GUJARAT BOARD CLASS 12 MATHS SAMPLE PAPER -SET 2

Time : 3 Hours]

[Maximum Marks : 100

Instructions:

- 1. Answer all questions.
- 2. Write your answers according to the instructions given below with the questions.
- **3**. Begin each section on a new page.

Section - A

Given below are 1 to 15 multiple choice questions. Each carry one mark. Write 15 the serial number (a or b or c or d) in your answer book of the alternative which you feel is the correct answer of the question.

1. d((|7|, -8), (|-7|, -3)) = ?a) -5b) 11 c) 5 d) -11

2. The Cartesian equation of the line passing through the points (5, 6) and (-3, 6) is
a) y-6=0
b) y+6=0

c) x-5=0 d) x+3=0

3. The equation of the circle touching the Y-axis and having its centre at (3, -4) is

a) $x^{2} + y^{2} + 6x + 8y + 16 = 0$ b) $x^{2} + y^{2} - 6x + 8y + 9 = 0$ c) $x^{2} + y^{2} - 6x - 8y + 9 = 0$ d) $x^{2} + y^{2} - 6x + 8y + 16 = 0$

4. The end points of the Latus-rectum for parabola $x^2 = -6y$ are a) $(\pm 3, -\frac{3}{2})$ b) $(-\frac{3}{2}, 3)$ c) $(-\frac{3}{2}, -3)$ d) $(\pm 3, \frac{3}{2})$

5.	Mea	Measure of the angle between asymptotes of $4x^2 - y^2 = 9$ is				
	a)	$Tan^{-1}\left(-\frac{4}{3}\right)$	b)	$\pi - Tan^{-1} \left(\frac{4}{3}\right)$		
	c)	$\frac{\pi}{3}$	d)	$Tan^{-1}\left(\frac{4}{3}\right)$		
6.	Whi	ch is a unit vector ?				
	a)	$(\cos \alpha, 2 \sin \alpha)$	b)	$(Sin \alpha, Cos \alpha)$		
	c)	(1, -1)	d)	$(2\cos\alpha, \sin\alpha)$		
7.	$\overline{x} =$	$=(1, -1)$ and $\overline{y} = (1, 0)$ then $Comp_{\overline{x}}\overline{y}$				
	a)	1	b)	0		
	c)	$\frac{1}{\sqrt{2}}$	d)	\overline{y}		
8.	Mea	sure of the angle between x	+2y	+z=1 and		
	$\bar{r} = (0, 0, 0) + K(2, 1, -1), K \in R$ is					
	a)	$\frac{\pi}{6}$	b)	π 3		
	c)	$\frac{\pi}{2}$	d)	π 4		
9.	The	The plane $\overline{r} \cdot (2, -2, 1) = -12$ touches the sphere				
	x^2	$x^{2} + y^{2} + z^{2} - 2x - 4y + 2z - 3 = 0$, then the point of contact is				
	a)	(1, -4, 2)	b)	(-1, 4, -2)		
	c)	(-1, 4, 2)	d)	none of these		
10.	Li $x \rightarrow$	$ \prod_{1/4}^{m} \frac{e^{4x} - e}{x - \frac{1}{4}} = ? $				
	a)	4				
	c)	-4 <i>e</i>				
11.	The	The derivative of $Sin^{-1}x$ with respect to $Cos^{-1}x$ is				
	a)	1	b)	- 1 No		
	C)	U	d)	None of these		

12.	Radius of a circular metal plate when heated, increase by 2% . If its radius is 10 c.m., then the increase in its area is					If its		
	a) 42	π (c.m.) ²	b)	4π	c.m.			
	c) 20	0π (c.m.) ²	d)	2π	(c.m.) ²			
13.	$\int_{-1}^{0} x \cdot$	dx = ?						
	a) –	$\frac{1}{2}$	b)	$\frac{1}{2}$				
	c) 1		d)	No	ne of the	se		
14.	The de	egree and order of the $\frac{d^2y}{dx^2}$	= (1	$+\left(\frac{a}{a}\right)$	$\left(\frac{dy}{dx}\right)^2$	are		
	a) 6	and 1	b)	3 a	nd 2			
	c) 2	and 2	d)	1 a	nd 1			

 A body projected in vertical direction attains maximum height 50m. Its velocity at 25 m height is

a)	$7\sqrt{10}$ m/s	b) $7\sqrt{10} \text{ m/s}^2$
c)	$-7\sqrt{10}$ m/s	d) 490 m.

Section - B

Answer the following 16 to 30 questions. Each question carry one mark.

- 15
- 16. In which ratio does the X- axis divide the line-segment joining A (3, 5) and B (2, 6) ?
- 17. Obtain the equation of the circle which has a diagonal of rectangle formed by x = 2, x = -2, y = 3 and y = 1. OR

Obtain the equation of a circle with radius $\frac{5}{2}$, if it passes through (-1, 1) and (-1, -4).

- 18. There is a point on the parabola $y^2 = 2x$, whose x-co-ordinate is two times the y-co-ordinate. If this point is not the vertex of the parabola, find the point.
- 19. Find the parametric equation of director circle of $\frac{x^2}{16} + \frac{y^2}{9} = 1$
- 20. Find a unit vector orthogonal to both (2, 2, 1) and (3, 2, 2).
- **21.** Find the projection of (1, 1, 1) on (2, 2, 1).
- 22. Find the perpendicular distance of the point P(4, -5, 3) from the line

$$\frac{x-5}{3} = \frac{y+2}{-4} = \frac{z-6}{5}.$$

23. Find $\frac{d}{dx}(Sin^3x^0)$

OR Find $\frac{d}{dx} \left(e^{-2006 Log} e^{x} \right)$

- 24. Evaluate $\int \frac{ex}{\sqrt{2x^2+3}} \cdot dx$
- 25. Find the area of the region bounded by the curve $y = \cos x X$ axis and the the lines x = 0, $x = \pi$.

26. Evaluate
$$\int Tan^2 x \cdot Sec^2 x \cdot dx$$
.

Evaluate
$$\int \frac{1}{9+4x^2} \cdot dx$$

27. Evaluate
$$\int_{1}^{4013} (Cosec^{-1}x + Sec^{-1}x) \cdot dx, |x| \ge 1$$

28. Obtain the differential equation representing all line of family y = mx + c (where m and c are arbitrary constants).

- 29. If the distance of a particle executing rectilinear motion is x from fixed point at time t, where $x = 2t^3 9t^2 + 12t + 8$, then when will the volocity become 0.
- 30. Two balls are thrown vertically upwards with velocities 19.6 m/s and 9.8 m/s. Find the height of the second ball, when the first ball attains maximum height.

Section - C

Answer the following **31** to **40** questions. Each carrying **two** marks as directed in **20** the question.

31. Prove by using slopes that A(12, 8), B(-2, 6), C(6, 0) are the vertices of a right triangle.

OR

Find the equation of the perpendicular bisector of \overline{AB} where A is (-3, 2) and B is (7, 6).

- 32. For the parabola $x^2 = 12y$, find the area of the triangle whose vertices are the vertex of the parabola and two-end points its latus-rectum.
- 33. If the end-points of a chord of the ellipse $b^2x^2 + a^2y^2 a^2b^2 = 0$ have eccentric angle with measure α and β , then prove that the equation of the line containing the chord is

$$\frac{x}{a}Cos\left(\frac{\alpha+\beta}{2}\right)+\frac{y}{b}Sin\left(\frac{\alpha+\beta}{2}\right)=Cos\left(\frac{\alpha-\beta}{2}\right).$$

34. If the eccentricities of $\frac{x^2}{a^2} - \frac{y^2}{b^2} = \pm 1$ are e_1 and e_2 respectively, then prove that $e_1^2 + e_2^2 = e_1^2 \cdot e_2^2$. OR

If the chord of hyperbola joining $P(\alpha)$ and $Q(\beta)$ on the hyperbola subtends a right angle at the centre C(0,0), then prove that $a^2 + b^2 Sin\alpha \cdot Sin\beta = 0$.

- **35.** Prove that : $\begin{bmatrix} \overline{x} + \overline{y} & \overline{y} + \overline{z} & \overline{z} + \overline{x} \end{bmatrix} = 2 \begin{bmatrix} \overline{x} & \overline{y} & \overline{z} \end{bmatrix}$
- **36.** If \bar{x} , \bar{y} , \bar{z} are coplanar vectors, then prove that $\bar{x} + \bar{y}$, $\bar{y} + \bar{z}$, $\bar{z} + \bar{x}$ are coplanar.

OR

If $(\overline{x} + \overline{y}) \cdot (\overline{x} - \overline{y}) = 63$ and $|\overline{x}| = 8|\overline{y}|$ then, find $|\overline{x}|$.

37. Get the radius of the circle that is the intersection of the sphere $x^2 + y^2 + z^2 = 49$ and the plane $2x + 3y - z = 5\sqrt{14}$.

38. If
$$x = a(1 - \cos\theta)$$
, $y = a(\theta - \sin\theta)$, $\theta \in (0, \pi)$, $a \neq 0$, then find $\frac{d^2y}{dx^2}$.

39. Verify Rolle's theorem for $f(x) = Sin x + Cos x - 1, x \in \left[0, \frac{\pi}{2}\right]$ If it is applicable, find C.

OR '

In which interval the function $f(x) = 5x^3 - 15x^2 - 120x + 3$ is increasing and in which it is decreasing ?

40. Evaluate
$$\int \frac{\sin x}{1+\sin x} \cdot dx$$
.

Section - D

Answer the following **41** to **50** questions. Each carrying **three** marks as directed **30** in the question.

41. A is $(2\sqrt{2}, 0)$ and B is $(-2\sqrt{2}, 0)$. If |AP - PB| = 4, then find the equation of locus of P.

OR

Origin is circumcentre of traingle with vertices $A(x_1, x_1 Tan \theta_1)$,

$$B(x_2, x_2 Tan\theta_2), C(x_3, x_3 Tan\theta_3) \quad (0 < \theta_i < \frac{\pi}{2}, x_i > 0, i = 1, 2, 3)$$

If the centroid of $\triangle ABC$ is (x, y) prove that

$$\frac{y}{x} = \frac{\sin \theta_1 + \sin \theta_2 + \sin \theta_3}{\cos \theta_1 + \cos \theta_2 + \cos \theta_3}.$$

- **42.** If the equation $3x^2 + (3-p)xy + qy^2 2px = 8pq$ represents a circle, find p and q. Also determine the centre and radius of the circle.
- 43. Forces measuring 5, 3 and 1 unit act in the direction : (6, 2, 3), (3, -2, 6), (2, -3, -6) respectively. As a result, the particle moves from (2, -1, -3) to (5, -1, 1). Find the resultant force and work done.
- 44. Find the vector and Cartesian equations of the line passing through (1, 2, 3) and perpendicular to the two lines

$$\overline{r} = (0, 0, 0) + K(1, 2, -1), K \in R \text{ and } \frac{x-1}{3} = \frac{y}{2} = \frac{z}{6}$$

OR

Find the measure of the angle between two lines, if their direction cosines l, m, n satisfy l+m+n=0, $l^2+m^2-n^2=0$.

45. Find the vector and Cartesian equations of the plane containing the lines $\overline{r} = (1, 2, 3) + K(2, 3, 4), K \in \mathbb{R}$ and $\frac{x-1}{1} = \frac{y}{3} = \frac{z-5}{4}$.

46. Find
$$\stackrel{Lim}{x \to \frac{1}{\sqrt{2}}} \frac{x - Cos(Sin^{-1}x)}{1 - Tan(Sin^{-1}x)}$$

- 47. Prove that, if x > 0, then $\frac{x}{1+x^2} < Tan^{-1}x < x$.
- **48.** Obtain $\int_{0}^{\pi/2} \sin x \cdot dx$ as the limit of a sum.
- **49.** Prove that $\int_{8}^{27} \frac{dx}{x \sqrt[3]{x}} = \frac{3}{2} Log\left(\frac{8}{3}\right).$
- 50. Solve $xy \cdot \frac{dy}{dx} = y + 2$. If y(2) = 0, then find the particular solution of the given differential equation.

OR

The population of a city increases at the rate of 3% per year. How many years will take to double the population ?

Section - E

Answer the following 51 to 54 questions. Each carrying five marks.

51. A is (-4, -5) in $\triangle ABC$ and the lines 5x+3y-4=0 and 3x+8y+13=0 contain two of the altitudes of the triangle. Find the co-ordinates of B and C.

52. If
$$f(x) = \frac{e^{1/x} - e^{-1/x}}{e^{1/x} + e^{-1/x}}$$
, $x \neq 0$, $f(0) = 1$ then prove that f is not

continuous at x = 0.

OR

Find
$$\underset{x \to 0}{\lim} \frac{(1+mx)^n - (1+nx)^m}{x^2}$$
, $m, n \in N$.

53. If x = Sin t, y = Sin pt then prove that $(1-x^2)\frac{d^2y}{dx^2} - x\frac{dy}{dx} + p^2y = 0$.

54. Evaluate
$$\int \frac{1}{1+5e^x+6e^{2x}} \cdot dx$$

OR

Evaluate
$$\int \frac{Sec x}{1+Cosec x} \cdot dx$$
.

20