

			PART-A							
Tim	e: 60 Minutes]	Julya	2013		[Total Marks: 50					
Inst	Instructions: (1) There are 50 objective type questions in this part and all are									
	compulsory.									
	(2) The questions are serially numbered from 1 to 50 and each carries 1									
		nark.								
		• •	•		the alternatives (A)					
			•	•	number. For each					
		-			n the circle () as (s) prresponding to that					
		Iternative in the	_	-	responding to that					
•					from the given four					
					the number in OMR					
	sheet.			-						
•	Each question car	rries 1 mark.								
1.	The volume of a	sphere is 36 n $\boldsymbol{\pi}$	cm ³ . Then its	diameter is	••••					
	(A) 9	(B) 3	(C) 12	! (D) 6					
2.	The volume of he	emisphere with ra	idius 1.5 cm is	s cm ³ .						
	(A) 2.25π	(B) 9π	(C) 7.	5π (D) 4.5π					
3.	For some data, if	$\sum f_i x_i = 75$ and $\sum f_i x_i = 75$	$\Sigma f_i = 12$, then	$\overline{x} = \dots$						
	(A) 6.5	(B) 5.25	(C) 6.	25 (D) 10.5					
4.	To draw a cumula	ative frequency c	urve we alway	s take on	Y-axis.					
	(A) Mid value of the class (B) Cumulative frequency									
	(C) Upper bounds	ary of the class	(D) Fr	requency						
5.	For data set, Mod	de Z = 25 and me	$ean \ \overline{x} = 25, th$	en median M =	**********					
	(A) 0	(B) 50	(C) 25	6	D) 75					
6.		are rolled the pro-	obability of ge	tting the same n	umber on both dice					
	is									
	(A) 1	(B) $\frac{1}{12}$	(C) $\frac{1}{6}$	Z1	1					
	(A) 1	$\frac{(\mathbf{B})}{12}$	$(C) \overline{6}$	(1	D) $\frac{1}{36}$					
7.	If $P(A) = 0.75$ th	en $P(\overline{A}) = \dots$								
	(A) 0	(B) 0.25	(C) 1	()	D) 25					
8.	$5^n (n \in N)$ ends	with								
	(A) 4	(B) 0	(C) 5	(1	D) 2					
9.	If g.c.d. $(a, b) =$	12, l.c.m. (a, b).	is not po							
	(A) 90	(B) 24	(C) 48		D) 36					
10.	The degree of the	, ,		,						
	(A) 7	(B) 2	(C) 3		 D) 1					
11.	The graph of P()	, ,	, , ,	·	, -					
	(A) a line segmen		-		D) a ray					

	γ =		•	
	(A) 0	(B) 2	(C) 1	(D) -3
13.	If $2x^3 - x^2 - 2x$	- 8 is divided by x -	2 then quotient pol	ynomial will be
•	(A) $x^2 - 3x + 2$	(B) $2x^2 - 3x - 4$	(C) $2x^2 - 3x + 4$	$4 (D) 2x^2 + 3x + 4$
14.	Among given line	ear pairs of equation	which pair has infin	itely many solutions?
	(A) $2x + 4y = 8$	and $x + 2y = -4$	(B) $2x + 4y = 8$	and $x + 2y = 4$
	(C) $2x + 4y = 8$	and $2x + 4y = 6$	(D) $2x + 4y = 8$	8 and x + 2y = 8
15.	If in a two digit no the number is	-	t place is x and the d	ligit at tens place is 4, then
		(B) 4x	(C) $x + 40$	(D) 5x
			x v	
16.	The standard form	n of a linear equation	$1 \frac{3}{2} - \frac{3}{3} = 1 \text{ in two}$	variable is
	(A) $2x - 3y - 3 =$	= 0	(B) $3x - 2y - 6$	
	(C) $3x - 2y - 1 =$		(D) $2x - 3y - 6$	
17.	· ·	ım of ages of father a ld be years.	nd his son was 30 ye	ears. 3 years hence the sum
	(A) 46	(B) 40	(C) 50	(D) 38
18.	In quadratic equat	tion, if then n	o real roots exist.	
	(A) $D > 0$	(B) D = 0	(C) D = 1	(D) $D < 0$
19.	For quadratic equ	$ation x^2 - 4x + a = 1$		2 then $a =$.
	(A) 2	(13) 4	(C) - 4	(D) 8
20.		$e ext{ of } 3x^2 - 4x + k =$		
	(A) - 4 .	(B) 4	(C) – 8	(D) 8
21.		iation has equ		
		$6 (B) x^2 - 6x + 36$		
22.	The rate of 1 kg. Ghee can be pure		If Rs. 20 increases p	er kg then kg Pure
	(A) $\frac{800}{x+20}$	(R) = 800	(C) $\frac{x+20}{800}$	$(D) \frac{800}{}$
		x 20	000	^
23.				$1, -10, -14, \dots$ is
	(A) - 8	(B) - 4	$(C) - 2^{-1}$	(D) 4
24.	(1) + (1 + 1) + (1 + 1)	1 + 1 + 1) + + (1	$+ 1 + 1 \dots (n - 1)$	times) =
	$(A) \ n(n+1)$	$(B) \frac{n(n+1)}{2}$	$(C) \frac{n(n-1)}{2}$	(D) $n (n - 1)$
25.	For the Arithmetic	c Progression T ₃₀ - 7	$\Gamma_{25} = 25$, then d =	••••••
	(A) 25	(B) 5	(C) 20	(D) 10
26.		es \overline{BC} , \overline{CA} , \overline{AB} are a similarity. If $PR =$		4:5. The correspondence of Δ POR is
	(A) 36	(13) 12;	(C) 18	(D) 24
27.		MNO. The correspon	, ,	` /
		n m∠M + m∠N =		, • • • • • • • • • • • • • • • • • • •
	(A) 90	(B) 120	(C) 80	(D) 60

28.	In \triangle STU, m \angle S + m \angle T = m \angle U, if SU = 8, TU = 15 then ST =					
	(A) 13	(B) 15	(C) 17	(D) 23		
29.	The length of the	diagonal of a square i	s $5\sqrt{2}$ then the measure	are of the side is		
	(A) $2,\sqrt{2}$	(B) 10	(C) $3\sqrt{2}$	(D) 5		
30.	In \triangle ABC, AB = 1	10, BC = 6 and AC =	8, The length of a Me	dian on the longest side		
	of the triangle is.		(0) 10	(D) (
	(A) 5	(B) 8	(C) 10	(D) 6		
31.	is	n equitateral triangle	is 12. The length of the	e altitude of the triangle		
	(A) $2\sqrt{3}$	(B) 4	(C) $3\sqrt{3}$	(D) 6		
32.	` ,	(x, y) from origin is				
	(A) $x^2 + y^2$	(B) $\sqrt{x^2 + y^2}$	(C) $ x + y $	(D) $ x - y $		
33.	•	•	$B_{1} = 2$) and $B(1, -4)$			
00,	(A) $(2, -1)$		(C) $(2, -3)$			
34.			- 3) to y-axis is			
	(A) - 3	(B) - 2	(C) 3	(D) 2		
35.	is the centr	oid of the triangle wh	nose vertices are A(3,	4), B(4, 5),.C(2, 3).		
	(A) (4.5, 6)	(B) (3, 4)	(C) (4, 3)	(D) (6, 9)		
36.	In Δ ABC, If m∠	C = 90 and $tan A = 7$	$\frac{1}{\sqrt{3}}$ then $\sin A = \dots$			
		·	• 5			
	(A) $\frac{1}{2}$	(B) $\frac{\sqrt{3}}{2}$	(C) $\frac{1}{\sqrt{2}}$	(D) 0		
37.	If $5 \cos A = 4 \sin A$	A then tan A =				
	1	(D) 5	(C) 5	(D) 5		
	$(A) \frac{1}{4}$	(B) $\frac{5}{4}$	(C) 5	(D) 5		
38.	Which of the follo	owing is correct for s	ome θ such that $(0 \le$	0 < 90) ?		
	$(A) \frac{1}{\cos \theta} < 1$	(B) $\sec \theta = 0$	$(C) \frac{1}{\sec \theta} = 1$	(D) $\frac{1}{\sec \theta} > 1$		
	$\csc^4\theta - \cot^4\theta$					
39.	$\csc^2\theta + \cot^2\theta$	•				
		(D) 2	(4) 20			
	(A) 1	(B) 2	(C) $\csc^2\theta + \cot^2\theta$			
40.	A 3 m long ladder	leans on the wall suc	h that its lower end re	mains 1.5 m away from		
40.	A 3 m long ladder the base of the w	leans on the wall suc	h that its lower end re			
40.	A 3 m long ladder	leans on the wall sucvall. Then,the ladder	h that its lower end re	mains 1.5 m away from		
40. 41.	A 3 m long ladder the base of the w ground. (A) 90	r leans on the wall suction. Then, the ladder (B) 30	th that its lower end remakes an angle of n	mains 1.5 m away from neasure with the		
	A 3 m long ladder the base of the w ground. (A) 90 The tops of two p	r leans on the wall suctivall. Then, the ladder (B) 30 oles of heights 18 m a	th that its lower end remakes an angle of n (C) 60 and 12 m are connected.	mains 1.5 m away from neasure with the		
41.	A 3 m long ladder the base of the w ground. (A) 90 The tops of two p makes an angle of (A) 8 m	(B) 30 oles of heights 18 m at measure 30 with hor (B) 10 m	h that its lower end remakes an angle of n (C) 60 and 12 m are connected izontal, then the length (C) 18 m	mains 1.5 m away from heasure with the (D) 45 ed by a wire. If the wire h of the wire is		
	A 3 m long ladder the base of the w ground. (A) 90 The tops of two p makes an angle of (A) 8 m When the length of	(B) 30 oles of heights 18 m at measure 30 with hor (B) 10 m	th that its lower end remakes an angle of m (C) 60 and 12 m are connected izontal, then the length (C) 18 m tree is equal to the he	mains 1.5 m away from heasure with the (D) 45 ed by a wire. If the wire h of the wire is		

	If m \angle OPB = 30 and OP = 15, then radius of the circle =						
*	(A) 15	(B) 30	(C) 7.5	(D) 5			
44.	In \triangle ABC, AB = 6, E	BC = 8, $AC = 10$, then	the radius of the circle	touching all the three			
	sides is						
	(A) 4	(B) 2	(C) 3	(D) 1			
45 .	The area of a sector i	s given by with	radius r and length of	an arc is 1 of a circle.			
	(A) $\frac{1}{2}$ r l	(B) $\frac{4}{3}$ rl	(C) $\frac{3}{2}$ rl	(D) $\frac{1}{2}$ r ² l			
46.	The union of an arc	and its corresponding	g chord is called				
	(A) Area of sector	(B) Segment	(C) Sector	(D) Semicircle			
47.	If the ratio of the are	a of two circles is 4:9	, then the ratio of the	ir circumference			
	(A) 9:4	(B) $2:3$	(C) 4:9	(D) 16:81			
48.	Radius of a circle is	7 and its length of n	ninor arc is 11 then th	ne length of major arc			
	is						
	(A) 44	(B) 22	(C) 33	(D) 11			
49.			cm and height 4 cm	is cm ² .			
	(A) 48π	(B) 12 π	(C) 36π	(D) 15 π			
50.		ea of a 5 Rupee coin					
	(A) $2\pi rh$	(B) $\pi r^2 h$	(C) $2\pi r(r + h)$	(D) $\pi r(r + h)$			
		PART	**************************************				
Time	: 2 Hours]			[Total Marks : 50			
Instr				estion paper and total			
		17 questions are th					
		-	mpulsory. Internal o				
		-	equired. Retain all the de represent the mar	lines of construction.			
	(1) 1110	SECTIO		no or the question.			
*	Show calculations		owing question num	her 1 to 8			
•	(Each carry 2 mai	rks)		16			
1.	_	and 32 by Euclid's i					
2.	If 3 is one of the ro	oot of $P(x) = 3x^3 - x^2$	2 - ax - 45 then find	'a'.			
3.	Solve the following	pair of linear equatio	n by method of subst	titution.			
	2y + y - 8 + y + 6y - 15						

2x + y = 8, x + 6y = 15.

If $S_{10} = 50$, a = 0.5 then find d. **OR**

- 4. For any Arithmetic progression 200, 196, 192, 200 is it possible that any term zero? Calculate your answer.
- 5. In \triangle ABC, the bisector of \angle B intersect \overline{AC} in D. If $\frac{AD}{DC} = \frac{5}{6}$ and AB = 8, Find BC.
- 6. Find the coordinates of the point which divides \overline{AB} in the ratio 3:1 from A the coordinates of A and B are (2, 3) and (6, 7) respectively.
- 7. Prove that $\sin 48$. $\sec 42 + \cos 48$. $\csc 42 = 2$ **OR**

Prove that
$$(\csc\theta - \cot\theta)^2 = \frac{1 - \cos\theta}{1 + \cos\theta}$$

8. For the data set, Z - M = 2.5 if the mean is 20 then find the value of mode.

SECTION-B

♦ Answer the question no. 9 to 12 as asked showing calculation. (Each carry 3 marks)

12

- 9. The sum of areas of two different squares is 400 meter², the difference of its perimeter is 16 meter find the length of sides of both the squares.
- 10. At a point on level ground, the angle of elevation of a vertical tower is found to be such that its tangent is $\frac{5}{12}$. On walking 192 metres towards the tower, the tangent of the angle is found to be $\frac{3}{4}$, find height of the tower.
- 11. A coin is tossed three times. Find the probability of the following events:
 - (1) A: getting at least two heads.
 - (2) B: getting exactly two heads.
 - (3) C: getting atmost one head.
- 12. The number of shares held by a person of various companies are as follows: Find mean by step deviation method.

No. of shares	100-200	200-300	300-400	400-500	500-600	600-700
No. of companies	5	3	3	6	2	1

OR

12. Find mode of the following frequency distribution:

Class	4-8	8–12	12–16	16–20	20–24	24–28
Frequency	3	9	10	4	17	2

SECTION-C

Answer as asked from question 13 to 15 showing calculations. (Each carry 4 marks)

12

- 13. The tangents drawn to a circle from a point in the exterior of the circle are congruent.
- 14. The cost of ploughing a circular field at the rate Rs. 0.75 per m² is Rs. 4158. Find the cost of fencing the field at the rate of Rs. 30 per meter.
- 15. The curved surface area of a cone is 550 cm². If its diameter is 14 cm. Find its volume.

OR

15. A solid is composed of a cylinder with hemispherical ends on both the sides. The radius and the height of the cylinder are 20 and 35 cm. respectively. Find the total surface area of the solid.

SECTION-D

- ♦ Find solutions of the question 16 and 17. (Each carry 5 marks)
- 10
- **16.** Draw $\Theta(0, 4)$, construct a pair of tangents from A where OA = 10 units. Write steps of constructions.
- 17. If a line Parallel to one of the sides of a triangle intersect the other two sides in a distinct points, then the segments of the other two sides in one half plane are proportional to the segments in the other half planes. OR
- 17. In \triangle ABC, $\angle \Lambda$ is right angle. Prove that BC² = Λ B² + AC².