GUJARAT BOARD CLASS 12 MATHS SAMPLE PAPER-SET ${ }^{1}$ Time: $\mathbf{3}$ Hrs.

Instructions: (1) This section contains 50 questions and all questions are compulsory
(2) All questions carry 1 mark.
(3) Read each question carefully and select proper alternatives and answer in the OMR Answer Sheet.

PART-A
(1) The number of commutative binary operations on $\{1,2\}$ is \qquad
(a) 8
(b) 4
(c) 16
(d) 27
(2) If $a * b=\frac{a b}{100}$ on Q^{+}, inverse of 0.1 is
(a) 100000
(b) 1000
(c) 10
(d) 10000
(3) If $f(x)=\frac{x-1}{x+1}$, then $f(2 x)=$
(a) ${ }_{f(x)+3}^{2 f(x)+1}$
(b) $\begin{gathered}2 f(x)+3 \\ f(x)+1\end{gathered}$
(c) $\begin{aligned} & 3 f(x)+1 \\ & f(x)+3\end{aligned}$
(d) $\frac{f(x)+2}{3 f(x)+1}$
(4) $\quad f: N \rightarrow N, f(x)=2 x+3 \& g(x)=5 x+7$ then $f o g(x)-g o f(x)=$ \qquad
(a) $x+5$
(b) $2 x+5$
(c) $3 x+5$
(d) -5
(5) If $f(x-1)=x^{2}-3 x+1$, then $f(x+1)=$ \qquad
(a) $x^{2}-3 x+1$
(b) $x^{2}+x-1$
(c) $x^{2}-x+1$
(d) $x^{2}+3 x-1$
(6) If $\tan ^{-1} x-\tan ^{-1} y=0 \& \sin ^{-1} x+\sin ^{-1} y=\frac{\pi}{2}$ then $x+y=$ \qquad
(a) $\sqrt{2}$
(b) $\frac{1}{\sqrt{2}}$
(c) 1
(d) 0
(7) If $m \angle A=90^{\circ}$ in $\triangle A B C$, then $\tan ^{-1}\left(\frac{c}{a+b}\right)+\tan ^{-1}\left(\frac{b}{a+c}\right)=$ \qquad
(a) 0
(b) 1
(c) $\frac{\pi}{4}$
(d) $\frac{\pi}{6}$
(8) If $\sin \left(2 \tan ^{-1} x\right)=1$, then $x=$ \qquad
(a) $\frac{1}{2}$
(b) $\frac{1}{\sqrt{2}}$
(c) 1
(d) $\sqrt{3}$
(9) If $\sin ^{-1} x+\sin ^{-1} y=\frac{\pi}{2}$ then $x \sqrt{1-y^{2}}+y \sqrt{1-x^{2}}=$ \qquad
(a) 0
(b) 1
(c) -1
(d) 2
(10) $\sin (x+y)=\cos (x+y) \Rightarrow \frac{d y}{d x}=$ \qquad
(a) 1
(b) -1
(c) 2
(d) -2
(11)
$\left|\begin{array}{ccc}1! & 2! & 3! \\ 2! & 3! & 4! \\ 3! & 4! & 5!\end{array}\right|=$ \qquad
a) 5 !
(b) 4!
(c) 3 !
(d) 2 !

BBYJU'S

$$
\left|\begin{array}{ccc}
6 i & 3 i & 1 \\
4 & 3 i & -1 \\
20 & 3 & i
\end{array}\right|=x+y i \text {, then-------- }
$$

(a) $x=3, y=1$
(b) $x=1, y=3$
(c) $x=0, y=3$
(d) $x=y=0$
(13) If $A+B=\left[\begin{array}{cc}-2 & 1 \\ 4 & 3\end{array}\right] \& A-B=\left[\begin{array}{cc}2 & 3 \\ 0 & -1\end{array}\right]$ then $\mathrm{A}=$ \qquad
(a) $\left[\begin{array}{cc}-1 & 0 \\ 2 & 0\end{array}\right]$
(b) $\left[\begin{array}{ll}2 & 0 \\ 2 & 1\end{array}\right]$
(c) $\left[\begin{array}{cc}-1 & -2 \\ 2 & 2\end{array}\right]$
(d) $\left[\begin{array}{ll}0 & 2 \\ 2 & 1\end{array}\right]$
(14) If we apply the Rolle's theorem to $f(x)=x(x-3)^{2}, x \in[0,3]$, then $c=$ \qquad
(a) 1
(b) $\frac{1}{2}$
(c) 2
(d) $\frac{3}{2}$
(15) If $y=1+x+\frac{x^{2}}{2!}+\frac{x^{3}}{3!}+\cdots \infty$, then $\frac{d y}{d x}=$ \qquad
(a) $y y^{\prime}$
(b) y
(c) $\frac{1}{y}$
(d) $-y$
(16) If $f(x)=|x-1|+|x-3|$, then $f^{\prime}(2)=$ \qquad
(a) -2
(b) 0
(c) 2
(d) $f^{\prime}(2)$ does not exist
(17) If $x^{2}+y^{2}=t+\frac{1}{t} \& x^{4}+y^{4}=t^{2}+\frac{1}{t^{2}}$, then $\frac{d y}{d x}=$ \qquad
(a) $\frac{x}{y}$
(b) $\frac{y}{x}$
(c) $-\frac{x}{y}$
(d) $-\frac{y}{x}$
(18) If $P\left(A^{\prime}\right)=0.3, P(B)=0.5$ and $P(A \cap B)=0.3$ then $P\left(B / A \cup B^{\prime}\right)=$ \qquad
(a) 0.375
(b) 0.32
(c) 0.31
(d) 0.28
(19) The probability that a student is not a swimmer is $4 / 5$. The probability that out of 5 students exactly 4 are swimmers is \qquad
(a) $\left(\frac{1}{5}\right)^{3}$
(b) $4\left(\frac{1}{5}\right)^{4}$
(c) $\binom{5}{4}\left(\frac{4}{5}\right)^{4}$
(d) $\left(\frac{4}{5}\right)^{4}$
(20) The mean and variance of a random variable x having a binomial distribution are 4 \& 2 respectively. Then $P(x=1)$ is \qquad
(a) $\frac{1}{16}$
(b) $\frac{1}{8}$
(c) $\frac{1}{4}$
(d) $\frac{1}{32}$
(21) A problem in mathematics is given to three students A, B, C and their respective probability of solving the problem is $\frac{1}{2}, \frac{1}{3} \& \frac{1}{4}$. Probability that the problem is solved is \qquad
(a) $\frac{3}{4}$
(b) $\frac{1}{2}$
(c) $\frac{2}{3}$
(d) $\frac{1}{3}$
(22) Objective function of an LP problems is \qquad
(a)a constant
(b) a function to be optimized
(c)an inequality
(d) a quadratic equation
(23) In solving the LP problem minimize $z=6 x+10 y$ subject to $x \geq 6, y \geq 2,2 x+y \geq$ $10, x \geq 0, y \geq 0$ Redundant constraints are \qquad
(a) $x \geq 6, y \geq 2$
(b) $2 x+y \geq 10, x \geq 0, y \geq 0$
(c) $x \geq 6$
(d) $x \geq 6, y \geq 0$
(24) $\int \frac{\sqrt{\tan x}}{\sin x \cdot \cos x} d x=$ \qquad $+c$
(a) $\frac{\sqrt{\tan x}}{2}$
(b) $\frac{\sqrt{c o t x}}{2}$
(c) $2 \sqrt{\cot x}$
(d) $2 \sqrt{\tan x}$
(25) $\int \frac{1+\cos x}{\sin x \cdot \cos x} d x=$ \qquad $+c$
(a) $\log |\cos x|+\log |\sin x|$
(b) $\log \left|\tan x \cdot \tan \frac{x}{2}\right|$
(c) $\log \left|1+\tan \frac{x}{2}\right|$
(d) $\log \left|\sec \frac{x}{2}+\tan \frac{x}{2}\right|$
(26) Approximate value of $(31)^{\frac{1}{5}}$ is \qquad
(a) 2.01
(b) 2.1
(c) 2.0125
(d) 1.9878
(27) The line $y=m x+1$ touches $y^{2}=4 x$ if $m=$ \qquad
(a) 0
(b) 1
(c) -1
(d) 2
(28) $\int\left(\log x+\frac{1}{x^{2}}\right) e^{x} d x=$ \qquad $+c$
(a) $e^{x}\left(\log x+\frac{1}{x^{2}}\right)$
(b) $e^{x}\left(\log x+\frac{1}{x}\right)$
(c) $e^{x}\left(\log x-\frac{1}{x^{2}}\right)$
(d) $e^{x}\left(\log x-\frac{1}{x}\right)$
(29) $\int \cos (\log x) d x=$ \qquad $+c$
(a) $\frac{x}{2}[\cos (\log x)+\sin (\log x)]$
(b) $\frac{x}{4}[\cos (\log x)+\sin (\log x)]$.
(c) $\frac{x}{2}[\cos (\log x)-\sin (\log x)]$
(d) $\frac{x}{2}[\sin (\log x)-\cos (\log x)]$
(30) $\int \frac{1}{x^{2}\left(x^{4}+1\right)^{\frac{3}{4}}} d x=$ \qquad $+c$
(a) $\left(1+\frac{1}{x^{4}}\right)^{\frac{1}{4}}$
(b) $\left(\left(x^{4}+1\right)\right)^{\frac{1}{4}}$
(c) $\left(1-\frac{1}{x^{4}}\right)^{\frac{1}{4}}$
(d) $-\left(1+\frac{1}{x^{4}}\right)^{\frac{1}{4}}$
(31) $\int x \sin x \sec ^{3} x d x=$ \qquad $+c$
(a) $\frac{1}{2}\left[\sec ^{2} x-\tan x\right]$
(b) $\frac{1}{2}\left[x \sec ^{2} x-\tan x\right]$
(c) $\frac{1}{2}\left[x \sec ^{2} x+\tan x\right]$
(d) $\frac{1}{2}\left[\sec ^{2} x+\tan x\right]$
(32) $\int_{0}^{\infty} \frac{x d x}{(1+x)\left(1+x^{2}\right)}=$ \qquad
(a) $\frac{\pi}{4}$
(b) $\frac{\pi}{2}$
(c) π
(d) ∞
(33) The area bounded by $y=|x-5|, x$-axis and the lines $x=0, x=1$ is \qquad
(a) $\frac{9}{2}$
(b) $\frac{7}{2}$
(c) 9
(d) 5
(34) Area bounded by the line $y=3 x+2, X$ axis and the line $x=-1 \& x=1$ is \qquad
(a) 4
(b) 3
(c) $\frac{13}{3}$
(d) ${ }_{6}^{25}$
(35). The area of the region between the curve $y^{2}=4 x$ and the line $x=3$ is \qquad
(a) $4 \sqrt{3}$
(b) $8 \sqrt{3}$
(c) $16 \sqrt{3}$
(d) $5 \sqrt{3}$
(36) Area bounded by the curves $y=x^{2}$ and $x=y^{2}$ is \qquad
(a) $\frac{1}{6}$
(b) $\frac{1}{3}$
(c) $\frac{1}{12}$
(d) 1
(37) The order and degree of $\left(\frac{d^{3} y}{d x^{3}}\right)^{2}+\left(\frac{d^{2} y}{d x^{2}}\right)^{3}+y=0$ are \qquad respectively.
(a) 3,2
(b) 2,3
(c) 3 , not defined
(d) 3,3
(38) $\quad f(x, y)=\frac{x^{3}-y^{3}}{x+y}$ is a homogeneous function of degree \qquad .
(a) 1
(b) 2
(c) 3
(d) not defined
(39) An integrating factor of differential equation $\frac{d y}{d x}=\frac{1}{x+y+2}$ is \qquad .
(a) e^{x}
(b) e^{x+y+2}
(c) e^{-y}
(d) $\log |x+y+2|$
(40) The solution of the differential equation $\frac{d y}{d x}+\frac{2 y}{x}=0$ with $y(1)=1$ is given by -----
(a) $y=\frac{1}{x}$
(b) $y=\frac{1}{x^{2}}$
(c) $x=\frac{1}{y^{2}}$
(d) $x^{2}=\frac{1}{y^{2}}$
(41) $|\bar{x}|=|\bar{y}|=1, \bar{x} \perp \bar{y},|\bar{x}+\bar{y}|=$ \qquad
(a) $\sqrt{3}$
(b) $\sqrt{2}$
(c) 1
(d) 0
(42) If $\bar{a}=(-3,1,0)$ and $\bar{b}=(1,-1,-1)$, then magnitude of projection of \bar{a} on \bar{b}
(a) $\frac{4}{\sqrt{10}}$
(b) $\frac{\sqrt{3}}{4}$
(c) $\frac{-4}{\sqrt{10}}$
(d) $\frac{-\sqrt{3}}{4}$
(43) The area of theparallelogram whose adjacent sides are $\hat{\imath}+\hat{k}$ and $\hat{\imath}+\hat{\jmath}$ is \qquad .
(a) 3
(b) $\sqrt{3}$
(c) $\frac{3}{2}$
(d) $\frac{\sqrt{3}}{2}$
(44) If $\bar{x}=\hat{\imath}-\hat{\jmath}+\hat{k}, \bar{y}=4 \hat{\imath}-3 \hat{\jmath}+4 \hat{k}$ and $\bar{z}=\hat{\imath}+a \hat{\jmath}+b \hat{k}$ are coplanar and $|z|=\sqrt{3}$, then
\qquad -.
(a) $a=1, b=-1$
(b) $a=1, b= \pm 1$
(c) $a=-1, b= \pm 1$
(d) $a= \pm 1, b=1$
(45) If $A(3,-1), B(2,3)$ and $=(5,1)$, then $m \angle A=$ \qquad
(a) $\cos ^{-1} \frac{3}{\sqrt{34}}$
(b) $\pi-\cos ^{-1} \frac{3}{\sqrt{34}}$
(c) $\sin ^{-1} \frac{5}{\sqrt{34}}$
(d) $\frac{\pi}{2}$
(46) The measure of the angle between the lines $x=k+1, y=2 k-1, z=2 k+3, k \in R$ and $\frac{x-1}{2}=\frac{y+1}{1}=\frac{z-1}{-2}$ is \qquad
(a) $\sin ^{-1} \frac{4}{3}$
(b) $\cos ^{-1} \frac{4}{9}$
(c) $\sin ^{-1} \frac{\sqrt{5}}{3}$
(d) $\frac{\pi}{2}$
(47) Plane $2 x+3 y+6 z-15=0$ makes angle of measure \qquad with X -axis
(a) $\cos ^{-1} \frac{3 \sqrt{5}}{7}$
(b) $\sin ^{-1} \frac{3}{7}$
(c) $\sin ^{-1} \frac{2}{7}$
(d) $\tan ^{-1} \frac{2}{7}$
(48) If $\frac{x-4}{1}=\frac{y-2}{1}=\frac{z-k}{2}$ lies in the plane $2 x-4 y+z=7$, then $k=$ \qquad
(a) 7
(b) 6
(c) -7
(d) any value of k
(49) Perpendicular distance of $(2,-3,6)$ from $3 x-6 y+2 z+10=0$ is \qquad .
(a) $\frac{13}{7}$
(b) $\frac{46}{7}$
(c) 7
(d) $\frac{10}{7}$
(50) Line passing through $(2,-3,1)$ and $(3,-4,-5)$ intersects $Z X$-plane at \qquad .
(a) $(-1,0,13)$
(b) $(-1,0,19)$
(c) $\left(\frac{13}{6}, 0, \frac{-19}{6}-\frac{1}{-}\right)$
(d) $(0,-1,13)$

PART-B

Instructions: (1) There are three sections in part B and total 18 questions are there.
(2) All questions are compulsory.
(3) The numbers at right side represent the marks of the questions.

Section-A

(1) Show that the semi vertical angle of the right circular cone of maximum volume and given slant height is $\tan ^{-1} \sqrt{2}$.
(2) Obtain $\int_{2}^{3} x^{3} d x$ as a limit of a sum.
(3) Prove by veçtor method that in any $\triangle A B C c^{2}=a^{2}+b^{2}-2 a b \cos C$.

OR

If $A(3,2,-4), B(4,3,-4), C(3,3,3)$ and $D(4,2,-3)$, find projection of $\overrightarrow{A D}$ on $\overrightarrow{A B} \times \overrightarrow{A C}$.
(4) Find the area of the region included between the parabola $y^{2}=4 a x$ and $x^{2}=4 a y, a>0$.

OR

Find the area of the region bounded by the curves $y=4-x^{2}, x=0, x=3$ and X-axis.

$$
\text { Prove that }\left|\begin{array}{ccc}
1+a^{2}-b^{2} & 2 a b & -2 b \\
2 a b & 1-a^{2}+b^{2} & 2 a \\
2 b & -2 a & 1-a^{2}-b^{2}
\end{array}\right|=\left(1+a^{2}+b^{2}\right)^{3}
$$

(6) Show that $A=\left[\begin{array}{cc}-8 & 5 \\ 2 & 4\end{array}\right]$ satisfies the equation $x^{2}+4 x-42=0$
(7) $\quad f: R-\left\{-\frac{3}{2}\right\} \rightarrow R-\left\{\frac{3}{2}\right\}, f(x)=\frac{3 x+2}{2 x+3}$. Find f^{-1}.
(8) Minimize $z=2 x+4 y$ subject to $x+2 y \geq 10,3 x+y \geq 10, x \geq 0, y \geq 0$.

Section-B

(1) If $\cos ^{-1} x-\cos ^{-1} \frac{y}{2}=\alpha$, then prove that $4 x^{2}-4 x y \cos \propto+y^{2}=4 \sin ^{2} \propto$.
(2) Prove that $\left|\begin{array}{lll}x & x^{2} & 1+p x^{3} \\ y & y^{2} & 1+p y^{3} \\ z & z^{2} & 1+p z^{3}\end{array}\right|=(1+p x y z)(x-y)(y-z)(z-x)$.
(3) A bag X contains 2-white and 3-red balls and a bag Y contains 4 -white and 5 -red balls. One ball is drawn at Random from one of the bags and is found to be red. Find the probability that it was drawn from bag Y .
(4) Obtain $\int \frac{4 e^{x}+6 e^{-x}}{9 e^{x}-4 e^{-x}} d x$. OR $\int \frac{\cos x+x \sin x}{x^{2}+x \cos x} d x$.
(5) Find the general solution of the differential equation of $\frac{d y}{d x}+\sin \frac{x+y}{2}=\sin \frac{x-y}{2}$.

OR

Solve $\frac{d y}{d x}+\frac{y(x+y)}{x^{2}}=0$
(6) Find the foot of the perpendicular drawn from the points $A(1,0,3)$ to the join of the points $B(4,7,1)$ and $C(3,5,3)$.

Section-C

(1) If $A^{-1}=\left[\begin{array}{ccc}7 & -3 & -3 \\ -1 & 1 & 0 \\ -1 & 0 & 1\end{array}\right]$ and $B=\left[\begin{array}{ccc}5 & 8 & 1 \\ 0 & 2 & 1 \\ 4 & 3 & -1\end{array}\right]$ find $(A B)^{-1}$.
(2) Evaluate $\int^{\prime} \sqrt{\frac{\sin (x-\theta)}{\sin (x+\theta)}} d \theta$
(3) $\int_{-\pi}^{\pi} \frac{2 x(1+\sin x)}{1+\cos ^{2} x} d x$. OR $\int_{0}^{\infty} \frac{x \log x}{\left(1+x^{2}\right)^{2}} \mathrm{dx}$.
(4) Find the maximum area of a rectangle inscribed in a semi-circle of radius r.

