Gujarat State Board Class X Mathematics **Board Paper March 2014**

Time: 75 minutes Total Marks: 50

General Instructions:

- 1. There are 50 objective type questions in this part and all are compulsory.
- 2. The questions are serially numbered from 1 to 50 and each carries 1 mark.
- 3. You are supplied with separate OMR sheet with the alternative (A) \bigcirc , (B) \bigcirc , (C) \bigcirc , (D) \bigcirc against each question number. For each question, select the correct alternative and darken the circle O as ● completely with the pen against the alphabet corresponding to that alternative in the given OMR sheet
- From the following 1 to 50 questions, select the correct alternative from those given and darken the circle with pen against the alphabet, against number in OMR sheet.
- Each question carries 1 mark.

Part-A

1.	In \triangle PQR, the bisector of \angle P intersects \overline{QR} in D. If QD : RD = 4 : 7, PR = 14,
	Then PQ =
	(A) 4

- (B)8
- (C) 12
- (D)15

2. If cosec A =
$$\frac{4}{3}$$
 and A + B = 90, then sec B =

(A)
$$\frac{16}{9}$$
 (B) $\frac{4}{3}$ (C) $\frac{3}{4}$ (D) $\frac{7}{3}$

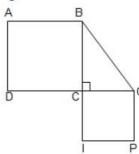
- 3. From the top of a building h metre high, the angle of depression of an object on the ground has a measure θ . The distance of the object from the building is
 - (A) $h\cos\theta$ metre
 - (B) $h \sin \theta$ metre
 - (C) $\tan \theta$ metre
 - (D) $h \cot \theta$ metre

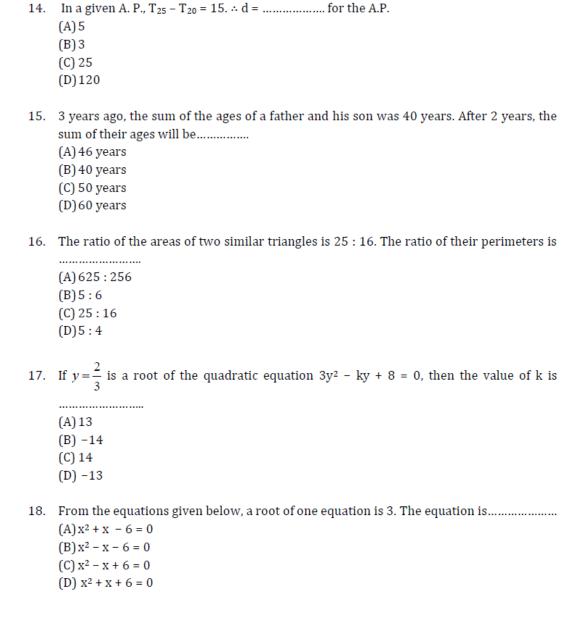
- 4. For A (1, 2) and B (3, -2), the coordinates of the midpoint of AB are is
 - (A)(2,2)
 - (B)(0,0)
 - (C)(2,0)
 - (D)(0,2)
- 5. On walking metres on a slope at an angle of measure 30° with the ground, one can reach the height 'a' metres from the ground.
 - (A) $\frac{2a}{\sqrt{3}}$
 - (B) $\frac{\sqrt{3}}{2}a$
 - (C) 2a
 - (D) $\frac{a}{2}$
- 6. $\frac{\sin^4 \theta \cos^4 \theta}{\sin^2 \theta \cos^2 \theta} =$
 - (A)3
 - (B) 2
 - (C)0
 - (D)1
- 7. From the natural number of single digit, the probability of getting an even number is
 - (A) $\frac{5}{9}$
 - (B) $\frac{5}{10}$
 - (C) $\frac{4}{9}$
 - (D) $\frac{1}{9}$
- 8. In \triangle ABC, correspondence ABC \leftrightarrow BAC is similarity. From the following is true.
 - (A) $\angle C \cong \angle A$
 - (B) ∠B ≅ ∠C
 - (C) ∠A ≅ ∠B
 - (D) $\angle A \cong \angle B \cong \angle C$

9.	f $\sin 7\theta = \cos 2\theta$ for acute angles 7θ and 2θ , then $\theta = \dots$
	1240

- (A) 10
- (B) 90
- (C)20
- (D)30

- (A) 50x + 5
- (B) 5x
- (C) 30x + 5
- (D)x + 50

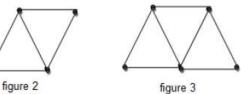

11. The chord of a
$$\odot$$
 (0, 5) touches \odot (0, 3). The length of the chord is


- (A)8
- (B) 6
- (C)7
- (D)2

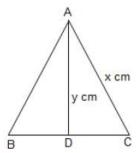
- (A) $2\sqrt{3}$
- (B) $\frac{\sqrt{3}}{2}$
- (C) 2
- (D) √3

13. As shown in the following figure, the area of square ABCD is 16 cm² and the area of square CIPO is
$$9\text{cm}^2$$
. If $\overline{BC} \perp \overline{CO}$ then the length of $\overline{BO} = \dots \text{cm}$.

- (A) 7
- (B) 25
- (C) 625
- (D)5



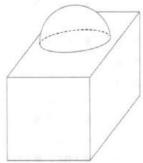
19. If α , β , γ are the zeros of a polynomial $P(x) = ax^3 + bx^2 + cx + d$ ($a \neq 0$) then


- (A) $-\frac{b}{a}$
- (C) $\frac{c}{d}$
- (D) $-\frac{c}{a}$
- 20. With the help of match-sticks, Zalak prepared a pattern as shown below. When 97 matchsticks are used, the serial number of the figure will be _____.

- (A) Figure 32
- (B) Figure 95
- (C) Figure 49
- (D) Figure 48
- 21. The volume of a cylinder is 550 cm³. If its radius is 5 cm, then its height is cm.
 - (A) 12
 - (B)9
 - (C) 7
 - (D) 14

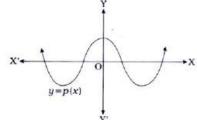
- (A) $\sqrt{\frac{3}{2}x}$
- (B) $\frac{\sqrt{3}}{2}x$
- (C) $\frac{\sqrt{3x}}{2}$
- (D) $\frac{3}{2}x$
- 23. In any A.P., $S_n 2 S_{n-1} + S_{n-2} = \dots (n > 2)$.
 - (A)a + d
 - (B) 2d
 - (C) d
 - (D)a
- 24. The foot of the perpendicular drawn from P(-3, 2) to the y-axis is M. The coordinates of M are.....
 - (A)(0,2)
 - (B)(3,0)
 - (C) $\left(\frac{3}{2}, -1\right)$
 - (D) (-3, 2)

25.	(A) $\frac{7}{3}$ (B) 7 (C) $\sqrt{3}$ (D) $\frac{1}{\sqrt{3}}$
26.	The formula to find the total surface area of a Rs. 5 coin is
27.	If the area and the circumference of a circle are numerically equal, then the radius of the circle is
28.	If the ratio of the areas of two circles is $1:4$, then the ratio of their circumferences is
29.	The product of the zeroes of polynomial x^2 – $4x$ + 3 is


30.	When the length of the shadow of a pole is equal to the height of the pole, the angle of elevation of the Sun has a measure of
31.	The area of a minor sector of \odot (P, 30) is 300 cm². The length of the corresponding arc in
32.	The volume of a sphere with radius 3cm is
33.	Two consecutive even numbers can be
34.	The area of a sector formed by two mutually perpendicular radii in \odot (0, 5 cm) iscm². (A) 4π (B) 25π (C) $\frac{4}{25}\pi$
35.	□ ABCD is cyclic. If m ∠ B = 60° then, m ∠ D =

36.	The sum of two numbers is 10 and their positive difference is 2. The bigger number is
	(A) 8
	(B) 4
	(C) 2 (D) 6
37.	Ifthen the roots of the quadratic equation are equal. (A) $D = 0$
	$(B) D \neq 0$
	(C) D < 0
	(D)D > 0
38.	In usual notations, $Z - M = \dots (M - x)$
	(A) 3
	(B) 2 (C) 4
	(D) 1
	2 ,
39.	If $P(C) = \frac{2}{7}$, then $P(\overline{C}) = \dots$
	(A) $\frac{5}{7}$
	(B) $\frac{2}{7}$
	(C) 0
	(D) 1
40	Fac 20 1 20 7 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2
40.	For $2x + 3y = 7$ and $3x + 2y = 3$, $x - y = \dots$ (A) 4
	(B) -4
	(C) 10
	(D)21
41.	Distance between the points $(2, -3)$ and $(5, a)$ is 5. Hence $a = \dots$
	(A) -1 (B) 6
	(B) 6 (C) 1
	(D)7

42. The modal class of the following frequency distribution is


Class	0-10	10-20	20-30	30-40	40-50
Frequency	7	15	13	17	10

- (A) 20-30
- (B) 10-20
- (C)30-40
- (D) 40-50
- 43. A show-piece, as shown in the figure, is made of a cube and a hemisphere. If the measure of the total surface area of the cube is represented by A, the curved surface area of the hemisphere is represented by B and the area of the base of the hemisphere is represented by C, then is true for the total surface area of the show-piece.
 - (A)A+B+C
 - (B)A+B-C
 - (C)B+C-A
 - (D)A + C B

- 44. The distance between A(-6, 7) and B(-1, -5) is
 - (A) 12
 - (B) 13
 - (C)7
 - (D) $\sqrt{37}$
- 45. The discriminant (D) of the equation $5x 6 + \frac{1}{x} = 0$ is
 - (A) 4
 - (B) √56
 - (C) 16
 - (D)56

- 46. In the formula of mean, $\overline{x} = A + \frac{\sum f_i d_i}{\sum f_i}$, $d_i = \dots$
 - (A) $f_i A$
 - (B) $A x_i$
 - (C) A-f
 - (D) $x_i A$
- 47. For $\sqrt{4+\sqrt{83}}$, the correct option is
 - (A) does not exist as quadratic surd
 - (B) does not exist as real numbers
 - (C) $2+\sqrt{83}$
 - (D) $\sqrt{83} 2$
- 48 2^m . 5^n $(m, n \in \mathbb{N})$ ends with
 - (A)5
 - (B) 0
 - (C) 25
 - (D) 125
- 49. From the graph given below, y = P(x) has zeros.
 - (A) 1
 - (B) 5
 - (C)3
 - (D)4

- 50. The zero of the polynomial $P(x) = \sqrt{5}x 5$ is
 - (A) $\sqrt{5}$
 - (B) $-\sqrt{5}$
 - (c) $\frac{\sqrt{5}}{5}$
 - (D)-5

Board Paper 2014

Time: 2 Hours Total Marks: 50

Part-B

Instructions:

- 1. There are Four sections in this part with questions from 1 to 17.
- 2. All the questions are compulsory. Internal options are given.
- 3. Draw figures wherever required. Retain all the lines of construction.
- 4. The numbers at right side represent the marks of the question.

SECTION A

Answer the following very short answer questions: [2 marks each]

16

- 1. Find the square root of $6 + 4\sqrt{2}$.
- 2. Find the sum of the zeroes and the product of the zeroes of the quadratic polynomial $p(x) = 3x^2 + 7x + 4$, without finding the zeroes.
- 3. Solve the following pair of equations by cross-multiplication method: 2x 5y = 4, 3x 8y = 5
- 4. Add the following:

$$(-100) + (-92) + (-84) + ... + 92$$

OR

- 4. In a given A.P. a = 8, $T_n = 33$, $S_n = 123$. Find d and n.
- 5. In \triangle ABC, m \angle B = 90°, $\overline{BM} \perp \overline{AC}$, M \in AC. If AM MC = 7 and AB² BC² = 175, then find AC.
- 6. Find the distance between A (a + b, b a) and B (a b, a + b).
- 7. If $A + B = 90^{\circ}$, then prove that

$$\sqrt{\frac{\tan A \tan B + \tan A \cot B}{\sin A \sec B}} = \sec A$$

OR

7. Prove that:
$$\sqrt{\frac{1-\sin\theta}{1+\sin\theta}} = \sec\theta - \tan\theta$$

8. The mean of a data is \bar{x} = 35.8. If $\sum f_i u_i$ = 4, $\sum f_i$ = 50 and c = 10, then find the assumed mean (A).

SECTION B

Solve the following: [3 marks each]

12

9. Solve the given pair of linear equations:

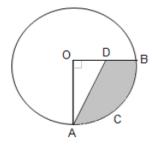
$$\frac{3}{\sqrt{x}} + \frac{4}{\sqrt{y}} = 2, \frac{5}{\sqrt{x}} + \frac{7}{\sqrt{y}} = \frac{41}{12}$$
 (x > 0, y > 0)

- 10. The angles of elevation of the top of a tower from two points at a distance \mathbf{a} and \mathbf{b} from the base, and in the same straight line with it, are complementary. Prove that the height of the tower is \sqrt{ab} .
- 11. There are 5 red, 2 yellow and 3 white roses in a flowerpot. One rose is selected from it at random. What is the probability that the selected rose is (1) red (2) yellow (3) not white colour?
- 12. Find the mean of the following frequency distribution:

Class	0-50	50-100	100-150	150-200	200-250	250-300	300-350
Frequency	10	15	30	20	15	8	2

OR

12. Find the median of the following frequency distribution:


Class	0-100	100-200	200-300	300-400	400-500	500-600
Frequency	64	62	84	72	66	52

SECTION C

Solve the following: [4 marks each]

12

- Prove that a tangent to a circle is perpendicular to the radius drawn from the point of contact.
- 14. OA and OB are two mutually perpendicular radii of a circle with radius 10.5 cm.
 D ∈ OB and OD = 6 cm. Find the area of the shaded region in the figure given below:

15. The cost of painting the surface of a sphere is Rs. 1526 at the rate of Rs. 6 per m^2 . Find the radius of the sphere. ($\pi = 3.14$)

OR

15. A well of diameter 7 m and 30 m deep is dug and the soil obtained by digging the well is evenly spread out to form a platform of size 30 m \times 10 m. Find the height of the platform.

SECTION D

- 16. ⊙ (P, 4 cm) is given. Draw a pair of tangents through A, which is in the exterior of the ⊙ (P, 4 cm) such that the measure of the angle between the tangents is 60°. Write the construction steps.
- Prove that the areas of two similar acute triangles are proportional to the squares of the corresponding sides.

OR

17. In $\triangle ABC$, $m \angle B = 90^{\circ}$. Prove that $AC^2 = AB^2 + BC^2$.