KERALA BOARD CLASS 12 MATHS MARCH 2017 QUESTION PAPER

General Instructions to Candidates :

- There is a 'cool-off time' of 15 minutes in addition to the writing time of 2 hrs.
- You are not allowed to write your answers nor to discuss anything with others during the 'cool-off time'.
- Use the 'cool-off time' to get familiar with questions and to plan your answers.
- Read questions carefully before answering.
- All questions are compulsory and only internal choice is allowed.
- When you select a question, all the sub-questions must be answered from the same question itself.
- Calculations, figures and graphs should be shown in the answer sheet itself.
- Malayalam version of the questions is also provided.
- Give equations wherever necessary.
- Electronic devices except non-programmable calculators are not allowed in the Examination Hall.

 உளకைமிळிகூளை.

KERALA BOARD CLASS 12

MATHS MARCH 2017 QUESTION PAPER

1.

(a) Let R be a relation defined on $\mathrm{A}=\{1,2,3\}$ by $\mathrm{R}=\{(1,3),(3,1),(2,2)\}, \mathrm{R}$ is
(a) Reflexive
(b) Symmetric ${ }^{/}$
(c) Transitive
(d) Reflexive but not transitive (Score : 1)
(b) Find fog and gof if $\mathrm{f}(x)=|x+1|$ and $\mathrm{g}(x)=2 x-1$.
(c)Let * be a binary operation defined on $\mathrm{N} x \mathrm{~N}$ by $(\mathrm{a}, \mathrm{b}) *(\mathrm{c}, \mathrm{d})=(\mathrm{a}+\mathrm{c}, \mathrm{b}+\mathrm{d})$. Find the identity element for * if it exists (score: 2)
2. (a)

Principal value of $\cot ^{-1}\left(-\frac{1}{\sqrt{3}}\right)$ is

> | (a) $\frac{\pi}{3}$ | |
| :--- | :--- |
| (c) $\frac{\pi}{6}$ | (b) |
| (d, | $\frac{2 \pi}{3}$ |

3.
4. (a) The value of k suit that tine miatiix $\left(\begin{array}{cc}1 & k \\ -k & 1\end{array}\right)$ is symmetric is
(a) 0
(b) (1).
(c) -1
(d) 2
(Score : 1)
(b) If $A=\left[\begin{array}{cc}\cos \theta & \sin \theta \\ -\sin \theta & \cos \theta\end{array}\right]$ then prove that $A^{2}=\left[\begin{array}{cc}\cos 2 \theta & \sin 2 \theta \\ -\sin 2 \theta & \cos 2 \theta\end{array}\right]$.
(Scores: 3)
(c) If $\mathrm{A}=\left[\begin{array}{ll}1 & 3 \\ 4 & 1\end{array}\right]$, then find $\left|3 A^{\prime}\right|$.
(Scores: 2)
5.

(a) If $A=\left[\begin{array}{ll}a & 1 \\ 1 & 0\end{array}\right]$ is such that $A^{2}=I$ then a equals
(a) 1
(b) -1
(c) 0
(d) 2
(Score : 1)

KERALA BOARD CLASS 12

MATHS MARCH 2017 QUESTION PAPER

5.

(a) Find the values of a and b such that the function

$$
\mathrm{f}(x)=\left\{\begin{array}{ll}
5 \mathrm{a} & x \leq 0 \\
\mathrm{a} \sin x+\cos x & 0<x<\frac{\pi}{2} \\
\mathrm{~b}-\frac{\pi}{2} & x \geq \frac{\pi}{2}
\end{array}\right. \text { is continucds}
$$

(b) Find $\frac{d y}{d x}$ if $(\sin x)^{\text {cos } y}=(\cos y)^{\sin x}$.
6. Slope of the normal curve $Y^{2}=4 X$ at $(1,2)$ is
(a) 1
(b) $1 / 2$
(c) 2
(d) -1
(score:1)
(b)

Or

(a) The rate of change of volume of a sphere with respect to its radius when radius is I unit
(a) 4π
(b) 2π
(c) π
(d) $\frac{\pi}{2}$
(Score : 1)
(b) Find two posi ive timbers whose sum is 16 and the sum of whose cubes is minimum.
7. Find the following:

(a)	$\frac{1}{x\left(x^{7}+1\right)} \mathrm{dx}$
(Scores : 3)	
$\int_{1}^{4}\|x-2\| \mathrm{d} x$	(Scores: 3)

8.

Evaluate $\int_{0}^{\pi / 2} \log \sin x \mathrm{~d} x$	(Scores : 4)
OR	
Evaluate $\int_{0}^{4} x^{2} \mathrm{dx}$ as the limit of a sum.	(Scores : 4)

KERALA BOARD CLASS 12

MATHS MARCH 2017 QUESTION PAPER

9.(a) Area bounded by the curves $y=\cos x, x=\frac{\pi}{2}, x=\theta, y=0$ is
(a) $\frac{1}{2}$
(b) $\frac{2}{2}$
(c) 1
(d) $\frac{\pi}{2}$
10.
(a) The order of the differentiai eouxtion. $x^{+} \frac{d^{2} y}{d x^{2}}=1+\left(\frac{d y}{d x}\right)^{3}$ is
(a) 1
(b) 3
(c) 4
(d) 2
(Score : 1)
(b) Find the saticsiar solution of the differential equation $\left(1+x^{2}\right) \frac{\mathrm{d}^{2} y}{d x^{2}}+2 x y=\frac{1}{1+x^{2}}, y=0$ when $x=1$.
(Scores : 5)
11.
(a) The projection of the vector $2 \hat{i}+3 \hat{j}+2 \hat{k}$ on the vector $\hat{i}+\hat{j}+\hat{k}$ is
(a) $\frac{3}{\sqrt{3}}$
(b) $\frac{7}{\sqrt{3}}$
(c) $\frac{3}{\sqrt{17}}$
(d) $\frac{7}{\sqrt{17}}$
(Score : 1)
(b) Find the arca of a parallelogram whose adjacent sides are the vectors $2 \hat{i}+\hat{j}+\hat{k}$ and $\hat{i}-\hat{j}$.
(Scores: 2)
12.
(a) The angle between the vectors $\hat{i}+\hat{j}$ and $\hat{j}+\hat{k}$ is
(a) 60°
(b) 30°
(c) 45°
(d) 90°
(Score : 1)
(b) If $\vec{a}, \vec{b}, \vec{c}$ are unit vectors such that $\vec{a}+\vec{b}+\vec{c}=0$, find the value of $\vec{a} \cdot \vec{b}+\vec{b} \cdot \vec{c}+\vec{c} \cdot \vec{a}$ (Scores : 4)

KERALA BOARD CLASS 12

MATHS MARCH 2017 QUESTION PAPER

13. (i) The line $x-1=y=z$ is perpendicular to the line
(a) $\frac{x-2}{1}=\frac{y-1}{2}=\frac{z}{-3}$
(b) $\mathrm{x}-2=\mathrm{y}-2=\mathrm{z}$
(c) $\frac{x-2}{1}=\frac{y-1}{2}=\frac{z}{3} \quad$ (d) $x=y=\frac{2}{3}$
(ii) Find the shortest distance between the lines

$$
\begin{aligned}
& \bar{r}=i+2 j+3 k+\lambda(i+j+k) \\
& \bar{r}=i+j+k+\mu(i+j+k)
\end{aligned}
$$

14. (a) Distance of the point $(\hat{v}, 9, i)$ firral the plane $x+y+z=3$.
(i) $\frac{1}{\sqrt{3}}$
(ii) $\frac{2}{\sqrt{3}}$
(iii) $\frac{\sqrt{3}}{2}$
(iv) $\sqrt{3}$
15. Consider the linear programming problem:

Maximize $Z=50 x+40 y$
Subject to the constraints
$x+2 y \geq 10$
$3 x+4 y \leq 24$
$x \geq 0, y \geq 0$
(a) Find the feasible region.
(b) Find the comer points of the feasible region.
(Scores : 3)
(c) Find the maximum value of Z.
(Scores : 2)
(Score : 1)
16. (a) If A and B are two events such that $A \subset B$ and $P(A) \neq 0$ then $P(A / B)$ is \qquad

KERALA BOARD CLASS 12

(a) $\frac{P(A)}{P(B)}$
(b) $\frac{\mathrm{P}(\mathrm{B})}{\mathrm{P}(\mathrm{A})}$
(c) $\frac{1}{\mathrm{P}(\mathrm{A})}$
(d) $\frac{1}{\mathrm{P}(\mathrm{B})}$
(Score: 1)
(b)There are two indentical bags. Bag 1 contains 3 red and 4 black balls, while Bag 2 contains 5 red and 4 black balls. One ball is drawn at a random from one of the bags.
(i)Find the probability that the ball drawn is red
(ii)If the ball drawn is red, what is the probability that it is drawn from bag 1

Or
Consider the following probability distribution of a random variable x .

X	0	1	2	3	4
$P(X)$	$\frac{1}{16}$	$\frac{2}{16}$	K	$\frac{5}{16}$	$\frac{1}{16}$

(i) Find the value of K.
(ii) Determine the Mean and Varines of X .
(score:1)
(score:4)

