Marks: 100

GUJARAT BOARD CLASS 12 MATHS SAMPLE PAPER-SET 1Time: 3 Hrs.

Instructions: (1) This section contains 50 questions and all questions are compulsory

- (2) All questions carry 1 mark.
- (3) Read each question carefully and select proper alternatives and answer in the OMR Answer Sheet.

(2) If
$$a * b = \frac{ab}{100}$$
 on Q^+ , inverse of 0.1 is

(3) If
$$f(x) = \frac{x-1}{x+1}$$
, then $f(2x) = \frac{x-1}{x+1}$

(a)
$$_{f(x)+3}^{2f(x)+1}$$
 (b) $_{f(x)+1}^{2f(x)+3}$

(b)
$$f(x)+3$$

$$(c)_{f(x)+3}^{3f(x)+1}$$

$$\frac{f(x)+2}{3f(x)+1}$$

(4)
$$f: N \to N, f(x) = 2x + 3\&g(x) = 5x + 7 \text{ then } f \circ g(x) - g \circ f(x) =$$

$$(a)x + 5$$

(b)
$$2x + 5$$

$$(c)3x + 5$$

$$(d) - 5$$

(5) If
$$f(x-1) = x^2 - 3x + 1$$
, then $f(x+1) =$ ______(a) $x^2 - 3x + 1$ (b) $x^2 + x - 1$ (c) $x^2 + x - 1$

$$(a)x^2 - 3x + 1$$

$$(b)x^2 + x - 1$$

$$(c)x^2-x+1$$

$$(d)x^2 + 3x - 1$$

(6) If
$$tan^{-1}x - tan^{-1}y = 0$$
 & $sin^{-1}x + sin^{-1}y = \frac{\pi}{2}$ then $x + y =$ _____

$$(b)^{\frac{1}{\sqrt{2}}}$$

(7) If
$$m \angle A = 90^{\circ}$$
 in $\triangle ABC$, then $tan^{-1}\left(\frac{c}{a+b}\right) + tan^{-1}\left(\frac{b}{a+c}\right) =$ _____

$$(c)\frac{\pi}{4}$$

$$(d)\frac{\pi}{6}$$

(8) If
$$\sin(2tan^{-1}x) = 1$$
, then $x =$ _____

$$(a)^{\frac{1}{2}}$$

$$(b)\frac{1}{\sqrt{2}}$$

$$(d)\sqrt{3}$$

(9) If
$$sin^{-1}x + sin^{-1}y = \frac{\pi}{2}$$
 then $x\sqrt{1-y^2} + y\sqrt{1-x^2} = \underline{\hspace{1cm}}$

(10)
$$\sin(x+y) = \cos(x+y) \Rightarrow \frac{dy}{dx} = \underline{\hspace{1cm}}$$

$$(d) -2$$

$$\begin{vmatrix}
1! & 2! & 3! \\
2! & 3! & 4! \\
3! & 4! & 5!
\end{vmatrix} = \underline{\qquad}$$

In solving the LP problem minimize z=6x+10y subject to $x\geq 6$, $y\geq 2$, $2x+y\geq 2$ (23) $10, x \ge 0, y \ge 0$ Redundant constraints are

$$(a)x \ge 6$$
, $y \ge 2$

(b) $2x + y \ge 10, x \ge 0, y \ge 0$

$$(c)x \ge 6$$

 $(d)x \ge 6, y \ge 0$

 $\int \frac{\sqrt{\tan x}}{\sin x \cos x} dx = \underline{\qquad} + c$ (24)

$$\frac{\left(a\right)^{\sqrt{tanx}}}{2}$$

$$\frac{(b)^{\sqrt{cotx}}}{2}$$

(c)
$$2\sqrt{cotx}$$

 $(d)2\sqrt{tanx}$

 $\int \frac{1 + \cos x}{\sin x \cos x} dx = \underline{\qquad} + c$ (25)

$$(a)\log|cosx| + \log|sinx|$$

(b)
$$\log |\tan x. \tan \frac{x}{2}|$$

(c)
$$\log |1 + tan \frac{x}{2}|$$

(d)
$$\log |\sec \frac{x}{2} + tan \frac{x}{2}|$$

Approximate value of $(31)^{\frac{1}{5}}$ is _ (26)

(d) 1.9878

The line y = mx + 1 touches $y^2 = 4x$ if m =(27)

$$(c) -1$$

 $\int \left(\log x + \frac{1}{x^2} \right) e^x \, dx = \underline{\qquad} + c$ (28)

(a)
$$e^x \left(log x + \frac{1}{r^2} \right)$$
 (b) $e^x \left(log x + \frac{1}{r} \right)$

(c)
$$e^x \left(log x - \frac{1}{r^2} \right)$$
 (d) $e^x \left(log x - \frac{1}{r} \right)$

$$(d)e^{x}\left(logx-\frac{1}{x}\right)$$

 $\int \cos(\log x) \, dx = \underline{\hspace{1cm}} + c$ (29)

$$(a)^{\frac{x}{2}}[\cos(\log x) + \sin(\log x)]$$

$$(b)^{\frac{x}{4}}[\cos(\log x) + \sin(\log x)].$$

$$(c)^{\frac{x}{2}}[\cos(\log x) - \sin(\log x)]$$

$$(d)^{\frac{x}{2}}[\sin(\log x) - \cos(\log x)]$$

(30) $\int \frac{1}{x^2(x^4+1)^{\frac{3}{4}}} dx = \underline{\qquad} + c$

$$(a)\left(1+\frac{1}{r^4}\right)^{\frac{1}{r}}$$

(a)
$$\left(1 + \frac{1}{x^4}\right)^{\frac{1}{4}}$$
 (b) $\left((x^4 + 1)\right)^{\frac{1}{4}}$

$$(c)\left(1-\frac{1}{r^4}\right)^{\frac{1}{4}}$$

$$(d) - \left(1 + \frac{1}{r^4}\right)^{\frac{1}{4}}$$

 $\int x \sin x \sec^3 x \, dx = \underline{\hspace{1cm}} + c$ (31)

$$(a)^{\frac{1}{2}}[sec^2x - tanx]$$

$$(b)^{\frac{1}{2}}[x \sec^2 x - \tan x]$$

$$(c)^{\frac{1}{2}}[x \sec^2 x + \tan x]$$

$$(d)^{\frac{1}{2}}[sec^2x + tanx]$$

(32) $\int_0^\infty \frac{x \, dx}{(1+x)(1+x^2)} = \underline{\hspace{1cm}}$

$$(a)^{\frac{\pi}{4}}$$

(b)
$$\frac{\pi}{2}$$

$$(c)\pi$$

(33)	The area bounded by $y= x-5 $, x -axis and the lines $x=0$, $x=1$ is					
	$(a)^{\frac{9}{2}}$	(b) $\frac{7}{2}$	(c) 9	(d) 5		
(34)	Area bounded by the line $y=3x+2$, X axis and the line $x=-1$ & $x=1$ is					
	(a) 4	(b) 3	$(c)\frac{13}{3}$	$(d)^{\frac{25}{6}}$		
(35)	The area of the region between the curve $y^2 = 4x$ and the line $x = 3$ is					
	(a) $4\sqrt{3}$	(b)8√3	$(c)16\sqrt{3}$	$(d)5\sqrt{3}$		
(36)	Area bounded by the curves $y = x^2$ and $x = y^2$ is					
	$(a)^{\frac{1}{6}}$	$(b)\frac{1}{3}$	$(c)\frac{1}{12}$	(d) 1		
(37)	The order and degree of $\left(\frac{d^3y}{dx^3}\right)^2 + \left(\frac{d^2y}{dx^2}\right)^3 + y = 0$ are respectively.					
	(a)3,2	(b) 2,3	(c) 3 , not defined	(d) 3, 3		
(38)	$f(x,y) = \frac{x^3 - y^3}{x + y}$ is a homogeneous function of degree					
	(a) 1	(b) 2	(c) 3	(d) not defined		
(39)	An integrating factor of differential equation $\frac{dy}{dx} = \frac{1}{x+y+2}$ is					
	(a) <i>e</i> ^x	(b) e^{x+y+2}	(c) <i>e</i> ^{-y}	$(d)\log x+y+2 $		
(40)	The solution of the differential equation $\frac{dy}{dx} + \frac{2y}{x} = 0$ with $y(1) = 1$ is given by					
	$(a)y = \frac{1}{x}$	$(b)y = \frac{1}{x^2}$	$(c)x = \frac{1}{y^2}$	$(d)x^2 = \frac{1}{y^2}$		
(41)	$ \bar{x} = \bar{y} = 1$, $\bar{x} \perp \bar{y}$, $ \bar{x} + \bar{y} = $					
	(a)√3	(b)√2	(c) 1	(d) 0		
(42)	If $ar{a}=(-3,1,0)$ and $ar{b}=(1,-1,-1)$, then magnitude of projection of $ar{a}$ on $ar{b}$					
	$(a)\frac{4}{\sqrt{10}}$	(b) $\frac{\sqrt{3}}{4}$	$(c)\frac{-4}{\sqrt{10}}$	$(d)\frac{-\sqrt{3}}{4}$		
(43)	The area of the parallelogram whose adjacent sides are $\hat{i} + \hat{k}$ and $\hat{i} + \hat{j}$ is					
	(a) 3	(b)√3	$(c)\frac{3}{2}$	$(d)\frac{\sqrt{3}}{2}$		
(44)	If $\bar{x} = \hat{\imath} - \hat{\jmath} + \hat{k}$, $\bar{y} = \frac{1}{2}$	$f(ar x=\hat \iota-\hat\jmath+\hat k$, $ar y=4\hat \iota-3\hat \jmath+4\hat k$ and $ar z=\hat \iota+a\hat \jmath+b\hat k$ are coplanar and $ z =\sqrt 3$, then				
	(a) $a = 1$, $b = -1$	(b) $a = 1$, $b = \pm 1$	$(c)a = -1$, $b = \pm 1$	(d) $a = \pm 1, b = 1$		
		•				

(46)	The measure of the angle between the lines $x=k+1$, $y=2k-1$, $z=2k+3$, $k\in R$ and $\frac{x-1}{2}=\frac{y+1}{1}=\frac{z-1}{-2}$ is						
	(a) $\sin^{-1}\frac{4}{3}$	(b) $\cos^{-1}\frac{4}{9}$	$(c)sin^{-1}\frac{\sqrt{5}}{3}$	$(d)\frac{\pi}{2}$			
(47)	(47) Plane $2x + 3y + 6z - 15 = 0$ makes angle of measure with X-axis						
	$(a)\cos^{-1}\frac{3\sqrt{5}}{7}$	(b) $sin^{-1}\frac{3}{7}$	(c) $\sin^{-1}\frac{2}{7}$	$(d)tan^{-1}\tfrac{2}{7}$			
(48)	18) If $\frac{x-4}{1} = \frac{y-2}{1} = \frac{z-k}{2}$ lies in the plane $2x - 4y + z = 7$, then $k =$						
	(a) 7	(b) 6	(c) -7	(d) any value of ${\it k}$			
(49)	Perpendicular distance of $(2, -3, 6)$ from $3x - 6y + 2z + 10 = 0$ is						
•	$(a)^{\frac{13}{7}}$	(b) ⁴⁶ / ₇	(c) 7	$(d)^{\frac{10}{7}}$			
(50)	(50) Line passing through $(2, -3, 1)$ and $(3, -4, -5)$ intersects ZX —plane at						
	(a)(-1, 0, 13)	(b)(-1,0,19)	(c) $\left(\frac{13}{6}, 0, \frac{-19}{6}\right)$	(d)(0, -1, 13)			
				ð.			
	•	PAR	Г-В				
Instru	i	•	B and total 18 question	s are there.			
	(2) All questions are compulsory.(3) The numbers at right side represent the marks of the questions.						
		<u>Section</u>	on-A	[16]			
(1)	Show that the semi vertical angle of the right circular cone of maximum volume and given slant height is $tan^{-1}\sqrt{2}$.						
(2)	Obtain $\int_2^3 x^3 dx$ as a limit of a sum.						
(3)	Prove by vector method that in any $\triangle ABC$ $c^2 = a^2 + b^2 - 2abcosC$.						
		OR					
	If A(3, 2, -4), B(4, 3, -4), C(3, 3, 3) and D(4, 2, -3), find projection of \overrightarrow{AD} on $\overrightarrow{AB} \times \overrightarrow{AC}$.						
(4)	Find the area of the region included between the parabola $y^2=4ax$ and $x^2=4ay$, $a>0$.						
		O	_				
	Find the area of the region bounded by the curves $y = 4 - x^2$, $x = 0$, $x = 3$ and X-axis.						

[5]

If A(3,-1), B(2,3) and =(5,1), then $m \angle A =$ _____

(a) $cos^{-1} \frac{3}{\sqrt{34}}$ (b) $\pi - cos^{-1} \frac{3}{\sqrt{34}}$ (c) $sin^{-1} \frac{5}{\sqrt{34}}$

(d) $\frac{\pi}{2}$

(45)

(5) Prove that
$$\begin{vmatrix} 1 + a^2 - b^2 & 2ab & -2b \\ 2ab & 1 - a^2 + b^2 & 2a \\ 2b & -2a & 1 - a^2 - b^2 \end{vmatrix} = (1 + a^2 + b^2)^3$$

(6) Show that
$$A = \begin{bmatrix} -8 & 5 \\ 2 & 4 \end{bmatrix}$$
 satisfies the equation $x^2 + 4x - 42 = 0$

(7)
$$f: R - \left\{-\frac{3}{2}\right\} \to R - \left\{\frac{3}{2}\right\}, f(x) = \frac{3x+2}{2x+3}$$
. Find f^{-1} .

(8) Minimize z=2x+4y subject to $x+2y\geq 10$, $3x+y\geq 10$, $x\geq 0$, $y\geq 0$.

(1) If $cos^{-1}x - cos^{-1}\frac{y}{2} = \infty$, then prove that $4x^2 - 4xycos \propto +y^2 = 4sin^2 \propto$.

(2) Prove that
$$\begin{vmatrix} x & x^2 & 1 + px^3 \\ y & y^2 & 1 + py^3 \\ z & z^2 & 1 + pz^3 \end{vmatrix} = (1 + pxyz)(x - y)(y - z)(z - x).$$

- (3) A bag X contains 2-white and 3-red balls and a bag Y contains 4-white and 5-red balls. One ball is drawn at Random from one of the bags and is found to be red. Find the probability that it was drawn from bag Y.
- (4) Obtain $\int \frac{4e^x + 6e^{-x}}{9e^x 4e^{-x}} dx$. OR $\int \frac{\cos x + x \sin x}{x^2 + x \cos x} dx$.
- (5) Find the general solution of the differential equation of $\frac{dy}{dx} + \sin\frac{x+y}{2} = \sin\frac{x-y}{2}$.

OR

Solve
$$\frac{dy}{dx} + \frac{y(x+y)}{x^2} = 0$$

(6) Find the foot of the perpendicular drawn from the points A(1,0,3) to the join of the points B(4,7,1) and C(3,5,3).

(1) If
$$A^{-1} = \begin{bmatrix} 7 & -3 & -3 \\ -1 & 1 & 0 \\ -1 & 0 & 1 \end{bmatrix}$$
 and $B = \begin{bmatrix} 5 & 8 & 1 \\ 0 & 2 & 1 \\ 4 & 3 & -1 \end{bmatrix}$ find $(AB)^{-1}$.

(2) Evaluate
$$\int \int \frac{\sin(x-\theta)}{\sin(x+\theta)} d\theta$$

(3)
$$\int_{-\pi}^{\pi} \frac{2x(1+\sin x)}{1+\cos^2 x} \ dx. \quad \text{OR} \quad \int_{0}^{\infty} \frac{x \log x}{(1+x^2)^2} \ dx.$$

(4) Find the maximum area of a rectangle inscribed in a semi-circle of radius r.