

No. 9018

Name :

Second Year - March 2018

Time: 2½ Hours Cool-off time: 15 Minutes

Part - III

MATHEMATICS (SCIENCE)

Maximum: 80 Scores

General Instructions to Candidates:

- There is a 'Cool-off time' of 15 minutes in addition to the writing time.
- Use the 'Cool-off time' to get familiar with questions and to plan your answers.
- Read questions carefully before answering.
- Read the instructions carefully.
- Calculations, figures and graphs should be shown in the answer sheet itself.
- Malayalam version of the questions is also provided.
- Give equations wherever necessary.
- Electronic devices except non-programmable calculators are not allowed in the Examination Hall.

വിദ്യാർത്ഥികൾക്കുള്ള പൊതുനിർദ്ദേശങ്ങൾ :

- നിർദ്ദിഷ്ട സമയത്തിന് പുറമെ 15 മിനിറ്റ് 'കുൾ ഓഫ് ടൈം' ഉണ്ടായിരിക്കും.
- 'കൂൾ ഓഫ് ടൈം' പോദ്യങ്ങൾ പരിചയപ്പെടാനും ഉത്തരങ്ങൾ ആസൂത്രണം ചെയ്യാനും ഉപയോഗിക്കുക.
- ഉത്തരങ്ങൾ എഴുതുന്നതിന് മുമ്പ് ചോദ്യങ്ങൾ ശ്രദ്ധാപൂർവ്വം വായിക്കണം.
- നിർദ്ദേശങ്ങൾ മുഴുവനും ശ്രദ്ധാപൂർവ്വം വായിക്കണം.
- കണക്ക് കൂട്ടലുകൾ, ചിത്രങ്ങൾ, ഗ്രാഫുകൾ, എന്നിവ ഉത്തരപേപ്പറിൽ തന്നെ ഉണ്ടായിരിക്കണം.
- ചോദൃങ്ങൾ മലയാളത്തിലും നല്ലിയിട്ടുണ്ട്.
- ആവശൃമുള്ള സ്ഥലത്ത് സമവാകൃങ്ങൾ കൊടുക്കണം.
- പ്രോഗ്രാമുകൾ ചെയ്യാനാകാത്ത കാൽക്കുലേറ്ററുകൾ ഒഴികെയുള്ള ഒരു ഇലക്ട്രോണിക് ഉപകരണവും പരീക്ഷാഹാളിൽ ഉപയോഗിക്കുവാൻ പാടില്ല.

P.T.O.

Questions 1 to 7 carry 3 scores each. Answer any Six questions.

(Scores: $6 \times 3 = 18$)

1. If
$$f(x) = \frac{x}{x-1}, x \neq 1$$

(a) Find fof (x)

(Scores : 2)

(b) Find the inverse of f.

(Score: 1)

- 2. Using elementary row operations, find the inverse of the matrix $\begin{bmatrix} 1 & 2 \\ 2 & -1 \end{bmatrix}$. (Scores: 3)
- 3. (a) f(x) is a strictly increasing function, if f'(x) is
 - (i) positive
 - (ii) negative
 - (iii) 0
 - (iv) None of these

(Score: 1)

(b) Show that the function f given by $f(x) = x^3 - 3x^2 + 4x$, $x \in \mathbb{R}$ is strictly increasing.

(Scores: 2)

4. (a)
$$\int_{0}^{x} f(a-x)dx =$$
_____.

(Score: 1)

$$\left[(i) \int_{0}^{2a} f(x) dx, \quad (ii) \int_{-a}^{a} f(x) dx, \quad (iii) \int_{0}^{a} f(x) dx, \quad (iv) \int_{a}^{0} f(x) dx \right]$$

(b) Find the value of $\int_{0}^{\pi/2} \frac{\sin^4 x}{\sin^4 x + \cos^4 x} dx$

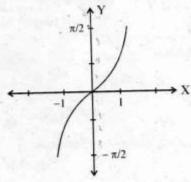
(Scores: 2)

- 5. Find the area of the region bounded by the Curve $y^2 = x$, x-axis and the lines x = 1 and x = 4. (Scores: 3)
- 6. Find the general solution of the differential equation $x \frac{dy}{dx} + 2y = x^2 \log x$. (Scores: 3)
- 7. A manufacturer produces nuts and bolts. It takes 1 hour of work on Machine A and 3 hours on Machine B to produce a package of nuts. It take 3 hours on Machine A and 1 hour on Machine B to produce a package of bolts. He earns a profit of ₹ 17.50 per package on nuts and ₹ 7.00 per package on bolts. Formulate the above L.P.P., if the machines operates for at most 12 hours a day. (Scores: 3)

Questions 8 to 17 carry 4 Scores each. Answer any eight. (Scores: $8 \times 4 = 32$)

- 8. Let $A = N \times N$ and '*' be a binary operation on A defined by (a, b) * (c, d) = (a + c, b + d)
 - (a) Find (1, 2) * (2, 3)

(Score: 1)


(b) Prove that '*' is commutative

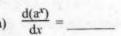
(Score: 1)

(c) Prove that '*' is associative.

(Scores: 2)

9.

- (a) Identify the function from the above graph.
 - (i) tan-1x
 - (ii) $\sin^{-1}x$
 - (iii) cos-1x
 - (iv) cosec-1x

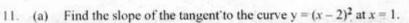

(Score: 1)

- (b) Find the domain and range of the function represented in above graph.
- (Score: 1)

(c) Prove that $\tan^{-1} \frac{1}{2} + \tan^{-1} \frac{2}{11} = \tan^{-1} \frac{3}{4}$.

(Scores: 2)

10. (a)



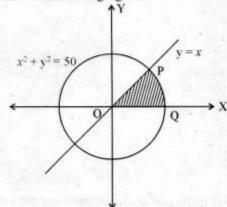
- (i) a^x
- (ii) log(a^r)
- /(iii) a*log a
- (iv) xax-1

(Score: 1)

(b) Find $\frac{dy}{dx}$ if $x^y = y^x$.

(Scores: 3)

(Score: 1)


- Find a point at which the tangent to the curve $y = (x 2)^2$ is parallel to the chord joining the points A(2, 0) and B(4, 4). (Scores: 2)
- Find the equation of the tangent to the above curve and parallel to the line AB.

(Score: 1)

12.
$$\int_{0}^{2} (x^{2} + 1) dx$$
 as the limit of a sum.

(Scores: 4)

Consider the following figure:

- Find the point of intersection 'P' of the circle $x^2 + y^2 = 50$ and the line y = x. (a)
 - (Score: 1)

Find the area of the shaded region.

- (Scores: 3)
- The degree of the differential equation $xy\left(\frac{d^2y}{dx^2}\right)^2 + x^4\left(\frac{dy}{dx}\right)^3 y\frac{dy}{dx} = 0$ is

 - (ii) 3
 - (iii) 2
 - (iv) 1

(Score: 1)

- Find the general solution of the differential equation $\sec^2 x \tan y \, dx + \sec^2 y \tan x$ (Scores: 3)
- Prove that for any vectors \vec{a} , \vec{b} , \vec{c} , $\left[\vec{a} + \vec{b}$, $\vec{b} + \vec{c}$, $\vec{c} + \vec{a}\right] = 2 \left[\vec{a}, \vec{b}, \vec{c}\right]$.
 - (Scores: 3)
- Show that if $\vec{a} + \vec{b}$, $\vec{b} + \vec{c}$, $\vec{c} + \vec{a}$ are coplanar then \vec{a} , \vec{b} , \vec{c} are also coplanar.
 - (Score: 1)

16. (a) Find the equation of a plane which makes x, y, z intercepts respectively as 1, 2, 3.

(Scores: 2)

- (b) Find the equation of a plane passing through the point (1, 2, 3) which is parallel to above plane. (Scores: 2)
- 17. Solve the L.P.P. given below graphically:

Minimise
$$Z = -3x + 4y$$

Subject to $x + 2y \le 8$,

$$3x + 2y \le 12,$$

$$x \ge 0, y \ge 0$$

(Scores: 4)

Questions from 18 to 24 carry 6 scores each. Answer any five.

(Scores:
$$5 \times 6 = 30$$
)

18. (a) Find x and y if

$$x\begin{bmatrix} 2 \\ 3 \end{bmatrix} + y \begin{bmatrix} -1 \\ 1 \end{bmatrix} = \begin{bmatrix} 10 \\ 5 \end{bmatrix}$$

(Scores: 2)

(b) Express the matrix $\begin{bmatrix} 2 & -2 & -4 \\ -1 & 3 & 4 \\ 1 & -2 & -3 \end{bmatrix}$ as the sum of a symmetric and a skew-

symmetric matrices.

(Scores: 4)

19. (a) Prove that $\begin{vmatrix} a & b & c \\ a+2x & b+2y & c+2z \\ x & y & z \end{vmatrix} = 0.$

(Scores: 2)

- (b) If $A = \begin{bmatrix} 1 & -1 & 2 \\ 0 & 2 & -3 \\ 3 & -2 & 4 \end{bmatrix}$, $B = \begin{bmatrix} -2 & 0 & 1 \\ 9 & 2 & -3 \\ 6 & 1 & -2 \end{bmatrix}$
 - (i) Prove that $B = A^{-1}$.
 - (ii) Using A-1 solve the system linear equations given below.

$$x - y + 2z = 1$$

$$2y - 3z = 1$$

$$3x - 2y + 4z = 2$$

(Scores: 4)

20. (a) Prove that the function defined by $f(x) = \cos(x^2)$ is a continuous function. (Scores: 2)

If
$$y = e^{a\cos^{-1}x}$$
, $-1 \le x \le 1$, show that $\frac{dy}{dx} = \frac{-ae^{a\cos^{-1}x}}{\sqrt{1-x^2}}$.

(Score: 1)

(ii) Hence, prove that $(1-x^2)\frac{d^2y}{dx^2} - x\frac{dy}{dx} - a^2y = 0$.

(Scores: 3)

21. Evaluate the following:

(a)
$$\int \sin mx \, dx$$
.

(Score: 1)

(b)
$$\int \frac{1 \, \mathrm{d}x}{\sqrt{x^2 + 2x + 2}}$$

(Scores: 3)

(c)
$$\int \frac{x \, dx}{(x+1)(x+2)}$$

(Scores: 2)

22. (a) If $\vec{a} = 3\hat{i} + 2\hat{j} + 2\hat{k}$, $\vec{b} = \hat{i} + 2\hat{j} - 2\hat{k}$

(i) Find
$$\vec{a} + \vec{b}$$
 and $\vec{a} - \vec{b}$.

(Scores : 2)

(ii) Find a unit vector perpendicular to both
$$\vec{a} + \vec{b}$$
 and $\vec{a} - \vec{b}$

(Scores: 2)

Consider the points A(1, 2, 7), B (2, 6, 3), C(3, 10, -1).

(i) Find
$$\overrightarrow{AB}$$
, \overrightarrow{BC}

(Score: 1)

(Score: 1)

23. (a) Find the angle between the lines

$$\frac{x-2}{2} = \frac{y-1}{5} = \frac{z+3}{-3}$$
 and $\frac{x+2}{-1} = \frac{y-4}{8} = \frac{z-5}{4}$

(Scores: 2)

(b) Find the shortest distance between the pair of lines

$$\vec{r} = (\hat{i} + 2\hat{j} + 3\hat{k}) + \lambda (\hat{i} - 3\hat{j} + 2\hat{k})$$

$$\vec{r} = (4\hat{i} + 5\hat{j} + 6\hat{k}) + \mu (2\hat{i} + 3\hat{j} + \hat{k})$$

(Scores: 4)

24. (a) The probability distribution of a random variable is given by P(x). What is $\Sigma P(x)$?

(Score: 1)

(b) The following is a probability distribution function of a random variable.

ne rom	A AL STREET	10.00	roome	anny o	TOTAL CO.	districts.		COLUMN COLO			-
x	-5	-4	- 3	-2	-1	0 .	1	2	3	4	5
P(x)	k	2k	3k	4k	5k	7k	8k	9k	10k	11k	12k

(i) Find k

(Scores: 2)

(ii) Find
$$P(x > 3)$$

(Score: 1)

(iii) Find P(
$$-3 < x < 4$$
)

(Score: 1)

(iv) Find
$$P(x < -3)$$

(Score: 1)

9018