GUJARAT BOARD CLASS 12 MATHS SAMPLE PAPER -SET 2

Time : 3 Hours]
[Maximum Marks : 100

Instructions:

1. Answer all questions.
2. Write your answers according to the instructions given below with the questions.
3. Begin each section on a new page.

Section - A

Given below are 1 to 15 multiple choice questions. Each carry one mark. Write the serial number (a or b or c or d) in your answer book of the alternative which you feel is the correct answer of the question.

1. $d((|7|,-8),(|-7|,-3))=$?
a) -5
b) 11
c) 5
d) -11
2. The Cartesian equation of the line passing through the points $(5,6)$ and $(-3,6)$ is
a) $y-6=0$
b) $y+6=0$
c) $x-5=0$
d) $x+3=0$
3. The equation of the circle touching the Y-axis and having its centre at $(3,-4)$ is \qquad
a) $x^{2}+y^{2}+6 x+8 y+16=0$
b) $x^{2}+y^{2}-6 x+8 y+9=0$
c) $x^{2}+y^{2}-6 x-8 y+9=0$
d) $x^{2}+y^{2}-6 x+8 y+16=0$
4. The end points of the Latus-rectum for parabola $x^{2}=-6 y$ are
a) $\left(\pm 3,-\frac{3}{2}\right)$
b) $\left(-\frac{3}{2}, 3\right)$
c) $\left(-\frac{3}{2},-3\right)$
d) $\left(\pm 3, \frac{3}{2}\right)$
5. Measure of the angle between asymptotes of $4 x^{2}-y^{2}=9$ is \qquad
a) $\operatorname{Tan}^{-1}(-4 / 3)$
b) $\pi-\operatorname{Tan}^{-1}(4 / 3)$
c) $\frac{\pi}{3}$
d) $\operatorname{Tan}^{-1}(4 / 3)$
6. Which is a unit vector?
a) $(\operatorname{Cos} \alpha, 2 \operatorname{Sin} \alpha)$
b) $(\operatorname{Sin} \alpha, \operatorname{Cos} \alpha)$
c) $(1,-1)$
d) $(2 \operatorname{Cos} \alpha, \operatorname{Sin} \alpha)$
7. $\bar{x}=(1,-1)$ and $\bar{y}=(1,0)$ then $\operatorname{Comp}_{\bar{x}} \bar{y}$
a) 1
b) 0
c) $\frac{1}{\sqrt{2}}$
d) \bar{y}
8. Measure of the angle between $x+2 y+z=1$ and $\bar{r}=(0,0,0)+K(2,1,-1), K \in R$ is \qquad
a) $\frac{\pi}{6}$
b) $\begin{aligned} & \pi \\ & 3\end{aligned}$
c) $\frac{\pi}{2}$
d) $\begin{array}{r}\pi \\ 4\end{array}$
9. The plane $\bar{r} \cdot(2,-2,1)=-12$ touches the sphere $x^{2}+y^{2}+z^{2}-2 x-4 y+2 z-3=0$, then the point of contact is \qquad
a) $(1,-4,2)$
b) $(-1,4,-2)$
c) $(-1,4,2)$
d) none of these
10. $\operatorname{Lim}_{x \rightarrow 1 / 4} \frac{e^{4 x}-e}{x-1 / 4}=$?
a) 4
c) $-4 e$
11. The derivative of $\operatorname{Sin}^{-1} x$ with respect to $\operatorname{Cos}^{-1} x$ is
a) 1
b) -1
c) 0
d) None of these
12. Radius of a circular metal plate when heated, increase by 2%. If its radius is $10 \mathrm{c} . \mathrm{m}$., then the increase in its area is \qquad
a) 4π (c.m. $)^{2}$
b) $4 \pi \mathrm{c} . \mathrm{m}$.
c) 20π (c.m. $)^{2}$
d) 2π (c.m. $)^{2}$
13. $\int_{-1}^{0}|x| \cdot d x=$?
a) $-\frac{1}{2}$
b) $\frac{1}{2}$
c) 1
d) None of these
14. The degree and order of the $\frac{d^{2} y}{d x^{2}}=\left(1+\left(\frac{d y}{d x}\right)^{2}\right)^{3 / 2}$ are
a) 6 and 1
b) 3 and 2
c) 2 and 2
d) 1 and 1
15. A body projected in vertical direction attains maximum height 50 m . Its velocity at 25 m height is \qquad
a) $7 \sqrt{10} \mathrm{~m} / \mathrm{s}$
b) $7 \sqrt{10} \mathrm{~m} / \mathrm{s}^{2}$
c) $-7 \sqrt{10} \mathrm{~m} / \mathrm{s}$
d) 490 m .

Section - B

Answer the following $\mathbf{1 6}$ to $\mathbf{3 0}$ questions. Each question carry one mark.
16. In which ratio does the X - axis divide the line-segment joining $A(3,5)$ and $B(2,6)$?
17. Obtain the equation of the circle which has a diagonal of rectangle formed by $x=2, x=-2, y=3$ and $y=1$.

OR
Obtain the equation of a circle with radius $5 / 2$, if it passes through $(-1,1)$ and $(-1,-4)$.
18. There is a point on the parabola $y^{2}=2 x$, whose x-co-ordinate is two times the y-co-ordinate. If this point is not the vertex of the parabola, find the point.
19. Find the parametric equation of director circle of $\frac{x^{2}}{16}+\frac{y^{2}}{9}=1$
20. Find a unit vector orthogonal to both $(2,2,1)$ and $(3,2,2)$.
21. Find the projection of $(1,1,1)$ on $(2,2,1)$.
22. Find the perpendicular distance of the point $P(4,-5,3)$ from the line $\frac{x-5}{3}=\frac{y+2}{-4}=\frac{z-6}{5}$.
23. Find $\frac{d}{d x}\left(\operatorname{Sin}^{3} x^{0}\right)$

OR

Find $\frac{d}{d x}\left(e^{-2006 \log _{e} x}\right)$
24. Evaluate $\int \frac{e x}{\sqrt{2 x^{2}+3}} \cdot d x$
25. Find the area of the region bounded by the curve $y=\operatorname{Cos} x X$ - axis and the the lines $x=0, x=\pi$.
26. Evaluate $\int \operatorname{Tan}^{2} x \cdot \operatorname{Sec}^{2} x \cdot d x$.

OR

Evaluate $\int \frac{1}{9+4 x^{2}} \cdot d x$.
27. Evaluate $\int_{1}^{4013}\left(\operatorname{Cosec}^{-1} x+\operatorname{Sec}^{-1} x\right) \cdot d x,|x| \geq 1$
28. Obtain the differential equation representing all line of family $y=m x+c \quad$ (where m and c are arbitrary constants).
29. If the distance of a particle executing rectilinear motion is x from fixed point at time t, where $x=2 t^{3}-9 t^{2}+12 t+8$, then when will the volocity become 0 .
30. Two balls are thrown vertically upwards with velocities $19.6 \mathrm{~m} / \mathrm{s}$ and $9.8 \mathrm{~m} / \mathrm{s}$. Find the height of the second ball, when the first ball attains maximum height.

Section - C

Answer the following $\mathbf{3 1}$ to $\mathbf{4 0}$ questions. Each carrying two marks as directed in the question.
31. Prove by using slopes that $A(12,8), B(-2,6), C(6,0)$ are the vertices of a right triangle.

OR

Find the equation of the perpendicular bisector of $\overline{A B}$ where A is $(-3,2)$ and B is $(7,6)$.
32. For the parabola $x^{2}=12 y$, find the area of the triangle whose vertices are the vertex of the parabola and two-end points its latus-rectum.
33. If the end-points of a chord of the ellipse $b^{2} x^{2}+a^{2} y^{2}-a^{2} b^{2}=0$ have eccentric angle with measure α and β, then prove that the equation of the line containing the chord is

$$
\frac{x}{a} \operatorname{Cos}\left(\frac{\alpha+\beta}{2}\right)+\frac{y}{b} \operatorname{Sin}\left(\frac{\alpha+\beta}{2}\right)=\operatorname{Cos}\left(\frac{\alpha-\beta}{2}\right) .
$$

34. If the eccentricities of $\frac{x^{2}}{a^{2}}-\frac{y^{2}}{b^{2}}= \pm 1$ are e_{1} and e_{2} respectively, then prove that $e_{1}^{2}+e_{2}^{2}=e_{1}^{2} \cdot e_{2}^{2}$.

OR

If the chord of hyperbola joining $P(\alpha)$ and $Q(\beta)$ on the hyperbola subtends a right angle at the centre $C(0,0)$, then prove that $a^{2}+b^{2} \operatorname{Sin} \alpha \cdot \operatorname{Sin} \beta=0$.
35. Prove that : $\left.\begin{array}{lll}\bar{x}+\bar{y} & \bar{y}+\bar{z} & \bar{z}+\bar{x}\end{array}\right]=2\left[\begin{array}{ll}\bar{x} & \bar{y} \\ \bar{z}\end{array}\right]$
36. 'If $\bar{x}, \bar{y}, \bar{z}$ are coplanar vectors, then prove that $\bar{x}+\bar{y}, \bar{y}+\bar{z}, \bar{z}+\bar{x}$ are coplanar.

OR

If $(\bar{x}+\bar{y}) \cdot(\bar{x}-\bar{y})=63$ and $|\bar{x}|=8 \bar{y} \mid$ then, find $|\bar{x}|$.
37. Get the radius of the circle that is the intersection of the sphere $x^{2}+y^{2}+z^{2}=49$ and the plane $2 x+3 y-z=5 \sqrt{14}$.
38. If $x=a(1-\operatorname{Cos} \theta), y=a(\theta-\operatorname{Sin} \theta), \theta \in(0, \pi), a \neq 0$, then find $\frac{d^{2} y}{d x^{2}}$.
39. Verify Rolle's theorem for $f(x)=\operatorname{Sin} x+\operatorname{Cos} x-1, x \in\left[0, \frac{\pi}{2}\right]$ If it is applicable, find C.

OR

In which interval the function $f(x)=5 x^{3}-15 x^{2}-120 x+3$ is increasing and in which it is decreasing?
40. Evaluate $\int \frac{\operatorname{Sin} x}{1+\operatorname{Sin} x} \cdot d x$.

Section - D

Answer the following $\mathbf{4 1}$ to $\mathbf{5 0}$ questions. Each carrying three marks as directed in the question.
41. A is $(2 \sqrt{2}, 0)$ and B is $(-2 \sqrt{2}, 0)$. If $|A P-P B|=4$, then find the equation of locus of P.

OR

Origin is circumcentre of traingle with vertices $A\left(x_{1}, x_{1} \operatorname{Tan} \theta_{1}\right)$,

$$
B\left(x_{2}, x_{2} \operatorname{Tan} \theta_{2}\right), C\left(x_{3}, x_{3} \operatorname{Tan} \theta_{3}\right) \quad\left(0<\theta_{i}<\pi / 2, x_{i}>0, i=1,2,3\right)
$$

If the centroid of $\triangle A B C$ is (x, y) prove that
$\frac{y}{x}=\frac{\operatorname{Sin} \theta_{1}+\operatorname{Sin} \theta_{2}+\operatorname{Sin} \theta_{3}}{\operatorname{Cos} \theta_{1}+\operatorname{Cos} \theta_{2}+\operatorname{Cos} \theta_{3}}$.
42. If the equation $3 x^{2}+(3-p) x y+q y^{2}-2 p x=8 p q$ represents a circle, find p and q. Also determine the centre and radius of the circle.
43. Forces measuring 5,3 and 1 unit act in the direction : $(6,2,3)$, $(3,-2,6),(2,-3,-6)$ respectively. As a result, the particle moves from $(2,-1,-3)$ to $(5,-1,1)$. Find the resultant force and work done.
44. Find the vector and Cartesian equations of the line passing through $(1,2,3)$ and perpendicular to the two lines $\bar{r}=(0,0,0)+K(1,2,-1), K \in R \quad$ and $\frac{x-1}{3}=\frac{y}{2}=\frac{z}{6}$

OR
Find the measure of the angle between two lines, if their direction cosines l, m, n satisfy $l+m+n=0, l^{2}+m^{2}-n^{2}=0$.
45. Find the vector and Cartesian equations of the plane containing the lines $\bar{r}=(1,2,3)+K(2,3,4), K \in R$ and $\frac{x-1}{1}=\frac{y}{3}=\frac{z-5}{4}$.
46. Find $\stackrel{\operatorname{Lim}}{x \rightarrow \frac{1}{\sqrt{2}}} \frac{x-\operatorname{Cos}\left(\operatorname{Sin}^{-1} x\right)}{1-\operatorname{Tan}\left(\operatorname{Sin}^{-1} x\right)}$
47. Prove that, if $x>0$, then $\frac{x}{1+x^{2}}<\operatorname{Tan}^{-1} x<x$.
48. Obtain $\int_{0}^{\pi / 2} \operatorname{Sin} x \cdot d x$ as the limit of a sum.
49. Prove that $\int_{8}^{27} \frac{d x}{x-\sqrt[3]{x}}=\frac{3}{2} \log \left(\frac{8}{3}\right)$.
50. Solve $x y \cdot \frac{d y}{d x}=y+2$. If $y(2)=0$, then find the particular solution of the given differential equation.

OR
The population of a city increases at the rate of 3% per year. How many years will take to double the population?

Section - E

Answer the following 51 to 54 questions. Each carrying five marks.
51. A is $(-4,-5)$ in $\triangle A B C$ and the lines $5 x+3 y-4=0$ and $3 x+8 y+13=0$ contain two of the altitudes of the triangle. Find the co-ordinates of B and C.
52. If $f(x)=\frac{e^{1 / x}-e^{-1 / x}}{e^{1 / x}+e^{-1 / x}}, x \neq 0, f(0)=1$ then prove that f is not continuous at $x=0$.

OR

Find $\operatorname{Lim}_{x \rightarrow 0} \frac{(1+m x)^{n}-(1+n x)^{m}}{x^{2}}, m, n \in N$.
53. If $x=\operatorname{Sin} t, y=\operatorname{Sin} p t$ then prove that $\left(1-x^{2}\right) \frac{d^{2} y}{d x^{2}}-x \frac{d y}{d x}+p^{2} y=0$.
54. Evaluate $\int \frac{1}{1+5 e^{x}+6 e^{2 x}} \cdot d x$.

OR

Evaluate $\int \frac{\operatorname{Sec} x}{1+\operatorname{Cosec} x} \cdot d x$.

