (II) (ii) (Q)
54. Which of the following options is the only CORRECT combination?
(A) (I) (i) (S)
(B) (III) (ii) (R)
(C) (I) (ii) (S)
(D) (III) (iii) (P)
