

(English Version)

- Instructions: 1. The question paper has five Parts namely A, B, C, D and E. Answer all the five Parts.
 - 2. Use the Graph Sheet for the question on Linear Programming problem in Part-E.

PART - A

Answer all the ten questions:

 $(10 \times 1 = 10)$

Define bijective function.

- 2) Write the principal value branch of $\cos^{-1} x$.
- 3) Construct a 2 × 2 matrix $A = [a_{ij}]$, whose elements are given by $a_{ij} = \frac{i}{i}$.
- 4) If A is an invertible matrix of order 2 then find A^{-1} .
- 5) If $y = e^{x^3}$, find $\frac{dy}{dx}$.

6) Find
$$\int \frac{x^3-1}{x^2} dx$$
.

7/

1

Find the unit vector in the direction of the vector $\vec{a} = \hat{i} + \hat{j} + 2\hat{k}$.

- 8) If a line makes angle 90° , 60° and 30° with the positive direction of x, y and z axis respectively, find its direction cosines.
- 19) Define optimal solution in a linear programming problem.

10) If
$$P(A) = \frac{7}{13}$$
, $P(B) = \frac{9}{13}$ and $P(A \cap B) = \frac{4}{13}$, find $P(A/B)$.

PART - B

Answer any ten questions:

 $(10 \times 2 = 20)$

2 11) Let * be a binary operation on Q, defined by $a*b = \frac{ab}{2}$, $\forall a,b \in Q$.

Determine whether * is associative or not.

- 12) If $\sin\left(\sin^{-1}\frac{1}{5}+\cos^{-1}x\right)=1$ then find the value of x.
- 13) Write the simplest form of $\tan^{-1} \left(\frac{\cos x \sin x}{\cos x + \sin x} \right)$, $0 < x < \frac{\pi}{2}$.
- 14) Find the area of the triangle whose vertices are (-2, -3), (3, 2) and (-1, -8) by using determinant method.
- 15) Differentiate $x^{\sin x}$, x > 0 with respect to x.

16) Find
$$\frac{dy}{dx}$$
, if $x^2 + xy + y^2 = 100$.

17) Find the slope of the tangent to the curve $y = x^3 - x$ at x = 2.

- 18) Integrate $\frac{e^{\tan^{-1}x}}{1+x^2}$ with respect to x.
- 19) Evaluate: $\int_{2}^{3} \frac{x \, dx}{x^2 + 1}$.
- 20) Find the order and degree of the differential equation :

$$\left(\frac{d^3y}{dx^3}\right)^2 + \left(\frac{d^2y}{dx^2}\right)^3 + \left(\frac{dy}{dx}\right)^4 + y^5 = 0.$$

- 21) Find the projection of the vector $\hat{i} + 3\hat{j} + 7\hat{k}$ on the vector $7\hat{i} \hat{j} + 8\hat{k}$.
- 22) Find the area of the parallelogram whose adjacent sides are determined by the vectors $\vec{a} = 3\hat{i} + \hat{j} + 4\hat{k}$ and $\vec{b} = \hat{i} \hat{j} + \hat{k}$.
- 23) Find the angle between the planes whose vector equations are $\vec{r} \cdot \left(2\hat{i}+2\hat{j}-3\hat{k}\right) = 5$ and $\vec{r} \cdot \left(3\hat{i}-3\hat{j}+5\hat{k}\right) = 3$.

- 23) Find the angle between the planes whose vector equations are $\vec{r} \cdot \left(2\hat{i}+2\hat{j}-3\hat{k}\right) = 5$ and $\vec{r} \cdot \left(3\hat{i}-3\hat{j}+5\hat{k}\right) = 3$.
- 24) A random variable X has the following probability distribution :

X	0	1	2	3	4
P(X)	0.1	k	2 <i>k</i>	2 <i>k</i>	k

Determine:

- (i) k
- (ii) $P(X \ge 2)$.

PART - C

Answer any ten questions:

 $(10 \times 3 = 30)$

- 25) Show that the relation R in the set $A = \{1, 2, 3, 4, 5\}$ given by $R = \{(a, b) : |a b| \text{ is even}\}$, is an equivalence relation.
- 26) Prove that $2 \tan^{-1} \frac{1}{2} + \tan^{-1} \frac{1}{7} = \tan^{-1} \frac{31}{17}$.
- 27) By using elementary transformations, find the inverse of the matrix $A = \begin{bmatrix} 1 & 3 \\ 2 & 7 \end{bmatrix}$.
- 28) If $x = \sin t$, $y = \cos 2t$ then prove that $\frac{dy}{dx} = -4 \sin t$.

2 /8/1

Verify Rolle's theorem for the function $f(x) = x^2 + 2$, $x \in [-2, 2]$.

- 30) Find two numbers whose sum is 24 and whose product is as large as possible.
- 31) Find $\int \frac{x dx}{(x+1)(x+2)}$.

- 32) Find $\int e^x \sin x \, dx$.
- 33) Find the area of the region bounded by the curve $y = x^2$ and the line y = 4.
- 34) Form the differential equation representing the family of curves $y = a \sin(x + b)$, where a, b are arbitrary constants.
- 35) Show that the position vector of the point P, which divides the line joining the points A and B having position vectors \overrightarrow{a} and \overrightarrow{b} internally in the ratio m:n is $\frac{\overrightarrow{mb} + n\overrightarrow{a}}{m+n}$.
 - 36) Find x such that the four points A(3,2,1), B(4,x,5), C(4,2,-2) and D(6,5,-1) are coplanar.
 - 37) Find the equation of the plane through the intersection of the planes 3x-y+2z-4=0 and x+y+z-2=0 and the point (2, 2, 1).
 - 38) A bag contains 4 red and 4 black balls, another bag contains 2 red and 6 black balls. One of the two bags is selected at random and a ball is drawn from the bag which is found to be red. Find the probability that the ball is drawn from the first bag.

PART - D

Answer any six questions:

 $(6 \times 5 = 30)$

- 39) Let R_+ be the set of all non-negative real numbers. Show that the function $f: R_+ \to [4, \infty)$ given by $f(x) = x^2 + 4$ is invertible and write the inverse of f.
- 40) If $A = \begin{bmatrix} 0 & 6 & 7 \\ -6 & 0 & 8 \\ 7 & -8 & 0 \end{bmatrix}$, $B = \begin{bmatrix} 0 & 1 & 1 \\ 1 & 0 & 2 \\ 1 & 2 & 0 \end{bmatrix}$, $C = \begin{bmatrix} 2 \\ -2 \\ 3 \end{bmatrix}$, calculate AC, BC and (A+B)C. Also, verify that (A+B)C = AC + BC.
 - 41) Solve the following system of linear equations by matrix method.

$$x-y+2z=7$$

 $3x+4y-5z=-5$.
 $2x-y+3z=12$

42) If
$$y = (\tan^{-1} x)^2$$
, show that $(x^2 + 1)^2 y_2 + 2x(x^2 + 1)y_1 = 2$.

- 43) Sand is pouring from a pipe at the rate of 12 cm³/s. The falling sand forms a cone on the ground in such a way that the height of the cone is always one-sixth of the radius of the base. How fast is the height of the sand cone increasing when the height is 4 cm?
- 44) Find the integral of $\frac{1}{x^2 + a^2}$ with respect to x and hence find $\int \frac{1}{x^2 6x + 13} dx$.
 - 45) Using integration find the area of the region bounded by the triangle whose vertices are (1, 0), (2, 2) and (3, 1).
 - 46) Find the general solution of the differential equation $x \frac{dy}{dx} + 2y = x^2 \log x$.
 - 47) Derive the equation of the line in space passing through two given points, both in vector and Cartesian form.

- 48) If a fair coin is tossed 10 times, find the probability of
 - i) exactly six heads
 - ii) atleast six heads.

PART - E

Answer any one of the following questions:

 $(1 \times 10 = 10)$

49) a) Prove that
$$\int_{0}^{a} f(x)dx = \int_{0}^{a} f(a-x)dx$$
 and hence evaluate
$$\int_{0}^{a} \frac{\sqrt{x}}{\sqrt{x} + \sqrt{a-x}} dx$$
. (6)

b) Prove that:

$$\begin{vmatrix} x + y + 2z & x & y \\ z & y + z + 2x & y \\ z & x & z + x + 2y \end{vmatrix} = 2(x + y + z)^{3}.$$
 (4)

50) a) Solve the following problem graphically:

Minimise and Maximise

$$z=3x+9y$$

Subject to the constraints:

$$x + 3y \le 60$$

$$x + y \ge 10$$

$$x \le y$$

 $x \ge 0, y \ge 0.$

b) Find the relationship between a and b so that the function f defined by

$$f(x) = \begin{cases} ax + 1, & if \quad x \le 3 \\ bx + 3, & if \quad x > 3 \end{cases}$$

is continuous at x = 3.

(4)

(6)

