MATHS QUESTION PAPER CLASS-X (MARCH, 2011) PART-A

Time : 75 minutes

Maximum Marks : 50

Instructions :

- (1) There are **50** objective type questions in this part and **all** are **compulsory**.
- (2) The questions are serially numbered from 1 to 50 and each carries 1 mark.
- (3) You are supplied with separate OMR sheet with the alternatives (A) ○, (B) ○, (C) ○, (D) against each question number. For each question, select the correct alternative and darken the circle as completely with the pen against the alphabet corresponding to that alternative in the given OMR sheet.
- From the following 1 to 50 questions, select the correct alternative from the given four answers and darken the circle with pen against the alphabet, against the number in OMR sheet.
- Each question carries 1 mark.
- On walking 'a' metres on the hilly way, making an angle of 30° with the ground, one can reach the height 'b' metres from the ground. Then

[Space for Rough Work]

- (A) a = b (B) 2a = b(C) $2a = \sqrt{3}b$ (D) a = 2b
- 2. Formula to find the curved surface area of Sphere is

(A)	$\pi r^2 h$	(B)	$4\pi r^2$
(/			

- (C) $3\pi r^2$ (D) $2\pi r^2$
- 3. The angle of elevation of the top of the building from a point A on the ground is 45° . If the distance of the building from the point A is x and the height of the building is y, then

(A)	x = y	(B)	x < y
(C)	x > y	(D)	x = 2y

4.	If $n = 100$, $\sum f_i d_i = 0$	and A =	= 15,
	then the value of mean	$\overline{x} = \dots$	
	(A) 100	(B)	115
	(C) 15	(D) ·	11.5
5.	If $n = 50$, A = 20 and m	ean $\overline{x} =$	19.7,
	then the value of $\sum f_i d_i$:	=	
	(A) 35	(B)	(- 35)
	(C) 15	(D)	(- 15)
6.	$n = 100, A = 12, \overline{x} = 1$	2, ∴Σ	$f_i d_i = \dots$
	(A) 12	(B)	0
	(C) 100	(D)	(- 12)
7.	$\overline{x} = \overline{y} + 3$, $\therefore \overline{y} = \overline{x} + \dots$		
	(A) 0	(B)	3
	(C) (-3)	(D)	6
8.	Under section 80 C, inves is exempted in income ta	stment in ax.	n upto fixed limit
	(A) PPF	(B)	Bank FD
	(C) Shares	(D)	Mediclaim
9.	Under section	ofincom	e tax, mediclaim premium
	(A) 80 C	(B)	88 C
	(C) 80 D	(D)	88 D
10.	Senior citizen has inve section 80 C. He will get t his income.	sted Rs. he exem	90,000 annually, under ption of Rs from
	(A) 1,00,000	(B)	1,85,000
	(C) 1,50,000	(D)	90,000

- 11. For A(4, 3) and B(8, 9); the mid point of $AB = \dots$
 - (A) $\left(2,\frac{3}{2}\right)$ (B) $\left(4,\frac{9}{2}\right)$
 - (C) (6, 6) (D) (2, 3)
- **12.** The distance between origin and point (x, y) is
 - (A) x (B) y
 - (C) x + y (D) $\sqrt{x^2 + y^2}$

13. The centroid of a triangle with vertices A(3, 2), B(7, 5) and C(2, 2) is

- (A) (3, 4) (B) (4, 3)(C) $\left(\frac{7}{2}, \frac{5}{2}\right)$ (D) $\left(6, \frac{9}{2}\right)$

(A)	100	(B)	75

- (C) 60 (D) 80
- 15. In a two digit number, number at unit's place is 'p' and number at ten's place is 'r'. The two digit number is
 - (A) 10x + y (B) 10p + r
 - (C) 10 r + p (D) 10y + x

16. Solution set of x + y - 1 = 0 and 2x + 2y = 2 is

(A)	$\{(1, 0)\}$	(B)	$\{(0, 1)\}$

(C) Null set (D) Infinite set

17.	$\triangle ABC \sim \triangle PQR$. Perimetre of $\triangle ABC$ is 35 and				
	that	of $\triangle PQR$ is 28. If PR	$=4\sqrt{10}$	$\overline{0}$, then AC =	
	(A)	$5\sqrt{2}$	(B)	$5\sqrt{10}$	
	(C)	$2\sqrt{5}$	(D)	$4\sqrt{10}$	
18.	Len	gth of a diagonal of a So	quare i	s 10. Its area =	
	(A)	100	(B)	$5\sqrt{2}$	
	(C)	50	(D)	25	
19.	In∆	ABC, $m \angle B = 90^\circ$. BN	/I is an	altítude on	
	hypo	otenuse AC. $AM = 16$,	AC =	25, ∴ BM =	
	(A)	12	(B)	20	
	(C)	$\sqrt{41}$	(D)	9	
20.	In a	correspondence ABC \leftrightarrow is the angle corresp	RPQt	Detween $\triangle ABC$ and $\triangle PQR$, g o $\angle B$.	
	(A)	∠P	(B)	∠Q	
	(C)	∠R	(D)	∠B	
21.	Bise	ctor of $\angle P$ intersects	RQ in	ΔS in ΔPQR .	
	QS:	RS = 4:5. If $PQ = 4,$	then	PR =	
	(A)	4	(B)	5	
	(C)	9	(D)	10	
22.	ΔPG	$R \sim \Delta XYZ$ and $PQ: 0$	QR : P	R = 3:5:7.	
	If the perimeter of ΔXYZ is 22.5, then $YZ = \dots$				
	(A)	4.5	(B)	7.5	
	(C)	10.5	(D)	15	
23.	In Δ	ABC and $\triangle PQR$, $m \angle$	A = n	$n \angle R$ and $\angle B \cong \angle Q$.	
	The	correspondence i	is simil	larity between them.	
	(A)	$ABC \leftrightarrow PQR$	(B)	$ABC \leftrightarrow QRP$	
	(C)	$ABC \leftrightarrow RQP$	(D)	$ABC \leftrightarrow RPQ$	

24.	(1-	$\cos \theta) \ (1 + \cos \theta) = \dots$	•••••	
	(A)	$\csc^2 \theta$	(B)	$\cos^2 \theta$
	(C)	$2 - \cos^2 \theta$	(D)	$\frac{1}{\operatorname{cosec}^2 \theta}$
25.	If 7	$\cos^2\theta + 3\sin^2\theta = 4, th$	ien tan	$\theta = \dots$
	(A)	7	(B)	7 3
	(C)	3	(D)	$\sqrt{3}$
26.	\sin^2	$60^{\circ} - \tan 45^{\circ} + \cos^2 30^{\circ}$	°– cot	90° =
	(A)	1	(B)	2
	(C)	1 2	(D)	3
27.	Form	nula to find total surfac	e area	of Rs. 5 coin is
	(A)	$\pi r^2 h$	(B)	$\pi r (r + h)$
	(C)	$2\pi r (r + h)$	(D)	πrl
28.	The area	radius of a Sphere is is 616 sq. cm.		cm, if its curved surfac
	(A)	6	(B)	7
	(C)	8	(D)	5
29.	Volu	me of a Sphere with ra	dius 1.	5 cm is cu.cm.
	(A)	4.5 π	(B)	5 π
	(C)	5.5 π	(D)	4 π

	30 .	Sum of first n nature	al numbers =	=	
		(A) $\binom{n}{2}$	(B)	n+1 2	
		(C) $\frac{n(n+1)}{2}$	(D)	n-1 2	
:	31.	While purchasing in i simple interest =	nstalment sc	heme, the formula to fin	d
		(A) $I = \frac{PRN}{100}$	(B)	$I = \frac{PR^2N}{100}$	
		$(C) I = \frac{P^2 R N}{100}$	(D)	$I = \frac{PRN^2}{100}$	
	32.	Simple interest on Rs	s 500 at 10%	is for two years	
		(A) Rs. 100	(B)	Rs. 110	
		(C) Rs. 120	(D)	Rs. 10	
đ	33.	If $\frac{(3x-3)^2}{(1-x)^2} = m$, th	en <i>m</i> =		
		(A) 3	(B)	(- 3)	
		(C) 9	(D)	(- 9)	
ć	34.	$\alpha = \dots$ is a solution of	quadratic ec	quation $x^2 + 7x + 12 = 0$).
		(A) 7	(B)	4	
		(C) (-3)	(D)	3	
e e	35.	Value of discriminant	D is fo	or the quadratic equatio	n
		$5x^2 - 6x + 1 = 0.$			
		(A) 16	(B)	56	
		(C) $\sqrt{56}$	(D)	4	
e t	36.	If one of the roots of the then the value of $k =$	he equation	$kx^2 + 3x - 4 = 0 \text{ is } x = 2$	2,
		(A) $\frac{1}{2}$	(B)	$\left(-\frac{1}{2}\right)$	
		(C) 2	(D)	(-2)	

[6]

37.	Any	angle inscribed in a se	mi-ciro	cle is of measure
	(A)	30°	(B)	90°
	(C)	120°	(D)	60°
38.	If ©	$O(\mathbf{P}, 5)$ and $O(\mathbf{Q}, 4)$ to	ich eac	h other externally,
	ther	n PQ =		
	(A)	5	(B)	9
	(C)	1	(D)	7
39 .	Ifcy	clic quadrilatic is a par	allelog	ram, then it is
	(A)	Rhombus	(B) .	Rectangle
	(C)	Square	(D)	Trapezium
40.	If C	$(P, 5)$ and $\bigcirc(Q, r)$ are	congri	lent circles, then
	(A)	$r = 5, P \neq Q$	(B)	r = 5, P = Q
	(C)	$r \neq 5$, $P = Q$	(D)	$r \neq 5, P \neq Q$
41.	If⊙	$O(\mathbf{P}, 3)$ and $O(\mathbf{Q}, r)$ are	conce	ntric circles, then
	(A)	P = Q, r = 3	(B)	$P \neq Q, r = 3$
	(C)	$P \neq Q, r \neq 3$	(D)	$P = Q, r \neq 3$
42 .	Inte	rsection set of all the ra	adii of a	a Circle i s
	(A)	¢	(B)	{Centre of circle}
	(C)	Circle	(D)	Interior of circle
43.	The	length of semi-circular	arc of	O(0, 5) is
	(A)	2π	(B)	π
	(C)	5π	(D)	10π

44. $p(x) = -x^2$ and $q(x) = x^3$. Their $h(x) = \dots$ (A) x^3 (B) $(-x^2)$ (C) x^6 (D) $(-x^5)$

45. If p(x) = 12(x-1) and q(x) = 17(x+1), then $h(x) = \dots$ (A) 1 (B) x-1(C) x+1 (D) x^2-1

46. From the following, is not a polynomial in *x*.

(A)	$\sqrt{x}-5$	(B)	$3x^2 - \sqrt{5}$
(C)	$\frac{3}{2}x^2 - x - 2$	(D)	$5x^2 - x + 1$

47. From the following, is rational expression, but not a polynomial.

(A)	$\begin{array}{c} x-5\\ x-3 \end{array}$	(B)	$\frac{x^2-9}{x-3}$
(C)	$\frac{x^3-8}{x^2+2x+4}$	(D)	$\begin{array}{c} x-3\\ 3-x \end{array}$

48. If $\frac{a-1}{p(a)} = \frac{a^2 + a + 1}{a^3 - 1}$, then $p(a) = \dots$ (A) 1 (B) $\frac{a^2 - 1}{(a-1)^2}$

49. Remainder is, when x³¹ + 1 is divided by x - 1.
(A) 3
(B) 2
(C) 4
(D) 1

- **50.** H.C.F. of $p(x) = x^2 + 1$ and $q(x) = x^2 1$ is
 - (A) $(x^2 1)$ (B) x^2
 - (C) 1 (D) $(x^2 + 1)$

PART - B

Time : 2 Hours

Maximum Marks : 50

2

Instructions :-

- (1) There are **four** sections in this part of the question paper and total1 to 17 questions are there.
- (2) All the questions are compulsory. Internal options are given.
- (3) Draw figures wherever required. Retain all the lines of construction.
- (4) The numbers at right side represent the marks of the question.

SECTION - A

Answer the following questions from 1 to 8 in short. Each question carries 2 marks.

1.	Find the solution set of the following pair of linear equations.	2
	2x + y = 35(1)	
	3x + 4y = 65(2)	
2.	Find the discriminant of the quadratic equation $x^2 + 5x + 1 = 0$.	2

- **2.** Find the discriminant of the quadratic equation $x^2 + 5x + 1 = 0$.
- Find the sum of first 11 terms of an Arithmetic Progression
 9, 16, 23,

OR

- **3.** Find the 60th term of an Arithmetic Progression 10, 20, 30, 40,
- 4. The cash price of a bicycle is Rs. 1,000. In instalment scheme, cash down payment is of Rs. 450 and two monthly instalments of Rs. 300 each. Find the rate of interest charged in the instalment scheme.
- 5. The cost price of a wrist-watch is Rs. 800. It can be purchased by paying 2
 Rs. 425 as cash down payment and the remaining amount to be paid after two months, giving interest of Rs. 35. Find the value of the instalment.

- 6. $\triangle PQR \sim \triangle MNO$. PQ = 8, MN = 6 in $\triangle PQR$ and $\triangle MNO$ respectively. If the area of $\triangle PQR$ is 72 unit, then find the area of $\triangle MNO$.
- 7. Using trigonometric identities, prove that $\sec^2 \theta + \csc^2 \theta = \sec^2 \theta \cdot \csc^2 \theta$

OR

- 7. Prove that $\tan 5^{\circ} \cdot \tan 25^{\circ} \cdot \tan 45^{\circ} \cdot \tan 65^{\circ} \cdot \tan 85^{\circ} = 1$
- **8.** Find the distance betwen the points (7, 5) and (2, 5).

SECTION - B

Answer the following questions from No. 9 to 12 with calculations. (Each question is of 3 marks)

- 9. Find H.C.F. and L.C.M. of the polynomials $p(x) = x^3 8$, $q(x) = x^3 + 8$ and $r(x) = x^4 + 4x^2 + 16$.
- **10.** Simplify :

$$x^{2} + \frac{x+4}{2x-8} + x^{2} + \frac{x-4}{2x-8} + \frac{2x}{4-x^{2}}$$

10. Simplify :

$$\frac{a^{4} - (a-2)^{2}}{\left(a^{2} + 2\right)^{2} - a^{2}} + \frac{a^{2} - \left(a^{2} - 2\right)^{2}}{a^{2}(a+1)^{2} - 4} + \frac{a^{2}(a-1)^{2} - 4}{a^{4} - (a+2)^{2}}$$

- 11. While selling a Calculator for Rs. 56, the profit in percentage is equal to 3 its cost price in rupees. Find the cost price of the Calculator.
- 12. A flag-staff of height h stands on the top of the tower. If the angles of elevation of the top and bottom of the flag-staff are respectively α and β from a point on the ground, prove that the height of the tower is

 $\frac{h \tan \beta}{\tan \alpha - \tan \beta}, \quad \text{where } \alpha > \beta.$

2

2

2

3

3

SECTION - C

Solve the following questions from No. 13 to 15, as per the instruction. (Each carries 4 marks)

13. Find the missing frequency for the following frequency distribution, if4 its Mean is 43.75.

Class	0-10	10-20	20-30	30-40	40-50	50-60	60-70	70-80	80-90	90-100
Frequency	8	4	20	45	64	32	f	8	2	2

- 14. Prove that square of the length of the hypotenuse of a right-angled4 triangle is the sum of the squares of the lengths of the other two sides.
- **15.** Find the curved surface area of a Sphere, whose diametre is 10 cm. ($\pi = 3.14$)

4

OR

15. How many litres of water can be stored in cylindrical tank with radius1.4 m and height 4 m ?

SECTION -D

Solve the following questions from No. 16 to 17. (Each carries 5 marks)

16. Prove that "Angles in a segment corresponding to minor arc are congruent".

OR

- **16.** Prove that "Angle made by a chord with tangent at one end point of the chord and the angle subtended by the chord in the alternate segment are congruent".
- 17. Using the centre of a Circle, draw a tangent to the circle through a point in the exterior of circle. How many such tangents are drawn? Here, radius = 3 cm and the distance of the point, in the exterior of their circle, from the centre is 7 cm.

5

5