Hyperbola

A hyperbola is defined as an open curve having two branches which are mirror images to each other. Hyperbolic curves are of special importance in astronomy \& space studies. Here, we will be studying about hyperbola and characteristics of such curves.

What is Hyperbola?

A hyperbola is a locus of points in such a way that the distance to each focus is a constant greater than one. In other words, the locus of a point moving in a plane in such a way that the ratio of its distance from a fixed point (focus) to that from a fixed line (directrix) is a constant greater than 1.

[Note: The point (focus) does not lie on the line (directrix)]
(PS/PM) $=\mathrm{e}>1$ eccentricity

Standard Equation of Hyperbola

The equation of the hyperbola is simplest when the centre of the hyperbola is at the origin and the foci are either on the x -axis or on the y -axis. The standard equation of a hyperbola is given as:
$\left[\left(x^{2} / a^{2}\right)-\left(y^{2} / b^{2}\right)\right]=1$
where,$b^{2}=a^{2}\left(e^{2}-1\right)$

Important Terms and Formulas of Hyperbola

There are certain terms related to a hyperbola which needs to be thoroughly understood to be able to get confident with this concept. Some of the most important terms related to hyperbolae are:

- Eccentricity (e): $\mathrm{e}^{2}=1+\left(\mathrm{b}^{2} / \mathrm{a}^{2}\right)=1+\left[(\text { conjugate axis })^{2} /(\text { transverse axis })^{2}\right]$
- Focii: $S=(a e, 0) \& S^{\prime}=(-a e, 0)$
- Directrix: $x=(a / e), x=(-a / e)$
- Transverse axis:

The live segment $A^{\prime} A$ of length $2 a$ in which the focii S^{\prime} and S both lie is called the transverse axis of the hyperbola.

- Conjugant axis:

The line segment (https://byjus.com/maths/line-segment/) B'B of length 2 b between the 2 points $\mathrm{B}^{\prime}=(0,-$ b) \& $B=(0, b)$ is called the conjugate axis of the hyperbola.

- Principal axes:

The transverse axis \& conjugate axis.

- Vertices:
$\mathrm{A}=(\mathrm{a}, 0) \& \mathrm{~A}^{\prime}=(-\mathrm{a}, 0)$
- Focal chord:

A chord which passes through a focus is called a focal chord.

- Double ordinate:

Chord perpendicular to the transverse axis is called a double ordinate.

- Latus Rectum:

Focal chord \perp^{r} to the transverse axis is called latus rectum.
Its length $=\left(2 b^{2} / a\right)=\left[(\text { conjugate })^{2} /\right.$ transverse $]=2 a\left(e^{2}-1\right)$
The difference in focal distances is a constant
i.e. $\left|P S-P S^{\prime}\right|=2 a$

Length of latus rectum $=2 \mathrm{e} \times$ (distance of focus from corresponding directrix)
End points of L.R: $\left(\pm a e, \pm b^{2} / a\right)$

Centre:

The point which bisects every chord of the conic, drawn through it, is called the centre of the conic.
$C:(0,0)$ is the centre of $\left[\left(x^{2} / a^{2}\right)-\left(y^{2} / b^{2}\right)\right]=1$

Note:

You will notice that the results for ellipse (https://byjus.com/jee/ellipse/) are also applicable for a hyperbola. You need to replace b^{2} by ($-b^{2}$)

Practice Problems on Hyperbola

Example 1:

Find the equation of the hyperbola whose directrix is $2 x+y=1$, focus $(1,2)$ and eccentricity $\sqrt{ } 3$.

Solution:

Let $\mathrm{P}(\mathrm{x}, \mathrm{y})$ be any point on the hyperbola.
Draw PM perpendicular from P on the directrix,

Then by definition $\mathrm{SP}=\mathrm{ePM}$.
$\Rightarrow(S P)^{2}=e^{2}(P M)^{2}$

$\Rightarrow(x-1)^{2}+(y-2)^{2}=3\{(2 x+y-1) / \sqrt{ }(4+1)\}^{2}$
$\Rightarrow 5\left(x^{2}+y^{2}-2 x-4 y+5\right)$
$=3\left(4 x^{2}+y^{2}+1+4 x y-2 y-4 x\right)$
$\Rightarrow 7 x^{2}-2 y^{2}+12 x y-2 x+14 y-22=0$
Which is the required hyperbola.

Example 2:

Find the eccentricity of the hyperbola whose latus rectum is half of its transverse axis.

Solution:

Let the equation of hyperbola be $\left[\left(x^{2} / a^{2}\right)-\left(y^{2} / b^{2}\right)\right]=1$
Then transverse axis $=2 a$ and latus - rectum $=\left(2 b^{2} / a\right)$
According to question $\left(2 b^{2} / a\right)=(1 / 2) \times 2 a$
$\Rightarrow 2 b^{2}=a^{2}\left(\right.$ Since, $\left.b^{2}=a^{2}\left(e^{2}-1\right)\right)$
$\Rightarrow 2 \mathrm{a}^{2}\left(\mathrm{e}^{2}-1\right)=\mathrm{a}^{2}$
$\Rightarrow 2 e^{2}-2=1$
$\Rightarrow \mathrm{e}^{2}=(3 / 2)$
$\therefore e=\sqrt{ }(3 / 2)$
Hence the required eccentricity is $\sqrt{ }(3 / 2)$

What is Conjugate Hyperbola?

2 hyperbolas such that transverse \& conjugate axes of one hyperbola are respectively the conjugate \& transverse axis of the other are called conjugate hyperbola of each other.

2 hyperbolas such that transverse \& conjugate axes of one hyperbola are respectively the conjugate \& transverse axis of the other are called conjugate hyperbola of each other.
$\left(x^{2} / a^{2}\right)-y^{2} b^{2}=1 \&\left(-x^{2} / a^{2}\right)+\left(y^{2} / b^{2}\right)=1$ are conjugate hyperbolas of each other.
$\left(y^{2} / b^{2}\right)-\left(x^{2} / a^{2}\right)=1$
$a^{2}=b^{2}\left(e^{2}-1\right)$

$$
a^{2}=b^{2}\left(e^{2}-1\right) \Rightarrow e=\sqrt{1+\frac{a^{2}}{b^{2}}}
$$

Vertices: Vertices: $(0, \pm b)$ L.R. $=\left(2 a^{2} / b\right)$

Some Important Conclusions on Conjugate Hyperbola

(a) If are eccentricities of the hyperbola \& its conjugate, the
$\left(1 / e_{1}{ }^{2}\right)+\left(1 / e_{2}{ }^{2}\right)=1$
(b) The foci of a hyperbola \& its conjugate are concyclic \& form the vertices of a square (https://byjus.com/maths/square/).
(c) 2 hyperbolas are similar if they have the same eccentricities.
(d) 2 similar hyperbolas are equal if they have the same latus rectum.

Example 3:

Find the lengths of transverse axis and conjugate axis, eccentricity, the co-ordinates of foci, vertices, length of the latus-rectum and equations of the directrices of the following hyperbola $16 x^{2}-9 y^{2}=-144$.

Solution:

The equation $16 x^{2}-9 y^{2}=-144$ can be written as $\left(x^{2} / 9\right)-\left(y^{2} / 16\right)=-1$
This is of the form $\left(x^{2} / a^{2}\right)-\left(y^{2} / b^{2}\right)=-1$
$\therefore \mathrm{a}^{2}=9, \mathrm{~b}^{2}=16$
$\Rightarrow \mathrm{a}=3, \mathrm{~b}=4$
Length of transverse axis: The length of transverse axis $=2 b=8$
Length of conjugate axis: The length of conjugate axis $=2 \mathrm{a}=6$

Eccentricity:

$$
e=\sqrt{\left(1+\frac{a^{2}}{b^{2}}\right)}=\sqrt{\left(1+\frac{9}{16}\right)}=\frac{5}{4}
$$

Foci: The co-ordinates of the foci are ($0, \pm$ be) i.e., $(0, \pm 5)$
Vertices: The co-ordinates of the vertices are $(0, \pm b)$ i.e. $(0, \pm 4)$
Lengths of latus-rectum: The length of latus-rectum $=\left(2 a^{2} / b\right)=\left[2(3)^{2}\right] / 4=9 / 2$
Equation of directrices: The equation of directrices are
$y= \pm(b / e) \Rightarrow y= \pm[4 /(5 / 4)] \Rightarrow y \pm(16 / 5)$

Auxiliary Circles of the Hyperbola

A circle (https://byjus.com/maths/circles/) drawn with centre C \& transverse axis as a diameter is called the auxiliary circle of the hyperbola. The auxilary circle of hyperbola equation is given as:

Equation of the auxiliary circle is $\mathbf{x}^{\mathbf{2}}+\mathbf{y}^{\mathbf{2}}=\mathrm{a}^{\mathbf{2}}$,
Note from the following figure that P \& Q are called the "corresponding points" of the hyperbola \& the auxiliary circle.

Parametric Representation:

$x=a \sec \theta$ and $y=b \tan \theta$
i.e. If $(a \sec \theta, b \tan \theta)$ is on the hyperbola, then $Q:(a \cos \theta, a \sin \theta)$ lies on the auxiliary circle. The equation of chord joining 2 points $P(a)$ and $Q(f)$ is given by:

$$
\frac{x}{a}\left(\frac{\alpha-\beta}{2}\right)-\frac{y}{b} \sin \left(\frac{\alpha+\beta}{2}\right)=\cos \left(\frac{\alpha+\beta}{2}\right)
$$

The position of a point P
$S_{1}=x_{1}^{2} / a^{2}+y^{2} / b^{2}=1$ is positive, zero or negative accordingly as (x_{1}, y_{1}) lies inside, on or outside is positive, zero or negative accordingly as ($\mathrm{x}_{1}, \mathrm{y}_{1}$) lies inside, on or outside.

Example 4: Find the position of the point $(5,-4)$ relative to the hyperbola $9 x^{2}-y^{2}=1$.

Solution:

Since $9(5)^{2}-(-4)^{2}-1=225-16-1=208>0$,

So, the point $(5,-4)$ lies inside the hyperbola $9 x^{2}-y^{2}=1$.

Rectangular Hyperbola

The rectangular hyperbola is a hyperbola axes (or asymptotes) are perpendicular, or with its eccentricity is $\sqrt{ } 2$. Hyperbola with conjugate axis $=$ transverse axis is $\mathrm{a}=\mathrm{b}$ example of rectangular hyperbola.
$x^{2} / a^{2}-y^{2} / b^{2}$
$\Rightarrow x^{2} / a^{2}-y^{2} / a^{2}=1$
Or, $x^{2}-y^{2}=a^{2}$
We know $b^{2}=a^{2}\left(e^{2}-1\right) a^{2}$
$=a^{2}\left(e^{2}-1\right) e^{2}=2 e=\sqrt{ } 2$.

Eccentricity of rectangular hyperbola
Also, $\mathrm{xy}=\mathrm{c}$
e.g. $x y=1, y=1 / x$

Tangent of Rectangular hyperbola

The tangent of a rectangular hyperbola is a line that touches a point on the rectangular hyperbola's curve. The equation and slope form of a rectangular hyperbola's tangent is given as:

Equation of tangent

The $y=m x+c$ write hyperbola $x^{2} / a^{2}-y^{2} / b^{2}=1$ will be tangent if $c^{2}=a^{2} / m^{2}-b^{2}$.

Slope form of tangent

$y=m x \pm \sqrt{ }\left(a^{2} m^{2}-b^{2}\right)$

Secant

Secant will cut ellipse at 2 distinct points
$\Rightarrow \mathrm{c}^{2}>\mathrm{a}^{2} \mathrm{~m}^{2}-\mathrm{b}^{2}$

Neither Secant Nor Tangent

For line to be neither secant nor tangent, quadratic equation will give imaginary solution.
$\Rightarrow \mathrm{c}^{2}<\mathrm{a}^{2} \mathrm{~m}^{2}-\mathrm{b}^{2}$
Equation of tangent to hyperbola $x^{2} / a^{2}-y^{2} / b^{2}=1$ at point $\left(x_{1}, y_{1}\right)$
$=\left(\mathrm{xx}_{1}\right) / \mathrm{a} 2=\left(\mathrm{yy}_{1}\right) / \mathrm{b}_{1}=1$

Parametric form of tangent:
$(x \sec \theta) / a-(y \tan \theta) / b=1$

Point of contact and examples on tangent

Compare:

$y=m x+c$
$\left(x x_{1}\right) / a^{2}-\left(y y_{1}\right) / b^{2}=1-m x+y=c$
$\mathrm{x}_{1}=\left(-\mathrm{a}^{2} \mathrm{c}\right) / \mathrm{m} ;$
$y_{1}=-b^{2} / c$
$\left(x_{1}, y_{1}\right)=\left[\left(-a^{2} m\right) / c,-b^{2} / c\right]$

Solved Examples on Hyperbola

Example 5: Show that the line $x \cos a+y \sin a=p$ touches the hyperbola $x^{2} / a^{2}-y^{2} / b^{2}=1$. If $a^{2} \cos ^{2} a-$ $b^{2} \sin ^{2} a=p^{2}$.

Solution:

Given line is $x \cos a+y \sin \alpha=p$
$y=-x \cot a+p \operatorname{cosec} a$
Condition for $y=m x+c$ to be tangent of hyperbola $x^{2} / a^{2}-y^{2} / b^{2}=1$.
$c^{2}=a^{2} / m^{2}-b^{2}$
$p^{2} \operatorname{cosec} 2 a=a^{2} \cot 2 a-b^{2}$
$p^{2}=a^{2} \cos ^{2} a-b^{2} \sin ^{2} a$
Director circle:
Locus of point of intersection of $\perp r$ tangents.
Director circle for $x^{2} / a^{2}-y^{2} / b^{2}=1$ is
$x^{2}+y^{2}=a^{2}-b^{2}$
Example 6: Find the equation of tangent to hyperbola $x 29-y 2=1$ whose slope is 5

Solution:

Slope of tangent $m=5, a^{2}=9, b^{2}=1$
Equation of tangent in slope form is
$y=m x \pm \sqrt{ }\left(a^{2} m^{2}-b^{2}\right)$
$y=5 x \pm \sqrt{ }\left(9.5^{2}-1\right)$
$y=5 x \pm 4 \sqrt{ } 14$
[Note: For ellipse, director circle is $x^{2}+y^{2}=a^{2}+b^{2}, x^{2} / a^{2}+y^{2} / b^{2}=1$]

Normal:

Equation of normal of $x^{2} / a^{2}-y^{2} / b^{2}=1$ at $\left(x_{1}, y_{1}\right)$
$a^{2} x / x_{1}+b^{2} y / y_{1}=a^{2}+b^{2}$

Normal in parametric form:

$\mathrm{ax} / \sec \theta+\mathrm{by} / \tan \theta=\mathrm{a}^{2}+\mathrm{b}^{2}$
Example 7: Find normal at the point $(6,3)$ to hyperbola $x^{2} / 18-y^{2} / 9=1$

Solution:

Equation of Normal at point $\left(x_{1}, y_{1}\right)$ is $a^{2}=18, b^{2}=9$
$a^{2} \mathrm{x} / \mathrm{x}_{1}+\mathrm{b}^{2} \mathrm{y} / \mathrm{y}_{1}=\mathrm{a}^{2}+\mathrm{b}^{2}$
Equation of Normal at point $(6,3)$ is
$18 x / 6+9 y / 3=18+9$
$x+y=9$
Chord of contact:
$\mathrm{T}=0$
$x x 1 / a^{2}-y y 1 / b^{2}=1$
Example 8: Find equation of chord of Contact of point $(2,3)$ to hyperbola $x^{2} / 16-y^{2} / 9=1$

Solution:

Equation of chord of Contact is $\mathrm{T}=0$
i.e. $\left(\mathrm{xx}_{1}\right) / \mathrm{a}^{2}-\left(\mathrm{yy}_{1}\right) / \mathrm{b}^{2}-1=0$

Or, $2 \mathrm{x} / 16-3 \mathrm{y} / 9=1$
Or, $x / 8-y / 3=1$
Equation of chord when mid-point is given
$T=\left(x x_{1}\right) / a^{2}-\left(y y_{1}\right) / b^{2}-1=x_{1}{ }^{2} / a^{2}-y_{1}{ }^{2} / b^{2}-1$.
Example 9: Find the equation of chord of hyperbola $x^{2 / 9}-y^{2} / 4=1$ whose midpoint is $(5,1)$.

Solution:

Equation of chord of the hyperbola whose mid points is $(5,1)$
$\mathrm{T}=\left(\mathrm{xx}_{1}\right) / \mathrm{a}^{2}-\left(\mathrm{yy}_{1}\right) / \mathrm{b}^{2}-1=\mathrm{x}_{1}{ }^{2} / \mathrm{a}^{2}-\mathrm{y}_{1}{ }^{2} / \mathrm{b}^{2}-1$
$5 x / 9-y / 4-1=25 / 9-1 / 4-1$
$5 x / 9-y / 4=91 / 36$

