Kerala Board Class 12

CHEMISTRY MARCH 2018 QUESTION PAPER

Reg. No.,

Name : ...

Code No. 9016

Time: 2 Hours Cool-off time: 15 Minutes

Second Year - March 2018

Part - III

CHEMISTRY

Maximum: 60 Scores

General Instructions to Candidates:

- There is a 'Cool-off time' of 15 minutes in addition to the writing time.
- Use the 'Cool-off time' to get familiar with questions and to plan your answers.
- Read questions carefully before answering.
- Read the instructions carefully.
- Calculations, figures and graphs should be shown in the answer sheet itself.
- Malayalam version of the questions is also provided.
- Give equations wherever necessary.
- Electronic devices except non-programmable calculators are not allowed in the Examination Hall.

വിദ്യാർത്ഥികൾക്കുള്ള പൊതുനിർദ്ദേശങ്ങൾ :

- നിർദ്ദിഷ്ട സമയത്തിന് പുറമെ 15 മിനിറ്റ് 'കൂൾ ഓഫ് ടൈം' ഉണ്ടായിരിക്കും.
- 'കൂൾ ഓഫ് ടൈം' ചോദ്യങ്ങൾ പരിചയപ്പെടാനും ഉത്തരങ്ങൾ ആസൂത്രണം ചെയ്യാനും ഉപയോഗിക്കുക.
- ഉത്തരങ്ങൾ എഴുതുന്നതിന് മുമ്പ് ചോദ്യങ്ങൾ ശ്രദ്ധാപൂർവ്വം വായിക്കണം.
- നിർദ്ദേശങ്ങൾ മുഴുവനും ശ്രദ്ധാപൂർവ്വം വായിക്കണം.
- കണക്ക് കൂട്ടലുകൾ, ചിത്രങ്ങൾ, ഗ്രാഫുകൾ, എന്നിവ ഉത്തരപേപ്പറിൽ തന്നെ ഉണ്ടായിരിക്കണം.
- ചോദ്യങ്ങൾ മലയാളത്തിലും നല്ലിയിട്ടുണ്ട്.
- ആവശ്യമുള്ള സ്ഥലത്ത് സമവാകൃങ്ങൾ കൊടുക്കണം.
- പ്രോഗ്രാമുകൾ ചെയ്യാനാകാത്ത കാൽക്കുലേറ്ററുകൾ ഒഴികെയുള്ള ഒരു ഇലക്ട്രോണിക് ഉപകരണവും പരീക്ഷാഹാളിൽ ഉപയോഗിക്കുവാൻ പാടില്ല.

9016 1 P.T.O.

	(Questions 1 to 7): Carry one score each. Answer all questions. (Scores: $7 \times 1 = 7$)
ľ.	What is the co-ordination number of particles present in FCC crystal structure?
2.	Identify the order of reaction if the unit of rate constant is mol L^{-1} s ⁻¹ .
3.	What is the structure of chromate ion ($(CrO_4)^{2-}$)?
4.	Name the test used to identify primary amines using CHCl ₃ and ethanolic KOH.
5/.	Which among the given vitamins is water soluble?
.	(a) A
	(b) B
	(c) D
	(d) E
6 .	What is the crosslinked polymer obtained by the polymerisation of phenol and formaldehyde?
7.	is an artificial sweetner which is unstable at cooking temperature.
	(Questions 8 to 20): Answer any ten. Each question carries two scores.
	(Scores: $10 \times 2 = 20$)
8.	(a) Based on the nature of intermolecular forces, classify the following solids:
	(i) SiO ₂
	(ii) Ice (Score : 1)
	(b) ZnO turns yellow on heating. Why? (Score: 1)
9.	A solution contains 15 g urea (molar mass = 60 g mol^{-1}) per litre of solution in water has the same osmotic pressure as a solution of glucose (molar mass = 180 g mol^{-1}) in water. Calculate the mass of glucose present in one litre of its solution. (Scores: 2)
10.	Define minimum boiling azeotropes with example. (Scores: 2)

- 11. Write the chemical equation of the following reactions:
 - (a) Preparation of XeO₃ from XeF₆.

(Score: 1)

(b) Mixing PtF₆ and Xe.

(Score: 1)

- 12. Explain how the complexes of nickel, $[Ni(CN)_4]^{2-}$ and $[Ni(CO)_4]$ have different structures, but do not differ in their magnetic behaviour. (Ni, Atomic No : 28) (Scores : 2)
- 13. Complete the reaction:
 - (a) $CH_3CH_2Br \xrightarrow{AgCN}$

(Score: 1)

(b) $CH_3CH_2Br \xrightarrow{N}$ Dry ether

(Score: 1)

- 14. During the β-elimination reaction of 2-bromopentane in an alcoholic solution of KOH results Pent-2-ene as major product and Pent-1-ene as minor product. State the rule to explain the reaction.
- 15. Aromatic aldehydes undergo electrophilic substitution reactions. Write the nitration reaction of benzaldehyde with chemical equation. (Scores: 2)
- 16. Briefly describe Gatterman Koch reaction.

(Scores: 2)

17. How can it convert methyl iodide to ethanamine?

(Scores: 2)

18. State two differences between globular and fibrous proteins.

(Scores: 2)

19. Match the following:

(a)	Polyacrylonitrile	(i)	Terylene ,
(b)	1, 3-Butadien-Acrylonitrile	(ii)	Natural Rubber
(c)	Ethylene glycol-Terephthalic acid	(iii)	Buna-N
(d)	cis-1, 4-polyisoprene	(iv)	Acrilan

(Scores: 2)

20. (a) What are drugs?

(Score:1)

(b) Write an example for a drug classified based on its chemical structure.

(Score: 1)

9016

4

(Questions 21 to 29): Answer any seven. Each question carries three scores.

(Scores: $7 \times 3 = 21$)

21. An element crystallises as FCC with density 2.8 g cm⁻³. Its unit cell having edge length 4×10^{-8} cm. Calculate the molar mass of the element. (Given $N_A = 6.022 \times 10^{23} \text{ mol}^{-1}$)

(Scores: 3)

- Write the anode and cathode reactions occur in the operation of a lead storage battery.Mention the electrolyte used in the battery. (Scores: 3)
- 23. For hydrolysis of methyl acetate in aqueous solution, the following results were observed.

t/s	0	30	60
CH ₃ COOCH ₃ C/mol L ⁻¹	0.60	0.30	0.15

Show that it follows pseudo first order reaction as the concentration of water remains constant. (Scores: 3)

24. (a) State Hardy-Schulze rule with the help of example.

(Scores: 2)

(b) Why lyophilic colloids are used as protective colloids?

(Score: 1)

25. Gibbs energy of formation (Δ_f G) of MgO₍₈₎ and CO_(g) at 1273 K and 2273 K are given below:

 $\Delta_f G [MgO_{(s)}] : -941 \text{ kJ mol}^{-1} \text{ at } 1273 \text{ K}$

 $\Delta_f G [CO_{(g)}] : -439 \text{ kJ mol}^{-1} \text{ at } 1273 \text{ K}$

 $\Delta_t G [MgO_{(s)}] : -314 \text{ kJ mol}^{-1} \text{ at } 2273 \text{ K}$

 $\Delta_t G [CO_{(g)}] : -628 \text{ kJ mol}^{-1} \text{ at } 2273 \text{ K}$

On the basis of the above data, predict the temperature at which carbon can be used as a reducing agent for $MgO_{(s)}$. (Scores: 3)

			•
			,
26.	(a)	What is the formula of phosphine?	(Score: 1
	(b)	How phosphine is prepared in laboratory?	(Scores: 2)
27.	Assi	gn the possible reason for the following:	
	(a)	Stability of +5 oxidation state decreases and that of +3 oxidation state	increases
		down to 15 th group elements.	(Score: 1)
	(b)	H ₂ O is less acidic than H ₂ S.	(Score: 1)
	(c)	H ₃ PO ₂ act as a good reducing agent while H ₃ PO ₄ does not.	(Score: 1)
28.	Give	e reasons for the following:	
	(a)	Transition metals and many of their compounds act as catalyst.	(Score: 1)
	(b)	Scandium ($Z = 21$) does not exhibit variable oxidation state and yet it is	regarded
		as a transition element.	(Score: 1)
	(c)	Write the step involved in the preparation of Na ₂ CrO ₄ from chromite ore	. (Score : 1)
29.	How	would you account for the following:	
	(a)	Aldehydes are more reactive than ketones towards nucleophilic	addition
		reaction.	(Score: 1)
	(b)	Boiling point of aldehydes are lower than alcohols.	(Score: 1)
	(c)	Addition reaction of sodium hydrogen sulphite is useful for separate	ition and
		purification of aldehydes.	(Score: 1)
	(Que	estions 30 to 33): Answer any three. Each question carries four scores	•
		(Scores	$: 3 \times 4 = 12)$
30.	(a)	What are primary batteries ?	(Score: 1)
	(b)	The cell potential of a mercury cell is 1.35 V, and remain constant durin	g its life.
		Give reason.	(Score: 1)
	(c)	Write the equations of the reactions involved at each electrode in a $\rm H_{\rm 2}$	- O ₂ fuel
		cell.	(Scores: 2)
9016	•	8	

			•
			,
26.	(a)	What is the formula of phosphine?	(Score: 1
	(b)	How phosphine is prepared in laboratory?	(Scores: 2)
27.	Assi	gn the possible reason for the following:	
	(a)	Stability of +5 oxidation state decreases and that of +3 oxidation state	increases
		down to 15 th group elements.	(Score: 1)
	(b)	H ₂ O is less acidic than H ₂ S.	(Score: 1)
	(c)	H ₃ PO ₂ act as a good reducing agent while H ₃ PO ₄ does not.	(Score: 1)
28.	Give	e reasons for the following:	
	(a)	Transition metals and many of their compounds act as catalyst.	(Score: 1)
	(b)	Scandium ($Z = 21$) does not exhibit variable oxidation state and yet it is	regarded
		as a transition element.	(Score: 1)
	(c)	Write the step involved in the preparation of Na ₂ CrO ₄ from chromite ore	. (Score : 1)
29.	How	would you account for the following:	
	(a)	Aldehydes are more reactive than ketones towards nucleophilic	addition
		reaction.	(Score: 1)
	(b)	Boiling point of aldehydes are lower than alcohols.	(Score: 1)
	(c)	Addition reaction of sodium hydrogen sulphite is useful for separate	ition and
		purification of aldehydes.	(Score: 1)
	(Que	estions 30 to 33): Answer any three. Each question carries four scores	•
		(Scores	$: 3 \times 4 = 12)$
30.	(a)	What are primary batteries ?	(Score: 1)
	(b)	The cell potential of a mercury cell is 1.35 V, and remain constant durin	g its life.
		Give reason.	(Score: 1)
	(c)	Write the equations of the reactions involved at each electrode in a $\rm H_{\rm 2}$	- O ₂ fuel
		cell.	(Scores: 2)
9016	•	8	

- 31. (a) Draw the structures of geometrical isomers of $[Fe(NH_3)_2(CN)_4]^-$ (Scores : 2)
 - (b) Write the formula of pentaamminecarbonatocobalt (III) chloride. (Score: 1)
 - (c) Write any two limitations of valance bond theory. (Score: 1)
- 32. (a) Grignard reagents are important class of organometallic compounds used to prepare alcohols. Identify the compounds A and B and write the formula.
 - (i) HCHO + CH₃MgBr $\xrightarrow{\text{(1) Dry ether}}$ A + Mg(OH)Br

(ii)
$$B + CH_3MgBr \xrightarrow{\text{(1) Dry ether}} CH_3 - CH - OH + Mg(OH)Br$$
 (Scores : 2)
 CH_3

- (b) Write the name of products formed when salicylic acid is treated with acetic anhydride in acid medium. (Scores: 2)
- 33. Lucas test is used to identify primary, secondary and tertiary alcohols.
 - (a) Explain the process.
 - (b) Name the reagents used in the test.

(Scores: 4)