MP BOARD CLASS 11 MATHS SAMPLE PAPER-SET 2

प्रादश प्रश्न-पत्र

Model Question Paper

उच्च गणित
HIGHER MATHEMATICS
(Hindi and English Versions)

Time- 3 घंटे
Maximum Marks-100
निर्देश-
(1) सभी प्रश्न हल करना अनिवार्य है।
(2) प्रश्नों पर आधारित अंक उनके सम्मुख दर्शाए गए हैं।
(3) प्रश्न क्र. 1 से 5 तक वस्तुनिष्ठ प्रश्न हैं।
(4) प्रश्न 6 से 21 तक प्रत्येक प्रश्न में आंतरिक विकल्प दिए गए हैं।

Instructions
(1) All questions are compulsory to solve.
(2) Marks have been indicated against each question
(3) From Question No. 1 to five are objective type questions
(4) Internal options are given in question No. 6 to 21 खण्ड-अ (Section-A) वस्तुनिष्ठ प्रश्न (Objective Type Questions) प्रश्न-1 प्रत्येक वस्तुनिष्ठ प्रश्न में दिए गए विकल्पों में से सही उत्तर चुनिए-
(i) $\frac{1}{x(x+2)}$ के आंशिक भिन्न हैं-
(a) $\frac{1}{x}-\frac{1}{x+1}$
(b) $\frac{1}{x+2}+\frac{1}{x+1}$
(c) $\frac{1}{2}\left[\frac{1}{x}-\frac{1}{x+2}\right]$
(d) $\frac{1}{x+2}-\frac{1}{x+1}$
(ii) $\tan ^{-1} \frac{1}{2}+\tan ^{-1} \frac{1}{3}$ का मान है-
(a) $\tan ^{-1} \frac{1}{6}$
(b) $\frac{\pi}{3}$
(d) $\frac{\pi}{4}$
(d) $\frac{\pi}{6}$
(iii) बिन्दु $(4,3,5)$ की Y अक्ष से दूरी है-
(a) $\sqrt{34}$
(b) 5
(c) $\sqrt{41}$
(d) $\sqrt{15}$
(iv) उस समतल का समीकरण जो अक्षों से इकाई लंबाई के अन्तः खण्ड काटता है, है-
(a) $x+y+z=0$
(b) $x+y+z=1$
(c) $x+y+z=3$
(d) $x+y+z=-1$
(v) यदि किसी रेखा के दिक्अनुपात $1,-3,2$ हो तो उस रेखा की दिककोज्याएँ हैं-
(a) $\frac{1}{\sqrt{14}}, \frac{-3}{\sqrt{14}}, \frac{2}{\sqrt{14}}$
(b) $\frac{1}{\sqrt{14}}, \frac{2}{\sqrt{14}}, \frac{3}{\sqrt{14}}$
(c) $\frac{-1}{\sqrt{14}}, \frac{3}{\sqrt{14}}, \frac{-2}{\sqrt{14}}$
(d) $\frac{-1}{\sqrt{14}}, \frac{-2}{\sqrt{14}}, \frac{-3}{\sqrt{14}}$

Write the correct anwer from the given options provided in every objective type question
(i) Partial fractions of $\frac{1}{x(x+2)}$ are-
(a) $\frac{1}{x}-\frac{1}{x+1}$
(b) $\frac{1}{x+2}+\frac{1}{x+1}$
(c) $\frac{1}{2}\left[\frac{1}{x}-\frac{1}{x+2}\right]$
(d) $\frac{1}{x+2}-\frac{1}{x+1}$
(ii) The value of $\tan ^{-1} \frac{1}{2}+\tan ^{-1} \frac{1}{3}$ is-
(a) $\tan ^{-1} \frac{1}{6}$
(b) $\frac{\pi}{3}$
(d) $\frac{\pi}{4}$
(d) $\frac{\pi}{6}$
(iii) Distance of the point $(4,3,5)$ from Y axis is-
(a) $\sqrt{34}$
(b) 5
(c) $\sqrt{41}$
(d) $\sqrt{15}$
(iv) Equation of a plane which cuts the unit intercepts with the coordinate axis is
(a) $x+y+z=0$
(b) $x+y+z=1$
(c) $x+y+z=3$
(d) $x+y+z=-1$
(iv) If direction ratios of a line are $1,-3,2$ then direction consines of line are
(a) $\frac{1}{\sqrt{14}}, \frac{-3}{\sqrt{14}}, \frac{2}{\sqrt{14}}$
(b) $\frac{1}{\sqrt{14}}, \frac{2}{\sqrt{14}}, \frac{3}{\sqrt{14}}$
(c) $\frac{-1}{\sqrt{14}}, \frac{3}{\sqrt{14}}, \frac{-2}{\sqrt{14}}$
(d) $\frac{-1}{\sqrt{14}}, \frac{-2}{\sqrt{14}}, \frac{-3}{\sqrt{14}}$
(3)

प्रश्न-2. निम्नलिखित कथनों में सत्य/असत्य कथन छाँटकर अपनी उत्तरपुस्तिका में लिखिए।
(i) बिन्दुओं $(1,2,3)$ और $(4,5,6)$ को मिलाने वाली रेखा के दिक्अनुपात -5 , $3,-9$ हैं।
(ii) तीन असमान्तर, अशून्य सदिश समतलीय होने के लिए उनका अदिश त्रिक गुणनफल शून्य होता है।
(iii) $\sin \left(\cos ^{-1} x\right)$ का अवकलन गुणांक शून्य होता है।
(iv) $\sin x+\cos x$ का महत्तम मान 2 है।
(v) $\hat{i} i+\hat{j} \cdot \hat{j}+\hat{k} \cdot \hat{k}$ का मान 3 है।

Write True / False in the following statement-
(i) The direction ratios of the line joining the points $(1,2,3)$ and $(4,5,6)$ are $-5,3,-9$
(ii) If three non parallel non zero vectos are coplaner than the scalar triple product of them will be zero.
(iii) The differential Coefficient of $\sin \left(\cos ^{-1} x\right)$ is zero.
(iv) The maximum value of $\sin x+\cos x$ is 2
(v) The value of $\hat{i}+\hat{j} \cdot \hat{j}+\hat{k} \cdot \hat{k}$ is 3 .

प्रश्न-3. रिक्त स्थानों की पूर्ति कीजिए-
(i) $\sin x$ का n वाँ अवकलज होता है।
(ii) लेग्राज सर्वसमिका से $(\vec{a} \cdot \vec{b}) \cdot(\vec{c} \times \vec{d})$ \qquad
(iii) $\rho \frac{\sigma x}{\sigma y}$ को समाश्रयण गुणांक कहते हैं
(iv) यदि $0.75 \leqslant r<1$ हो तो चरों में \qquad सह-संबंध होता है।
(v) दो अशून्य सदिश \vec{a} और \vec{b} समांतर होते हैं यदि और यदि. \qquad
Fill in the Blanks-
(i) The $\mathrm{n}^{\text {th }}$ derivative of $\sin x$ is \qquad
(ii) By Lagrang's inequality $(\vec{a} \cdot \vec{b}) \cdot(\vec{c} \times \vec{d})=$ \qquad
(iii) $\rho \frac{\sigma x}{\sigma y}$ is \qquad regression Coefficient
(iv) If $0.75 \leqslant r<1$ then \qquad Co-relation in variables.
(v) Two non zero vectors \vec{a} and \vec{b} are parallel if and only if \qquad
प्रश्न-4. खण्ड $अ$ के लिए खण्ड ब में से सही उत्तर चुनकर जोड़ी बनाइए। Match the Column by choosing from section (B) for section (A)

खण्ड अ (Section-A)
(i) $\int \tan x d x$

खण्ड ब (Section-B)
(a) $\sin ^{-1} \frac{x}{a}+c$
(ii) $\int \frac{1}{1+x^{2}} \mathrm{~d} x$
(b) $\frac{1}{a} \sec ^{-1}\left(\frac{x}{a}\right)+c$
(iii) $\int \frac{1}{\sqrt{a^{2}-x^{2}}} \mathrm{~d} x$
(c) $\operatorname{cosec}^{-1} \frac{x}{a}+c$
(iv) $\int \frac{-1}{\sqrt{a^{2}-x^{2}}}$
(d) $-\log (\cos x)+c$
(v) $\int \frac{-1}{a^{2}+x^{2}} \mathrm{~d} x$
(e) $\tan ^{-1} x+c$
(f) $\cos ^{-1}\left(\frac{x}{a}\right)+c$
(g) $\frac{1}{a} \cot ^{-1}\left(\frac{x}{a}\right)+c$

प्रश्न-5. निम्नलिखित प्रश्नों के उत्तर एक शब्द/वाक्य में लिखिए-
(i) न्यूटन रैफसन विधि से किसी संख्या का वर्गमूल् ज्ञात करने का सूत्र लिखिए।
(ii) आंकिक विधियों से संबंधित समलम्ब चतर्भुज नियम हेतु सूत्र लिखिए।
(iii) आंकिक विधियों से संबंधित सिम्पसन का एक तिहाई नियम लिखिए।
(iv) न्यूटन रैफसन विधि से किसी संख्या y का घनमूल ज्ञात करने की विधि का सूत्र लिखिए।
(v) $0.3542 \mathrm{E} 05+0.2681 \mathrm{E} 05$ का मान लिखिए।

Write the anwer of each question in one word/sentence of the following-
(i) Write the formula for square root of a number by Newton Reiphsons method.
(ii) Write the formula Simpson's rule related by numerical method.
(iii) Write one thrid rule of Simson's related to numerical method.
(iv) Write the formula for cube root of a number by Newtan's reiphsons method.
(v) Write the value of $0.3542 \mathrm{E} 05+0.2681 \mathrm{E} 05$.
खण्ड-ब (Section-B)

अतिलघु उत्तरीय प्रश्न (Very Short Answer Type Questions)
प्रश्न-6. निम्न व्यंजकों को आंशिक भिन्न में व्यक्त कीजिए। (4 अंक)

$$
\frac{1}{x^{2}-5 x+6}
$$

Solve following expression into partial Fractions

$$
\frac{1}{x^{2}-5 x+6}
$$

अथवा (or)

$$
\begin{align*}
& \frac{2 x+5}{(x-1)(x-2)} \text { को आंशिक भिन्नों में व्यक्त करो- } \\
& \frac{2 x+5}{(x-1)(x-2)} \text { Solve in partial fractions } \tag{4अंक}
\end{align*}
$$

प्रश्न-7. सिद्ध कीजिए कि-

$$
\tan ^{-1}\left(\frac{a-b}{1+a b}\right)+\tan ^{-1}\left(\frac{b-c}{1+b c}\right)+\tan ^{-1}\left(\frac{c-a}{1+c a}\right)=0
$$

Prove that- $\tan ^{-1}\left(\frac{a-b}{1+a b}\right)+\tan ^{-1}\left(\frac{b-c}{1+b c}\right)+\tan ^{-1}\left(\frac{c-a}{1+c a}\right)=0$
अथवा (or)
सिद्ध करो कि $\sin ^{-1} \frac{3}{5}+\cos ^{-1} \frac{12}{13}=\sin ^{-1} \frac{56}{65}$
Prove that- $\sin ^{-1} \frac{3}{5}+\cos ^{-1} \frac{12}{13}=\sin ^{-1} \frac{56}{65}$
प्रश्न-8. यदि $y=\sqrt{ } \log x+\sqrt{ } \log x+\sqrt{ } \log x \ldots \ldots \ldots \ldots \infty$ हो तो
सिद्ध कीजिए कि $\frac{d y}{d x}=\frac{1}{x(2 y-1)}$
If $y=\sqrt{ } \log x+\sqrt{ } \log x+\sqrt{ } \log x$.......... ∞ then prove
that $\frac{d y}{d x}=\frac{1}{x(2 y-1)}$

> अथवा (or)
$\mathrm{y}=\sqrt{\frac{1-\mathrm{x}}{1+\mathrm{x}}}$ का x के सापेक्ष अवकलन कीजिए।
Differentiate $\mathrm{y}=\sqrt{\frac{1-\mathrm{x}}{1+\mathrm{x}}}$ with respect to x .
प्रश्न-9. $\log \tan \left(\frac{\pi}{4}+\frac{x}{2}\right)$ का x के सापेक्ष अवकलन करो।
Differentiate $\log \tan \left(\frac{\pi}{4}+\frac{x}{2}\right)$ with respect to x
अथवा (or)
$\sqrt{\tan x}$ का प्रथम सिद्धांत के द्वारा अवकल गुणांक ज्ञात करो।
Find differential coefficient of $\sqrt{\tan x}$ by the first principle
प्रश्न-10. एक कण ऊर्ध्वाधर ऊपर की ओर फेंका जाता है। गति का समीकरण $\mathbf{S}=\mathbf{u t}-4.9 \mathrm{t}^{2}$ है। 20 मीटर की ऊँचाई पर पहुँचने के लिए कण का प्रारंभिक वेग ज्ञात करो।

A particle is thrown vertically upwards. The law of motion is $\mathrm{S}=\mathrm{ut}-4.9$ t^{2}. Find the initial velocity of the particle to reach the height of 20 metres अथवा (or)
सिद्ध कीजिए फलन $x^{3}-3 x^{2}+3 x+7$ का मान बिन्दु $x=1$ पर न तो उच्चिष्ठ और न ही निम्निष्ठ है।
Prove that function $x^{3}-3 x^{2}+3 x+7$ neither have a maxima nor minima at $x=1$
प्रश्न-11. निम्न आँकड़ों से समाश्रयण रेखाओं के समीकरण ज्ञात करो। (4 अंक)

x	2	4	6	8	10
y	6	5	4	3	2

Find the equation of regression of lines from the following data

x	2	4	6	8	10
y	6	5	4	3	2
				अथवा (or)	

निम्न आँकड़ों के आधार पर x की y पर समाश्रयण रेखा का समीकरण ज्ञात करो। यदि $y=90$ तो x का मान ज्ञात करो।
श्रेणी x
समान्तर माध्य $18 \quad 100$

मानक विचलन 1420
x और y में सह संबंध गुणांक $=0.8$
From the followoing data. Find the line of regression of x on y and estimate the value of x, if $y=90$.
Series x y
Arithmetic Mean 18100
Standard Deviation 1420
Coefficient of coreelation between x and $\mathrm{y}=0.8$
प्रश्न-12. कार्ल पियर्सन विधि का प्रयोग कर निम्न आँकड़ों से सह-संबंध गुणांक ज्ञात कीजिए।

x	3	4	6	8	9
y	90	100	130	160	170

Find the coefficient of correlation between x and y by using Karl Pearson's method from following data

x	3	4	6	8	9
y	90	100	130	160	170
			अथवा	(or)	

सिद्ध कीजिए कि सह-संबंध गुणांक r का मान -1 से +1 के बीच होता है। Prove that the value of coefficent of correlation lines between -1 and +1

> लघु उत्तरीय प्रश्न (Short Answer Type Questions)

प्रश्न-13. एक समतल अक्षों को बिन्दु $A B C$ पर मिलता है, इससे बने $\triangle A B C$ का

केन्द्रक (a, b, c) है। सिद्ध कीजिए कि समतल का समीरण $\frac{x}{a}+\frac{y}{b}+\frac{z}{c}=3$ है। (5 अंक)

A plane intercepts the coordinate axis at $A B C$ respectively the centroid of $\triangle A B C$ is (a, b, c) then prove that the equation of plane is $\frac{x}{a}+\frac{y}{b}+\frac{z}{c}=3$. अथवा (or)
उस समतल का समीकरण ज्ञात करो जो मूल बिन्दु से होकर जाता है और समतलों $x+2 y-z=1$ तथा $3 x-4 y+2=5$ पर लंब हो।
Find the equation of a plane which passes through the origin and perpendicular to the planes $x+2 y-z=1$ and $3 x-4 y+2=5$.
प्रश्न-14. यदि $\triangle A B C$ का केन्द्रक G हो तो सिद्ध कीजिए कि (5 अंक)

$$
\overrightarrow{G A}+\overrightarrow{G B}+\overrightarrow{G C}=\vec{O}
$$

If G be the centriod of a triangle $A B C$ then prove that $\overrightarrow{G A}+\overrightarrow{G B}+\overrightarrow{G C}=\vec{O}$ अथवा (or)
सदिशों के योग का साहचर्य नियम लिखिए एवं उसे सिद्ध कीजिए
State and prove Associative law of vector addition
प्रश्न-15. यदि $\mathrm{f}(\mathrm{x})=\log \frac{1-x}{1+x}$ हो तो सिद्ध करो कि-

$$
\mathrm{f}(\mathrm{a})+\mathrm{f}(\mathrm{~b})=\mathrm{f}\left(\frac{a+b}{1+a b}\right)
$$

If $\mathrm{f}(\mathrm{x})=\log \frac{1-x}{1+x}$ then prove that-

$$
\mathrm{f}(a)+\mathrm{f}(\mathrm{~b})=\mathrm{f}\left(\frac{a+b}{1+a b}\right)
$$

अथवा (or)
$\lim _{x \rightarrow 0} \frac{\tan x-\sin x}{x^{3}}$ का मान ज्ञात करो।
Evaluate $\lim _{x \rightarrow 0} \frac{\tan x-\sin x}{x^{3}}$
प्रश्न-16. $\int \frac{d x}{5+4 \sin x}$ का मान ज्ञात करो-
Evaluate $\int \frac{d x}{5+4 \sin x}$
अथवा (or)
$\int \frac{d x}{2 x^{2}+6 x+8}$ का मान ज्ञात करो
Evaluate $\int \frac{d x}{2 x^{2}+6 x+8}$
प्रश्न-17. दीर्घवृत्त $\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}=1$ का क्षेत्रफल ज्ञात करो।
Find the area of ellipse $\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}=1$

> अथवा (or)

सिद्ध कीजिए कि $\int_{0}^{\pi / 2} \frac{\sin x}{\sin x+\cos x} \mathrm{~d} x=\frac{\pi}{4}$
Prove that $\int_{0}^{\pi / 2} \frac{\sin x}{\sin x+\cos x} \mathrm{~d} x=\frac{\pi}{4}$
प्रश्न-18. अवकल समीकरण हल कीजिए।

$$
\sec ^{2} x \tan y \mathrm{~d} x+\sec ^{2} y \cdot \tan x \mathrm{~d} y=0
$$

Solve the following differential equation

$$
\begin{array}{r}
\sec ^{2} x \tan y \mathrm{~d} x+\sec ^{2} y \cdot \tan x \mathrm{~d} y=0 \\
\text { अथवा (or) }
\end{array}
$$

निम्न अवकल समीकरण को हल करो।

$$
\left(1+y^{2}\right) \mathrm{d} x=\left(\tan ^{-1} y-x\right) \mathrm{d} y
$$

Solve the following differential equation

$$
\left(1+y^{2}\right) \mathrm{d} x=\left(\tan ^{-1} y-x\right) \mathrm{d} y
$$

प्रश्न-19. किसी प्रश्न को हल करने के A के प्रतिकूल संयोगानुपात $4: 3$ तथा उसी प्रश्न को हल करने के \mathbf{B} के अनूकूल संयोगानुपात $7: 5$ हैं। यदि दोनों हल करने की कोशिश करते हैं प्रश्न के हल होने की प्रायिकता ज्ञात करो।

The odds against A solving a problem are $4: 3$ and odds in favour of B solving that problem are $7: 5$. What is the probability that the problem will be solved if they both try.

अथवा (or)
एक पाँसे को दो बार उछाला जाता है। 4 से अधिक अंक आना सफलता माना जाता है। सफलतओं की संख्या का प्रायिकता बंटन ज्ञात कीजिए।
A die is thrown twice A number greater than 4 is taken success find the probablity distribution of number of successes.

दीर्घ उत्तरीय प्रश्न (Long Answer Type Question)
प्रश्न-20. सिद्ध कीजिए कि रेखाएँ $\frac{x-1}{2}=\frac{y-2}{3}=\frac{z-3}{4}$ और $. \frac{x-2}{3}=\frac{y-3}{4}=\frac{z-4}{5}$ समतलीय हैं। इन रेखाओं के प्रतिच्छेद बिन्दु ज्ञात करो।

Prove that the lines $\frac{x-1}{2}=\frac{y-2}{3}=\frac{z-3}{4}$ and $\frac{x-2}{3}=\frac{y-3}{4}=\frac{z-4}{5}$ are coplaner also find the point of intersection of lines.

अथवा (or)
उस गोले का समीकरण ज्ञात करो जो बिन्दुओं $(1,-3,4),(1,-5,2)$ और $(1,-$ $3,0)$ से होकर जाता है तथा जिसका केन्द्र समतल $x+y+z=0$ पर रिथत है। Find the equation of sphere which passes through the points $(1,-3,4)$, $(1-5,2)$ and $(1,-3,0)$ whose centre lines on the plane $x+y+z=0$
प्रश्न-21. निम्न रेखाओं के बीच की न्यूनतम दूरी ज्ञात करो। (6 अंक)

$$
\begin{aligned}
& \vec{r}=\hat{i}+2 \hat{j}+\hat{k}+\lambda(\hat{i}-\hat{j}+\hat{k}) \\
& \vec{r}=2 \hat{i}-\hat{j}-\hat{k}+\mu(2 \hat{i}+\hat{j}+2 \hat{k})
\end{aligned}
$$

Find the shortest distance between two following lines-

$$
\begin{aligned}
& \vec{r}=\hat{i}+2 \hat{j}+\hat{k}+\lambda(\hat{i}-\hat{j}+\hat{k}) \\
& \vec{r}=(2 \hat{i}-\hat{j}-\hat{k})+\mu(2 \hat{i}+\hat{j}+2 \hat{k})
\end{aligned}
$$

अथवा (or)
निम्न बिन्दुओं से होकर जाने वाले समतल का समीरण ज्ञात करो।

$$
-2 \hat{i}+6 \hat{j}-6 \hat{k}, 3 \hat{i}+10 \hat{j}-9 \hat{k} \text { और }-5 \hat{i}-6 \hat{k}
$$

Find the equation of plane passing through the points.

$$
-2 \hat{i}+6 \hat{j}-6 \hat{k}, 3 \hat{i}+10 \hat{j}-9 \hat{k} \text { and }-5 \hat{i}-6 \hat{k}
$$

