Important Questions

The Questions number from 1 to 10 below carries 4 marks each:

Q1. Solve $\sin ^{2} x+\sin ^{2} 2 x=1$

Q2. Find the value of $i^{30}+i^{40}+i^{60}$

Q3. Prove by mathematical induction that $11^{n+2}+122^{n+1}$ is divisible by 133 for all positive integer values of n.

Q4. Determine whether the points $(0,0)$ and $(5,5)$ lie on different sides of the straight line $x+y-8=0$ or on the same side of the straight line.

Q5. Prove that
$\tan ^{-1} \mathrm{x}+\cot ^{-1} \mathrm{x}=\frac{\pi}{2}$

Q6. A, B, C are 3 sets and U is the universal set such that $\mathrm{n}(\mathrm{U})=800, n(A)=200, n(B)=300, n(A \cap B)=100$ Find $n\left(A^{\prime} \cap B^{\prime}\right)$

Q7. If P be the sum of the odd terms and Q the sum of the even terms in the expansion of $(x+a)^{n}$, prove that $P^{2}-Q^{2}=\left(x^{2}-a^{2}\right)^{n}$

Q8. If α, β are the roots of the equation $x^{2}-b x+c=0$ find the value of $\alpha^{2}+\beta^{2}$

Q9. Solve the inequality

$$
\frac{x^{2}-3 x+6}{3+4 x}<0
$$

Q10. Prove that:
$\cot (A+15)-\tan (A-15)=\frac{4 \cos 2 A}{1+2 \sin 2 A}$

The Questions number from 11 to 17 below carries 7 marks each:

Q11. The mean and variance of 7 observations are 8 and 19 respectively. If 5 of the observations are $2,4,12,14,11$. Find the remaining observations.

Q12. How many 6 digits numbers can be formed with the digits $1,2,3,4,5,6,7$ if the 10th, unit's places are always even and repetition is not allowed?

Q13. In the expansion $(1+x)^{40}$, the coefficients of $T_{2 r+1}$ and T_{r+2} are equal, find r ?

Q14. Differentiate $\log _{10} x$ with respect to x .

Q15. On the average one person dies out of every 10 accidents find the probability that at least 4 will be safe out of 5 accidents.

Q16. Shift the origin to a suitable point so that the equation $x^{2}+y^{2}-4 x+6 y=$ 36 representing a circle is transformed in to an equation of a circle with centre at origin in the new coordinate axes.

Q17. Prove that

$$
\frac{1}{\log _{a} b}, \frac{1}{\log _{2 a} b}, \frac{1}{\log _{4 a} b}
$$

form an AP.

