Binomial Theorem

Binomial Theorem - As the power increases the expansion becomes lengthy and tedious to calculate. A binomial expression that has been raised to a very large power can be easily calculated with the help of Binomial Theorem.

Topics in Binomial Theorem

- Introduction to the Binomial Theorem
- Properties of Binomial Expansion
- Terms in the Binomial Expansion
- Binomial Theorem for any Index
- Applications of Binomial Theorem
- Multinomial Theorem
- Problems on Binomial Theorem

Introduction to the Binomial Theorem

The Binomial Theorem is the method of expanding an expression which has been raised to any finite power. A binomial Theorem is a powerful tool of expansion, which has application in Algebra (https://byjus.com/maths/algebra/), probability, etc.

Binomial Expression: A binomial expression is an algebraic expression which contains two dissimilar terms. Ex: $a+b, a^{3}+b^{3}$, etc.

Binomial Theorem: Let $\mathrm{n} \in \mathrm{N}, \mathrm{x}, \mathrm{y}, \in \mathrm{R}$ then
${ }^{n} \Sigma_{r=0} n C_{r} x^{n-r} \cdot y^{r}+n C_{r} x^{n-r} \cdot y^{r}+\ldots \ldots \ldots \ldots . .+n C_{n-1} x \cdot y^{n-1}+n C_{n} \cdot y^{n}$
i.e. $(x+y)^{n}={ }^{n} \sum_{r=0} n C_{r} x^{n-r} \cdot y^{r}$ where,

$$
n C_{r}=\frac{n!}{(n-r)!r!}
$$

Illustration 1: Expand $(x / 3+2 / y)^{4}$
Sol:

$$
\begin{aligned}
& \left(\frac{x}{3}+\frac{2}{y}\right)^{4}=4 c_{o}\left(\frac{x}{3}\right)^{4}+4 c_{1}\left(\frac{x}{3}\right)^{3}\left(\frac{2}{y}\right)+4 c_{2}\left(\frac{x}{3}\right)^{2}\left(\frac{2}{y}\right)^{2}+4 c_{3}\left(\frac{x}{3}\right)\left(\frac{2}{y}\right)^{3}+4 c_{4}\left(\frac{2}{y}\right)^{4} \\
& \Rightarrow \frac{x^{4}}{81}+\frac{8 x^{3}}{27 y}+\frac{8 x^{2}}{3 y^{2}}+\frac{32 x}{3 y^{3}}+\frac{16}{y^{4}}
\end{aligned}
$$

Illustration 2: $(\sqrt{ } 2+1)^{5}+(\sqrt{ } 2-1)^{5}$
Sol:
We have

$$
(x+y)^{5}+(x y)^{5}=2\left[5 C_{0} x^{5}+5 C_{2} x^{3} y^{2}+5 C_{4} x y^{4}\right]
$$

$=2\left(x^{5}+10 x^{3} y^{2}+5 x y^{4}\right)$
Now $(\sqrt{ } 2+1)^{5}+(\sqrt{ } 2-1)^{5}=2\left[(\sqrt{ } 2)^{5}+10(\sqrt{ } 2)^{3}(1)^{2}+5(\sqrt{ } 2)(1)^{4}\right]$
$=58 \sqrt{ } 2$

Properties of Binomial Expansion

There are a few main properties of binomial expansion. These properties are discussed below:

- The total number of terms in the expansion of $(x+y)^{n}$ are $(n+1)$
- The sum of exponents of x and y is always n.
- $\mathrm{nC}_{0}, \mathrm{nC}_{1}, \mathrm{nC}_{2}, \ldots . \mathrm{nC}_{\mathrm{n}}$ are called binomial coefficients and also represented by $\mathrm{C}_{0}, \mathrm{C}_{1}, \mathrm{C} 2, \ldots \mathrm{C}_{\mathrm{n}}$
- The binomial coefficients which are equidistant from the beginning and from the ending are equal i.e. $\mathrm{nC}_{0}=\mathrm{nC}_{\mathrm{n}}, \mathrm{nC}_{1}=\mathrm{nC}_{\mathrm{n}}-1, \mathrm{nC}_{2}=\mathrm{nC}_{\mathrm{n}}-2$... etc.

To find binomial coefficients we can use Pascal Triangle also.

Pascal's Triangle

1

11

121

$1 \begin{array}{llll}1 & 3 & 1\end{array}$
 $146 \quad 4 \quad 1$

 $\begin{array}{lllllll}1 & 6 & 15 & 20 & 15 & 6 & 1\end{array}$

Some other useful expansions:

- $(x+y)^{n}+(x-y)^{n}=2\left[C_{0} x^{n}+C_{2} x^{n-1} y^{2}+C_{4} x^{n-4} y^{4}+\ldots\right]$
- $(x+y)^{n}-(x-y)^{n}=2\left[C_{1} x^{n-1} y+C_{3} x^{n-3} y^{3}+C_{5} x^{n-5} y^{5}+\ldots\right]$
- $(1+x)^{n}={ }^{n} \sum_{r-0} n C_{r} \cdot x^{r}=\left[C_{0}+C_{1} x+C_{2} x^{2}+\ldots C_{n} x_{n}\right]$
- $(1+x)^{n}+(1-x)^{n}=2\left[C_{0}+C_{2} x^{2}+C_{4} x^{4}+\ldots\right]$
- $(1+x)^{n}-(1-x)^{n}=2\left[C_{1} x+C_{3} x^{3}+C_{5} x^{5}+\ldots\right]$
- The number of terms in the expansion of $(x+a)^{n}+(x-a)^{n}$ is $(n+2) / 2$ if " n " is even or $(n+1) / 2$ if " n " is odd.
- The number of terms in the expansion of $(x+a)^{n}-(x-a)^{n}$ is $(n / 2)$ if " n " is even or $(n+1) / 2$ if " n " is odd.

Properties of Binomial Coefficients

Binomial coefficients refer to the integers which are coefficients in the binomial theorem. Some of the most important properties of binomial coefficients are:

- $\mathrm{C}_{0}+\mathrm{C}_{1}+\mathrm{C}_{2}+\ldots+\mathrm{C}_{\mathrm{n}}=2^{\mathrm{n}}$
- $\mathrm{C}_{0}+\mathrm{C}_{2}+\mathrm{C}_{4}+\ldots=\mathrm{C}_{1}+\mathrm{C}_{3}+\mathrm{C}_{5}+\ldots=2^{\mathrm{n}-1}$
- $\mathrm{C}_{0}-\mathrm{C}_{1}+\mathrm{C}_{2}-\mathrm{C}_{3}+\ldots+(-1)^{\mathrm{n}} . \mathrm{nC}_{\mathrm{n}}=0$
- $\mathrm{nC}_{1}+2 . \mathrm{nC}_{2}+3 . \mathrm{nC}_{3}+\ldots+n . \mathrm{nC}_{n}=n .2^{\mathrm{n}-1}$
- $\mathrm{C}_{1}-2 \mathrm{C}_{2}+3 \mathrm{C}_{3}-4 \mathrm{C}_{4}+\ldots+(-1)^{\mathrm{n}-1} \mathrm{C}_{\mathrm{n}}=0$ for $\mathrm{n}>1$
- $\mathrm{C}_{0}{ }^{2}+\mathrm{C}_{1}{ }^{2}+\mathrm{C}_{2}{ }^{2}+\ldots \mathrm{C}_{\mathrm{n}}{ }^{2}=\left[(2 \mathrm{n})!/(\mathrm{n}!)^{2}\right]$

Illustration: If $(1+x)^{15}=a_{0}+a_{1} x+\ldots .+a_{15} x^{15}$ then, find the value of $\sum_{r=1}^{15} r \cdot \frac{a r}{a_{r-1}}$

Sol:

$$
\sum_{r=1}^{15} r \cdot \frac{a r}{a_{r-1}}=1 \cdot \frac{a_{1}}{a_{0}}+2 \cdot \frac{a_{2}}{a_{1}}+3 \cdot \frac{a_{3}}{a_{2}}+\ldots+15 \cdot \frac{a_{15}}{a_{14}}
$$

$=C_{1} / C_{0}+2 C_{2} / C_{1}+3 C_{3} / C_{2}+\ldots+15 C_{15} / C_{14}$
$=15+14+13+\ldots+1=[15(15+1)] / 2=120$

Binomial Theorem IIT JEE Video Lesson

Terms in the Binomial Expansion

In binomial expansion (https://byjus.com/maths/binomial-expansion/), it is often asked to find the middle term or th general term. Here, the different terms in the binomial expansion that are covered here include:

- General Term
- Middle Term
- Independent Term
- Determining a Particular Term
- Numerically greatest term
- Ratio of Consecutive Terms/Coefficients

General Term in binomial expansion:

We have $(x+y)^{n}=\mathrm{nC}_{0} x^{n}+\mathrm{nC}_{1} x^{n-1} \cdot \mathrm{y}+\mathrm{nC}_{2} \mathrm{x}^{\mathrm{n}-2} \cdot \mathrm{y}^{2}+\ldots+\mathrm{nC}_{\mathrm{n}} \mathrm{y}^{\mathrm{n}}$
General Term $=T_{r+1}=n C_{r} x^{n-r} \cdot y^{r}$

- General Term in $(1+x)^{n}$ is $\mathrm{nC}_{r} \mathrm{x}^{r}$
- In the binomial expansion of $(x+y)^{n}$ the $r^{\text {th }}$ term from end is $(n-r+2)^{\text {th }}$ term from the beginning.

Illustration: Find the number of terms in $\left(1-2 x+x^{2}\right)^{50}$

Sol:

$\left(1-2 x+x^{2}\right)^{50}=\left[(1+x)^{2}\right]^{50}=(1+x)^{100}$
The number of terms $=(100+1)=101$
Illustration: Find the fourth term from the end in the expansion of $\left(2 x-1 / x^{2}\right)^{10}$

Sol:

Required term $=\mathrm{T}_{10-4+2}=\mathrm{T} 8=10 \mathrm{C}_{7}(2 \mathrm{x})^{3}\left(-1 / \mathrm{x}^{2}\right)^{7}=-960 \mathrm{x}^{-11}$

Middle Term(S) in the expansion of ($x+y$)

- If n is even then $(\mathrm{n} / 2+1)$ Term is the middle Term.
- If n is odd then $[(\mathrm{n}+1) / 2]^{\text {th }}$ and $[(\mathrm{n}+3) / 2)^{\text {th }}$ terms are the middle terms.

Illustration: Find the middle term of $\left(1-3 x+3 x^{2}-x^{3}\right)^{2 n}$

Sol:

$\left(1-3 x+3 x^{2}-x^{3}\right)^{2 n}=\left[(1-x)^{3}\right]^{2 n}=(1-x)^{6 n}$
Middle Term $=[(6 n / 2)+1]$ term $=6 \mathrm{nC}_{3 n}(-x)^{3 n}$
Determining a Particular Term:

- In the expansion of $\left(a x^{p}+b / x^{q}\right)^{n}$ the coefficient of x^{m} is the coefficient of T_{r+1} where $r=$ [(np-m)/(p+q)]
- In the expansion of $(x+a)^{n}, T_{r+1} / T r=(n-r+1) / r . a / x$

Independent Term

The term Independent of in the expansion of $\left[a x^{p}+\left(b / x^{q}\right)\right]^{n}$ is
$T_{r+1}={ }^{n} C_{r} a^{n-r} b^{r}$, where $r=(n p / p+q)$ (integer)
Illustration: Find the independent term of x in $(x+1 / x)^{6}$
Sol:
$r=[6(1) / 1+1]=3$

The independent term is $6 \mathrm{C}_{3}=20$
Illustration: Find the independent term in the expansion of:

$$
\left(\frac{x+1}{x^{2 / 3}-x^{1 / 3}+1}-\frac{x-1}{x-\sqrt{x}}\right)^{10}
$$

Sol:

$$
\left(\frac{x+1}{x^{2 / 3}-x^{1 / 3}+1}-\frac{x-1}{x-\sqrt{x}}\right)^{10}=\left[\left(x^{1 / 3}+1\right)-\frac{\sqrt{x}+1}{\sqrt{x}}\right]^{10}
$$

$\left(x^{1 / 3}+1-1-1 / \sqrt{x}\right)^{10}=\left(x^{1 / 3}-1 / \sqrt{ } x\right)^{10}$
$r=[10(1 / 3)] /[1 / 3+1 / 2]=4$
$\therefore \mathrm{T}_{5}={ }^{10} \mathrm{C}_{\mathbf{4}}=\mathbf{2 1 0}$
Numerically greatest term in the expansion of $(1+x)^{n}$.

- If $[(n+1)|x|] /[|x|+1]=P$, is a positive integer then $P^{\text {th }}$ term and $(P+1)^{\text {th }}$ terms are numerically greatest terms in the expansion of $(1+x)^{n}$
- $\operatorname{If}[(n+1)|x|] /\left[[x \mid+1]=P+F\right.$, where P is a positive integer and $0<F<1$ then $(P+1)^{\text {th }}$ term is numerically greatest term in the expansion of $(1+x)^{n}$.

Illustration: Find the numerically greatest term in $(1-3 x)^{10}$ when $x=(1 / 2)$

Sol:

$[(n+1)|a|] /[|a|+1]=(11 \times 3 / 2) /(3 / 2+1)=33 / 5=6.6$
Therefore, T_{7} is the numerically greatest term.
$T_{6+1}=10 C_{6} \cdot(-3 x)^{6}=10 C_{6} \cdot(3 / 2)^{6}$

Ratio of Consecutive Terms/Coefficients:

Coefficients of x^{r} and $\mathrm{x}^{\mathrm{r}+1}$ are $\mathrm{nC}_{\mathrm{r}-1}$ and nC_{r} respectively.
$\left(n C_{r} / n C_{r-1}\right)=(n-r+1) / r$
Illustration: If the coefficients of three consecutive terms in the expansion of $(1+x)^{n}$ are in the ratio 1:7:42 then find the value of n.

Sol:

Let $(r+1)^{\text {th }},(r+2)^{\text {th }}$ and $(r+3)^{\text {th }}$ be the three consecutive terms.
Then $\mathrm{nC}_{\mathrm{r}}: \mathrm{nC}_{\mathrm{r}+1}: \mathrm{nC}_{\mathrm{r}+2}=1: 7: 42$
Now $\left(\mathrm{nC}_{\mathrm{r}} / \mathrm{nC}_{\mathrm{r}-1}\right)=(1 / 7)$
$\left(\mathrm{nC}_{\mathrm{r}} / \mathrm{nC}_{\mathrm{r}}-1\right)=(1 / 7) \Rightarrow[(\mathrm{r}+1) /(\mathrm{n}-\mathrm{r})]=(1 / 7) \Rightarrow \mathrm{n}-8 \mathrm{r}=7 \rightarrow(1)$
And,
$\left(\mathrm{nC}_{\mathrm{r}} / \mathrm{nC}_{\mathrm{r}-1}\right)=(7 / 42) \Rightarrow[(\mathrm{r}+2) /(\mathrm{n}-\mathrm{r}-1)]=(1 / 6) \Rightarrow \mathrm{n}-7 \mathrm{r}=13 \rightarrow(2)$
From (1) \& (2), $\mathrm{n}=55$

Applications of Binomial Theorem

Binomial theorem has a wide range of application in mathematics like finding the remainder, finding digits of a number, etc. The most common binomial theorem applications are:

Finding Remainder using Binomial Theorem

Illustration: Find the remainder when 7^{103} is divided by 25

Sol:

$\left.\left(7^{103} / 25\right)=\left[7(49)^{51} / 25\right)\right]=\left[7(50-1)^{51} / 25\right]$
$=[7(25 \mathrm{~K}-1) / 25]=[(175 \mathrm{~K}-25+25-7) / 25]$
$=[(25(7 \mathrm{~K}-1)+18) / 25]$
\therefore The remainder $=18$.
Illustration: If the fractional part of the number $\left(2^{403} / 15\right)$ is $(\mathrm{K} / 15)$, then find K .

Sol:

$\left(2^{403} / 15\right)=\left[2^{3}\left(2^{4}\right)^{100} / 15\right]$
$=8 / 15(15+1)^{100}=8 / 15(15 \lambda+1)=8 \lambda+8 / 15$
$\because 8 \lambda$ is an integer, fractional part $=8 / 15$
So, $K=8$.

Finding Digits of a Number

Illustration: Find the last two digits of the number (13$)^{10}$

Sol:

$(13)^{10}=(169)^{5}=(170-1)^{5}$
$=5 \mathrm{C}_{0}(170)^{5}-5 \mathrm{C}_{1}(170)^{4}+5 \mathrm{C}_{2}(170)^{3}-5 \mathrm{C}_{3}(170)^{2}+5 \mathrm{C}_{4}(170)-5 \mathrm{C}_{5}$
$=5 \mathrm{C}_{0}(170)^{5}-5 \mathrm{C}_{1}(170)^{4}+5 \mathrm{C}_{2}(170)^{3}-5 \mathrm{C}_{3}(170)^{2}+5(170)-1$
A multiple of $100+5(170)-1=100 \mathrm{~K}+849$
\therefore The last two digits are 49 .

Relation Between two Numbers

Illustration: Find the larger of $99^{50}+100^{50}$ and 101^{50}

Sol:

$$
101^{50}=(100+1)^{50}=100^{50}+50 \cdot 100^{49}+25 \cdot 49 \cdot 100^{48}+\ldots
$$

$$
\Rightarrow 99^{50}=(100-1)^{50}=100^{50}-50 \cdot 100^{49}+25 \cdot 49 \cdot 100^{48}-\ldots .
$$

$$
\Rightarrow 101^{50}-99^{50}=2\left[50.100^{49}+25(49)(16) 100^{47}+\ldots\right]
$$

$$
=100^{50}+50 \cdot 49 \cdot 16 \cdot 100^{47}+\ldots>100^{50}
$$

$$
\therefore 101^{50}-99^{50}>100^{50}
$$

$\Rightarrow 101^{50}>100^{50}+99^{50}$

Divisibility Test

Illustration: Show that $11^{9}+9^{11}$ is divisible by 10 .

Sol:

$11^{9}+9^{11}=(10+1)^{9}+(10-1)^{11}$
$=\left(9 C_{0} \cdot 10^{9}+9 C_{1} \cdot 10^{8}+\ldots 9 C_{9}\right)+\left(11 C_{0} \cdot 10^{11}-11 C_{1} \cdot 10^{10}+\ldots-11 C_{11}\right)$
$=9 C_{0} \cdot 10^{9}+9 C_{1} \cdot 10^{8}+\ldots+9 C_{8} \cdot 10+1+10^{11}-11 C_{1} \cdot 10^{10}+\ldots+11 C_{10} \cdot 10-1$
$=10\left[9 C_{0} \cdot 10^{8}+9 C_{1} \cdot 10^{7}+\ldots+9 C_{8}+11 C_{0} \cdot 10^{10}-11 C_{1} \cdot 10^{9}+\ldots+11 C_{10}\right]$
$=10 \mathrm{~K}$, which is divisible by 10 .

Formulae:

- The number of terms in the expansion of $\left(x_{1}+x_{2}+\ldots x_{r}\right)^{n}$ is $(n+r-1) C_{r-1}$
- Sum of the coefficients of $(a x+b y)^{n}$ is $(a+b)^{n}$

If $f(x)=\left(a_{0}+a_{1} x+a_{2} x^{2}+\ldots .+a_{m} x^{m}\right)^{n}$ then

- (a) Sum of coefficients $=f(1)$
- (b) Sum of coefficients of even powers of x is: $[f(1)+f(-1)] / 2$
- (c) Sum of coefficients of odd powers of x is $[f(1)-f(-1)] / 2$

Binomial Theorem for any Index

Let n be a rational number (https://byjus.com/maths/rational-numbers/) and x be a real number such that $|x|<1$ Then

$$
\begin{aligned}
& (1+x)^{n}=1+n x+\frac{n(n-1)}{2!} x^{2}+\frac{n(n-1)(n-2)}{3!} x^{3}+\ldots+ \\
& +\frac{n(n-1)(n-2) \ldots(n-r+1)}{r!} x^{r}+\ldots \infty
\end{aligned}
$$

Proof:

Let $f(x)=(1+x)^{n}=a_{0}+a_{1} x+a_{2} x^{2}+\ldots+a_{r} x^{r}+\ldots$ (1)
$f(0)=(1+0)^{n}=1$
Differentiating (1) w.r.t. x on both sides, we get
$n(1+x)^{n-1}$
$=a_{1}+2 a_{2} x+3 a_{3} x^{3}+4 a_{4} x^{3}+\ldots+r a_{r} x^{r-1}+$.
Put $\mathrm{x}=0$, we get $\mathrm{n}=\mathrm{a}_{1}$
Differentiating (2) w.r.t. x on both sides, we get
$n(n-1)(1+x)^{n-2}$
$=2 a_{2}+6 a_{3} x+12 a_{4} x^{2}+\ldots+r(r-1) a_{r} x^{r-2}+\ldots$

Put $x=0$, we get $a_{2}=[n(n-1)] / 2$!
Differentiating (3), w.r.t. x on both sides, we get
$\mathrm{n}(\mathrm{n}-1)(\mathrm{n}-2)(1+\mathrm{x})^{\mathrm{n}-3}=6 \mathrm{a}_{3}+24 \mathrm{a}_{4} \mathrm{x}+\ldots+\mathrm{r}(\mathrm{r}-1)(\mathrm{r}-2) \mathrm{a}_{\mathrm{r}} \mathrm{x}_{\mathrm{r}-3}+\ldots$
Put $x=0$, we get $a_{3}=[n(n-1)(n-2)] / 3$!
Similarly, we get $a_{4}=[n(n-1)(n-2)(n-3)] / r!$ and so on
$\therefore a_{r}=[n(n-1)(n-2) \ldots(n-r+1)] / r!$
Putting the values of $a_{0}, a_{1}, a_{2}, a_{3}, \ldots, a_{r}$ obtained in (1), we get
$(1+x)^{n}=1+n x+[\{n(n-1)\} / 2!] x^{2}+[\{n(n-1)(n-2)\} / 2!] x^{3}+\ldots+[\{n(n-1)(n-2) \ldots(n-r+1)\} / r!] x^{r}+\ldots$

Binomial theorem for Rational Index

The number of rational terms in the expression of $\left(a^{1 / l}+b^{1 / k}\right)^{n}$ is $[n / L C M$ of $\{l, k\}]$ when none of and is a factor of and when at least one of and is a factor of is [n/LCM of $\{l, k\}]+1$ where [.] is the greatest integer function.

Illustration: Find the number of irrational terms in $\left(8 \sqrt{ } 5+{ }^{6} \sqrt{2}\right)^{100}$.

Sol:

$T_{r+1}=100 C_{r}(8 \sqrt{5})^{100-r} \cdot\left({ }^{6} \sqrt{2}\right)^{r}=100 C_{r} \cdot 5[(100-r) / 8] .2^{r / 6}$.
$\therefore \mathrm{r}=12,36,60,84$
The number of rational terms $=4$
Number of irrational terms $=101-4=97$

Binomial Theorem for Negative Index

1. If rational number and $-1<x<1$ then,

- $(1-x)^{-1}=1+x+x^{2}+x^{3}+\ldots+x^{r}+\ldots \infty$
- $(1+x)^{-1}=1-x+x^{2}-x^{3}+\ldots(-1)^{r} x^{r}+\ldots \infty$
- $(1-x)^{-2}=1+2 x+3 x^{2}-4 x^{3}+\ldots+(r+1) x^{r}+\ldots \infty$
- $(1+x)^{-2}=1-2 x+3 x^{2}-4 x^{3}+\ldots+(-1)^{r}(r+1) x^{r}+\ldots \infty$
- $(1+x)^{n}=1+n x+\frac{n(n-1)}{2!}+\frac{n(n-1)(n-2)}{3!} x^{3}+\ldots .+\frac{n(n-1)(n-2) \ldots \ldots(n-4+1)}{r!} \ldots \ldots \infty$
- $(1-x)^{n}=1-n x+\frac{n(n-1)}{2!} x^{2}-\ldots .+(-1)^{\prime} \frac{n(n-1)(n-2) \ldots . .(n-r+1)}{r!} x^{r}+\ldots \ldots \infty$
- $(1-x)^{n}=1+n x+\frac{n(n+1)}{2!} x^{2}+\frac{n(n+1)(n+2)}{3!} x^{3}+\ldots+\frac{n(n+1)(n+2) \ldots(n+r-1)}{r!} x^{r}+\ldots \infty$
- $(1+x)^{-n}=1-n x+\frac{n(n+1)}{2!} x^{2} \ldots \frac{n(n+1)(n+2)}{3!} x^{3}+\ldots+(-1)^{r} \frac{n(n+1)(n+2) \ldots(n+r-1)}{r!} x^{r}+$ $\ldots \infty$
- $(1-x)^{-3}=1+3 x+6 x^{2}+10 x^{3}+\ldots+\frac{(r+1)(r+2)}{r!}+\ldots \infty$
- $(1+x)^{-3}=1+3 x+6 x^{2}+10 x^{3}+\ldots+(-1)^{r} \frac{(r+1)(r+2)}{r!}+\ldots \infty$

2. Number of terms in $(1+x)^{n}$ is

- ' $n+1$ when positive integer.
- Infinite when is not a positive integer $\&|x|<1$

3. First negative term in $(1+x)^{p / q}$ when $0<x<1, p$, q are positive integers \& ' p ' is not a multiple of ' q ' is $\mathrm{T}_{[\mathrm{p} / \mathrm{q}]}+3$

Multinomial Theorem

Using binomial theorem, we have
$(x+a)^{n}$
$={ }^{n} \sum_{r=0} n_{r} x^{n-r} a^{r}, n \in N$
$={ }^{n} \sum_{r=0}[n!/(n-r)!r!] x^{n-r} a^{r}$
$={ }^{n} \sum_{r+s}=n[n!/ r!s!] x^{s} a^{r}$, where $s=n-r$.
This result can be generalized in the following form:
$\left(x_{1}+x_{2}+\ldots+x_{k}\right)^{n}$
$=\sum_{r 1}+r 2+\ldots .+r k=n[n!/ r 1!r 2!\ldots r k!] x_{1}{ }^{r 1} x_{2}{ }^{r 2} \ldots x_{k}{ }^{r k}$
The general term in the above expansion is
$\left[(n!) /\left(r_{1}!r_{2}!r_{3}!\ldots r_{k}!\right] x_{1}{ }^{r 1} x_{2}{ }^{r 2} x_{3}{ }^{r 3} \ldots x_{k}{ }^{r k}\right.$
The number of terms in the above expansion is equal to the number of non-negative integral solution of the equation.
$r_{1}+r_{2}+\ldots+r_{k}=n$, because each solution of this equation gives a term in the above expansion. The number of such solutions is ${ }^{n+k-1} C_{k}-1$.

PARTICULAR CASES

Case-1:

The above expansion has ${ }^{n+3-1} C_{3-1}={ }^{n+2} C_{2}$ terms.

Case-2:

There are ${ }^{n+4-1} C_{4-1}={ }^{n+3} C_{3}$ terms in the above expansion.
REMARK: The greatest coefficient in the expansion of $\left(x_{1}+x_{2}+\ldots+x_{m}\right)^{n}$ is $\left[(n!) /(q!)^{m-r}\{(q+1)!\}\right]$, where q and r are the quotient and remainder respectively when n is divided by m.

Multinomial Expansions

Consider the expansion of $(x+y+z)^{10}$. In the expansion, each term has different powers of x, y, and z and the sum of these powers is always 10 .

One of the terms is $\lambda x^{2} y^{3} z^{5}$. Now, the coefficient of this term is equal to the number of ways $2 x ' s, 3 y ' s$, and $5 z ' s$ are arranged, i.e., 10 ! (2! 3! 5!). Thus,
$(x+y+z)^{10}=\Sigma(10!) /(P 1!P 2!P 3!) x^{P 1} y^{P 2} z^{P 3}$
Where $\mathrm{P} 1+\mathrm{P} 2+\mathrm{P} 3=10$ and $0 \leq \mathrm{P} 1, \mathrm{P} 2, \mathrm{P} 3 \geq 10$
In general,
$\left(x_{1}+x_{2}+\ldots x_{r}\right)^{n}=\sum(n!) /(P 1!P 2!\ldots$
Pr!) $x^{P 1} x^{P 2} \ldots x^{P r}$

Where $\mathrm{P} 1+\mathrm{P} 2+\mathrm{P} 3+\ldots+\mathrm{Pr}=\mathrm{n}$ and $0 \leq \mathrm{P} 1, \mathrm{P} 2, \ldots \mathrm{Pr} \geq \mathrm{n}$
Number of Terms in the Expansion of $\left(x_{1}+x 2+\ldots+x r\right)^{n}$
From the general term of the above expansion, we can conclude that the number of terms is equal to the number of ways different powers can be distributed to $x_{1}, x_{2}, x_{3} \ldots, x_{n}$ such that the sum of powers is always "n".

Number of non-negative integral solutions of $x_{1}+x_{2}+\ldots+x_{r}=n$ is ${ }^{n+r-1} C_{r-1}$.
For example, number of terms in the expansion of $(x+y+z)^{3}$ is ${ }^{3+3-1} C_{3-1}={ }^{5} C_{2}=10$
As in the expansion, we have terms such as
As $x^{0} y^{0} z^{0}, x^{0} y^{1} z^{2}, x^{0} y^{2} z^{1}, x^{0} y^{3} z^{0}, x^{1} y^{0} z^{2}, x^{1} y^{1} z^{1}, x^{1} y^{2} z^{0}, x^{2} y^{0} z^{1}, x^{2} y^{1} z^{0}, x^{3} y^{0} z^{0}$.
Number of terms in $(x+y+z)^{n}$ is ${ }^{n+3-1} C_{3-1}={ }^{n+2} C_{2}$.
Number of terms in $(x+y+z+w)^{n}$ is ${ }^{n+4-1} C_{4-1}={ }^{n+3} C_{3}$ and so on.

Problems on Binomial Theorem

Q.1: If the third term in the binomial expansion of $\left(1+x^{\log _{2}^{2}}\right)^{5}$ equals 2560 , find \mathbf{x}.

Sol:

$$
T_{3}=5 C_{2} \cdot\left(x^{\log _{2}^{x}}\right)^{2}=2560 \Rightarrow 10 \cdot x^{2 \log _{2}^{x}}=2560 \Rightarrow x^{2 \log _{2}^{x}}=256
$$

$\Rightarrow\left(\log _{2} x\right)^{2}=4$
$\Rightarrow \log _{2}{ }^{x}=2$ or -2
$\Rightarrow x=4$ or $1 / 4$.
Q.2: Find the positive value of λ for which the coefficient of x^{2} in the expression $x^{2}\left[\sqrt{x}+\left(\lambda / x^{2}\right)\right]^{10}$ is 720 .

Sol:

$\Rightarrow x^{2}\left[{ }^{10} C_{r} \cdot(\sqrt{ } x)^{10-r} \cdot\left(\lambda / x^{2}\right)^{r}\right]=x^{2}\left[{ }^{10} C_{r} \cdot \lambda^{r} \cdot x^{(10-r) / 2} \cdot x^{-2 r}\right]$
$=x^{2}\left[{ }^{10} C_{r} \cdot \lambda^{r} \cdot x^{(10-5 r) / 2}\right]$
Therefore, $r=2$
Hence, ${ }^{10} \mathrm{C}_{2} \cdot \lambda^{2}=720$
$\Rightarrow \lambda^{2}=16$
$\Rightarrow \lambda= \pm 4$.
Q.3: The sum of the real values of x for which the middle term in the binomial expansion of $\left(x^{3} / 3+3 / x\right)^{8}$ equals 5670 is?

Sol:

$\mathrm{T}_{5}={ }^{8} \mathrm{C}_{4} \times\left(\mathrm{x}^{12} / 81\right) \times\left(81 / \mathrm{x}^{4}\right)=5670$
$\Rightarrow 70 x^{8}=5670$
$\Rightarrow x= \pm \sqrt{ } 3$.
Q.4: Let $(x+10)^{50}+(x-10)^{50}=a_{0}+a_{1} x+a_{2} x_{2}+\ldots+a_{50} x^{50}$ for all $x \in R$, then a_{2} / a_{0} is equal to?

Sol:
$\Rightarrow(x+10)^{50}+(x-10)^{50}$:
$\mathrm{a}_{2}=2 \times{ }^{50} \mathrm{C}_{2} \times 10^{48}$
$a_{0}=2 \times 10^{50}$
$\Rightarrow \mathrm{a}_{2} / \mathrm{a}_{0}={ }^{50} \mathrm{C}_{2} / 10^{2}=12.25$.
Q.5: Find the coefficient of x^{9} in the expansion of $(1+x)\left(1+x^{2}\right)\left(1+x^{3}\right) \ldots \ldots\left(1+x^{100}\right)$.

Sol:
x^{9} can be formed in 8 ways.
i.e., $x^{9} x^{1+8} x^{2+7} x^{3+6} x^{4+5}, x^{1+3+5}, x^{2+3+4}$
\therefore The coefficient of $\mathrm{x}^{9}=1+1+1+\ldots+8$ times $=8$.
Q.6: The coefficients of three consecutive terms of $(1+x)^{n+5}$ are in the ratio $5: 10: 14$, find n.

Sol:
Let T_{r-1}, T_{r}, T_{r+1} are three consecutive terms of $(1+x)^{n+5}$
$\Rightarrow \mathrm{T}_{\mathrm{r}-1}=(\mathrm{n}+5) \mathrm{C}_{\mathrm{r}-2} \cdot \mathrm{x}^{\mathrm{r}-2}$
$\Rightarrow T_{r}=(n+5) C_{r-1} \cdot x^{r-1}$
$\Rightarrow T_{r+1}=(n+5) C_{r} \cdot x^{r}$
Given
$(n+5) C_{r-2}:(n+5) C_{r-1}:(n+5) C_{r}=5: 10: 14$
Therefore, $\left[(n+5) C_{r-2}\right] / 5=\left[(n+5) C_{r-1}\right] / 10=(n+5) C_{r} / 14$
Comparing first two results we have $n-3 r=-9$
Comparing last two results we have $5 n-12 r=-30$
From equation (1) and (2) $n=6$.
Q.7: The digit in the units place of the number $183!+3^{183}$.

Sol:
$\Rightarrow 3^{183}=\left(3^{4}\right)^{45} .3^{3}$
\Rightarrow unit digit $=7$ and 183 ! ends with 0
\therefore Units digit of $183!+3^{183}$ is 7 .
Q.8: Find the total number of terms in the expansion of $(x+a)^{100}+(x-a)^{100}$.

Sol:

$\Rightarrow(x+a)^{100}+(x-a)^{100}=2\left[{ }^{100} C_{0} x^{100} .{ }^{100} C_{2} x^{98} \cdot a^{2}+\ldots \ldots+{ }^{100} C_{100} a^{100}\right]$
\therefore Total Terms $=51$.

Q.9: Find the coefficient of t^{4} in the expansion of $\left[\left(1-t^{6}\right) /(1-t)\right]$.

Sol:
$\Rightarrow\left[\left(1-t^{6}\right) /(1-t)\right]=\left(1-t^{18}-3 t^{6}+3 t^{12}\right)(1-t)^{-3}$
Coefficient of t in $(1-t)^{-3}=3+4-1$
$\mathrm{C}_{4}={ }^{6} \mathrm{C}_{2}=15$
The Coefficient of x^{r} in $(1-x)^{-n}=(r+n-1) C_{r}$
Q.10: Find the ratio of the $5^{\text {th }}$ term from the beginning to the $5^{\text {th }}$ term from the end in the binomial expansion of $\left[2^{1 / 3}+1 /\left\{2 .(3)^{1 / 3}\right\}\right]^{10}$.

Sol:

$$
\frac{T_{5}}{T_{5}^{1}}=\frac{10 C_{4}\left(2^{1 / 3}\right)^{10-4}\left[\frac{1}{2(2)^{1 / 3}}\right]^{4}}{10 C_{4}\left(\frac{1}{2\left(3^{1 / 2}\right)}\right)^{10-4} \cdot\left(2^{1 / 3}\right)^{4}}=4 .(36)^{1 / 3}
$$

Q.11: Find the coefficient of $a^{3} b^{2} c^{4} d$ in the expansion of $(a-b-c+d)^{10}$.

Sol:

Expand ($\mathbf{a}-\mathbf{b}-\mathbf{c}+\mathbf{d})^{\mathbf{1 0}}$ using multinomial theorem and by using coefficient property we can obtain the required result.

Using multinomial theorem, we have

$$
(a-b-c+d)^{10}=\sum_{r_{1}+r_{2}+r_{3}+r_{4}=10} \frac{(10)!}{r^{!}\left[r_{2}!r_{3}\right] r_{4}!}(a)^{r_{1}}(-b)^{r 2}(-c)^{r 3}(d)^{r_{4}}
$$

We want to get coefficient of $a^{3} b^{2} c^{4} d$ this implies that $r_{1}=3, r_{2}=2, r_{3}=4, r_{4}=1$,
\therefore The coefficient of $\mathrm{a}^{3} \mathrm{~b}^{2} \mathrm{c}^{4} \mathrm{~d}$ is $[(10)!/(3!.2!.4)](-1)^{2}(-1)^{-4}=12600$.
Q.12: Find the coefficient of in the expansion of $\left(1+x+x^{2}+x^{3}\right)^{11}$.

Sol:
By expanding given equation using expansion formula we can get the coefficient x^{4}
i.e. $1+x+x^{2}=x^{3}=(1+x)+x^{2}(1+x)=(1+x)\left(1+x^{2}\right)$
$\Rightarrow\left(1+x+x^{2}+x^{3}\right) x^{11}=(1+x)^{11}\left(1+x^{2}\right)^{11}$
$=1+{ }^{11} C_{1} x^{2}+{ }^{11} C_{2} x^{2}+{ }^{11} C_{3} x^{3}+{ }^{11} C_{4} x^{4} \ldots \ldots$.
$=1+{ }^{11} \mathrm{C}_{1} \mathrm{x}^{2}+{ }^{11} \mathrm{C}_{2} \mathrm{x} 4+\ldots .$.
To find term in from the product of two brackets on the right-hand-side, consider the following products terms as
$=1 \times{ }^{11} C_{2} x^{4}+{ }^{11} C_{2} \mathrm{x}^{2} \times{ }^{11} \mathrm{C}_{1} \mathrm{x}+{ }^{11} \mathrm{C}_{4} \mathrm{x}$
$\left.=\mathrm{C}_{2}+{ }^{11} \mathrm{C}_{2} \times{ }^{11} \mathrm{C}_{1}+{ }^{11} \mathrm{C}_{4}\right] \mathrm{x}^{4}$
$\Rightarrow[55+605+330] x^{4}=990 x^{4}$
\therefore The coefficient of x^{4} is 990 .
Q.13: Find the number of terms free from the radical sign in the expansion of $(\sqrt{ } 5+4 \sqrt{ } n)^{100}$.

Sol:
$T_{r+1}={ }^{100} C_{r} \cdot 5^{(100-r) / 2} n^{r / 4}$
Where $r=0,1,2, \ldots \ldots, 100$
r must be $0,4,8, \ldots 100$
Number of rational terms $=26$
Q.14: Find the degree of the polynomial $\left[x+\left\{\sqrt{ }\left(3^{(3-1)}\right)\right\}^{1 / 2}\right]^{5}+\left[x+\left\{\sqrt{ }\left(3^{(3-1)}\right)\right\}^{1 / 2}\right]^{5}$.

Sol:
$\left[x+\left\{\sqrt{ }\left(3^{(3-1)}\right)\right\}^{1 / 2}\right]^{5}:$
$=2\left[{ }^{5} \mathrm{C}_{0} \mathrm{x}^{5}+{ }^{5} \mathrm{C}_{2} \mathrm{x}\left(\mathrm{x}^{3}-1\right)+{ }^{5} \mathrm{C}_{4} \cdot \mathrm{x} \cdot\left(\mathrm{x}^{3}-1\right)^{2}\right]$
Therefore, the highest power $=7$.
Q.15: Find the last three digits of $27^{\mathbf{2 6}}$.

Sol:
By reducing 27^{26} into the form $(730-1)^{n}$ and using simple binomial expansion we will get required digits.
We have $\mathbf{2 7}^{\mathbf{2}} \mathbf{= 7 2 9}$
Now $27^{26}=(729)^{13}=(730-1)^{13}$
$={ }^{13} \mathrm{C}_{0}(730)^{13}-{ }^{13} \mathrm{C}_{1}(730)^{12}+{ }^{13} \mathrm{C}_{2}(730)^{11}-\ldots .-{ }^{13} \mathrm{C}_{10}(730)^{3}+{ }^{13} \mathrm{C}_{11}(730)^{2}-{ }^{13} \mathrm{C}_{12}(730)+1$
$=1000 \mathrm{~m}+[(13 \times 12)] / 2] \times(14)^{2}-(13) \times(730)+1$
Where ' m ' is a positive integer
$=1000 m+15288-9490=1000 m+5799$
Thus, the last three digits of 17^{256} are 799 .

