निर्देश:
(i) सभी प्रश्न अनिवार्य हैं।
(ii) प्रश्न पत्र में दिए गए निर्देश सावधानीपूर्वक पढ़कर प्रश्नों के उत्तर लिखिये।
(iii) दिए गये प्रश्न 1 से 5 तक वस्तुनिष्ठ प्रश्न हैं जिनके अन्तर्गत सही विकल्प का चयन, सत्य/असत्य, सही जोड़े मनाना, एक वाक्य में उत्तर तथा निःशुल्क स्थानों की पूर्ति करना है, प्रत्येक प्रश्न 5 अंक का है।
(iv) प्रश्न क्रमांक 6 से 24 में आंतरिक विकल्प दिये गये हैं।
(v) प्रश्न क्रमांक 6 से 10 तक प्रत्येक प्रश्न पर दो अंक आवंटित है।
(vi) प्रश्न क्रमांक 11 से 17 तक प्रत्येक प्रश्न पर 4 अंक आवंटित है।
(vii) प्रश्न क्रमांक 18 से 22 तक प्रत्येक प्रश्न पर 5 अंक आवंटित है।
(viii) प्रश्न क्रमांक 23 से 24 तक प्रत्येक प्रश्न पर 6 अंक आवंटित है।
Note:
(i) All question are compulsory.
(ii) Read the instructions of question paper carefully and write their answer.
(iii) Question No. 1 to 5 are objective types which contain. Choose the correct answer True/False, match the column, one sentence and fill in the blanks, each question is allotted 5 marks.
(iv) Internal options are given in Q. Nos. 6 to 24.
(v) Q. Nos. 6 to 10 carry 2 marks each.
(v) Q. Nos. 11 to 17 carry 4 marks each.
(v) Q. Nos. 18 to 22 carry 5 marks each.
(v) Q. Nos. 23 to 24 carry 6 marks each.
1. सही विकल्प चुनकर लिखिये : 5 अंक
 Choose the correct Answer.
\(\frac{1}{(x+4)(x+6)} \) की आंशिक भिन्न होगी—

(i) \(\frac{1}{2(x+4)} - \frac{1}{2(x+6)} \)
(ii) \(\frac{1}{5(x+4)} - \frac{1}{2(x+6)} \)

(iii) \(\frac{1}{3(x+4)} + \frac{5}{3(x+6)} \)
(iv) \(\frac{2}{(x+1)} - \frac{1}{(x+6)} \)

Partial fraction of \(\frac{1}{(x+4)(x+6)} \) is:

(i) \(\frac{1}{2(x+4)} - \frac{1}{2(x+6)} \)
(ii) \(\frac{1}{5(x+4)} - \frac{1}{2(x+6)} \)

(iii) \(\frac{1}{3(x+4)} + \frac{5}{3(x+6)} \)
(iv) \(\frac{2}{(x+1)} - \frac{1}{(x+6)} \)

(\(\sin^{-1}x + \cos^{-1}x \) का मान होगा—)

(i) \(\pi \)
(ii) \(\frac{\pi}{2} \)
(iii) \(\frac{\pi}{4} \)
(iv) \(\frac{\pi}{3} \)

Value of \(\sin^{-1}x + \cos^{-1}x \) will be:

(i) \(\pi \)
(ii) \(\frac{\pi}{2} \)
(iii) \(\frac{\pi}{4} \)
(iv) \(\frac{\pi}{3} \)

समतलों 3x – 4y + 5z = 0 तथा 2x – y – 2z = 5 के बीच का कोण हैं—

(i) \(\frac{\pi}{3} \)
(ii) \(\frac{\pi}{2} \)
(iii) \(\frac{\pi}{6} \)
(iv) None of these

Angle between the planes 3x – 4y + 5z = 0 and 2x – y – 2z = 5 is:

(i) \(\frac{\pi}{3} \)
(ii) \(\frac{\pi}{2} \)
(iii) \(\frac{\pi}{6} \)
(iv) None of these

(\(\text{उ} \) \(2i + 3j + k \) तथा \(2i – j – k \) के बीच का कोण हैं—)

(i) 0
(ii) \(\frac{\pi}{4} \)
(iii) \(\frac{\pi}{6} \)
(iv) \(\frac{\pi}{2} \)

Angle between the Vectors \(2i + 3j + k \) and \(2i – j – k \) is:

(i) 0
(ii) \(\frac{\pi}{4} \)
(iii) \(\frac{\pi}{6} \)
(iv) \(\frac{\pi}{2} \)
What will be the differential coefficient of \(\cos^{-1}x \) with respect to \(x \):

\[
\text{(i) } \frac{1}{\sqrt{1-x^2}} \quad \text{(ii) } \frac{1}{\sqrt{1+x^2}} \quad \text{(iii) } -\frac{1}{\sqrt{1-x^2}} \quad \text{(iv) } -\frac{1}{\sqrt{1+x^2}}
\]

2. Fill in the blanks:

(a) Direction ratio of normal of plane \(ax + by + cz + d = 0 \) is

(b) Two non zero Vectors \(\vec{a} \) and \(\vec{b} \) are parallel if and only if

(c) Differential coefficient of \(\sin x \) is

(d) If displacement is \(s = 3t - t^3 \) their its velocity is

(e) \(\int \frac{1}{x} \, dx = \)

3. True or False statements:

I

(a) \((2, 3, 4) \) is in front of \(yz \)-plane (i) – 1

(b) \(\vec{P} \) and \(\vec{Q} \) are parallel (ii) Positive definite value

II

\(3i + 5j - 7k \) so that \(3i - 4j + k \) so that

\[\vec{PQ} \] is the mean of

https://byjus.com
(c) \[\int_{0}^{1} \log x \, dx = \] (iii) \(\sqrt{143} \)

(d) \[\int \frac{dx}{\sqrt{a^2 - x^2}} \] (iv) 2

(e) When \(r = 1 \) then correlation is: (v) \(\sin^{-1} \frac{x}{a} \)

Match the column:

I	II
(a) The distance from the YZ – Plane to the point (2, 3, 4) is (i) -1

(b) If the position Vectors of \(\vec{P} \) and \(\vec{Q} \) are (ii) perfect positive correlation

3i + 5j – 7k and 3i – 4j + k then value of vector \(\vec{PQ} \) will be.

(c) \[\int_{0}^{1} \log x \, dx = \] (iii) \(\sqrt{143} \)

(d) \[\int \frac{dx}{\sqrt{a^2 - x^2}} \] (iv) 2

(e) When \(r = 1 \) then correlation is: (v) \(\sin^{-1} \frac{x}{a} \)

4. एक वाक्य में उत्तर दीजिये— 5 अंक

(अ) \(x \) अक्ष की दिक कोज्याएं लिखिये—

(ब) \(\int \sec x \, dx \) का मान लिखिए

(छ) \(\int_{a}^{b} f(x) \, dx \) का मान लिखिए

(द) यदि \(\int_{a}^{b} f(x) \, dx \) एवं \(n = 4 \) तब सिम्पसन का नियम लिखिए

(इ) न्यूटन रेस्पॅन विधि से 10 का घनमूल प्राप्त करने में प्रथम आवृति मूल का मान लिखिए

Answer in one word:
(a) Write the direction cosine of x axis—

(b) Write the value of $\int \sec x \, dx$

(c) Write the value of $\int_a^b f(x) \, dx$

(d) If $\int_a^b f(x) \, dx$ and $n = 4$ then write simpson's rule

(e) To find Cube root of 10 from Newton Raphson's method write first approximation root is:

5. सत्य/असत्य छौटकर लिखिये—

(a) अच्छे पद का समाकलन शून्य होता है

(b) $\int f_1(x). f_2(x) \, dx = f_1(x). \int f_2(x) \, dx - \int \left[\frac{d}{dx} f_1(x) \cdot [f_2(x) \, dx] \right] \, dx$

(c) सिम्प्सन नियम का प्रयोग आंकों नियमों में किया जाता है

(d) यदि $e^0 = 1$, $e^1 = 2.72$, $e^2 = 7.39$, तो समतल चूर्णम नियम से $\int_0^3 e^x \, dx = 6.915$ होगा

(e) $\int_2^4 x \, dx = \frac{1}{2} (4^2 - 2^2)$ आंकक समाकलन कहलाता है

Write TRUE/FALSE in the following:

(a) Integration of constant term is zero

(b) $\int f_1(x). f_2(x) \, dx = f_1(x). \int f_2(x) \, dx - \int \left[\frac{d}{dx} f_1(x) \cdot [f_2(x) \, dx] \right] \, dx$

(c) Simpsons rule is used in numerical method

(d) If $e^0 = 1$, $e^1 = 2.72$, $e^2 = 7.39$, then by trapezoidal rule $\int_0^3 e^x \, dx = 6.915$

(e) $\int_2^4 x \, dx = \frac{1}{2} (4^2 - 2^2)$ is known as numerical integration

6. यदि ABCDE एक सममित चूर्ण है तो सिद्ध कीजिए $\overrightarrow{AB} + \overrightarrow{BC} + \overrightarrow{CD} + \overrightarrow{DE} + \overrightarrow{EA} = 0$.

If ABCDE is a regular pentagon then prove that $\overrightarrow{AB} + \overrightarrow{BC} + \overrightarrow{CD} + \overrightarrow{DE} + \overrightarrow{EA} = 0$.
OR (अथवा)

यदि बिन्दु 0 के सापेक्ष A और B के स्थिति सदिश क्रमशः $2\hat{i} - \hat{j} + \hat{k}$, $5\hat{i} + 3\hat{j} + \hat{k}$ हो तो \overrightarrow{AB} तथा $|\overrightarrow{AB}|$ ज्ञात कीजिए।

If the position vector of A and B with respect to the origin 0 be $2\hat{i} - \hat{j} + \hat{k}$ and $5\hat{i} + 3\hat{j} + \hat{k}$ then find \overrightarrow{AB} and $|\overrightarrow{AB}|$.

7. सदिशों $\overrightarrow{a} = 2\hat{i} - \hat{j} + \hat{k}$ और $\overrightarrow{b} = 3\hat{i} - 4\hat{j} - 4\hat{k}$ का अदिश गुणनफल ज्ञात कीजिए।

Find the scalar product of vectors $\overrightarrow{a} = 2\hat{i} - \hat{j} + \hat{k}$ and $\overrightarrow{b} = 3\hat{i} - 4\hat{j} - 4\hat{k}$.

OR (अथवा)

λ का मान ज्ञात कीजिए यदि सदिश $2\hat{i} + \hat{j} + \hat{k}$ तथा $\hat{i} - 4\hat{j} + \lambda\hat{k}$ परस्पर लम्बवत् है।

Find the value of λ if the vectors $2\hat{i} + \hat{j} + \hat{k}$ and $\hat{i} - 4\hat{j} + \lambda\hat{k}$ are perpendicular.

8. बिन्दुओं $\hat{i} - 2\hat{j} + \hat{k}$ तथा $3\hat{k} - 2\hat{j}$ को मिलाने वाली रेखा का सदिश समीकरण ज्ञात कीजिए।

Find the vector equation of line joining the point $\hat{i} - 2\hat{j} + \hat{k}$ and $3\hat{k} - 2\hat{j}$.

OR (अथवा)

एक सरल रेखा का कार्तीय समीकरण $\frac{x-5}{3} = \frac{y+4}{7} = \frac{z-6}{2}$ है। इस रेखा की सदिश समीकरण ज्ञात कीजिए।

The equation of a line in cartesian form is $\frac{x-5}{3} = \frac{y+4}{7} = \frac{z-6}{2}$ find its equation in vector form.

9. $\cos x + 5 \sin x + x''$ का x के सापेक्ष समाकलन कीजिए।

Integrate $\cos x + 5 \sin x + x''$ with respect to x.

OR (अथवा)

\sqrt{x} का x के सापेक्ष समाकलन कीजिए :

Integrate \sqrt{x} with respect to x.
10. \[\int_{1}^{3} \frac{1}{x} \; dx \text{ का मान ज्ञात कीजिए।} \] 2 अंक

Find the value of \[\int_{1}^{3} \frac{1}{x} \; dx \]

OR (अथवा)

\[\sqrt{3} \int_{0}^{1} \frac{1}{1+x^2} \; dx \text{ का मान ज्ञात कीजिए।} \]

Find the value of \[\sqrt{3} \int_{0}^{1} \frac{1}{1+x^2} \; dx. \]

11. \[\frac{x}{(x-2)(x-3)} \text{ को आशिक भिन्न में विभक्त कीजिए—} \] 4 अंक

Resolve \[\frac{x}{(x-2)(x-3)} \] in to partial fractions

OR (अथवा)

\[\frac{2x+1}{(x-1)(x^2+1)} \text{ को आशिक भिन्न से विभक्त कीजिए।} \]

Resolve \[\frac{2x+1}{(x-1)(x^2+1)} \] in to partial fractions

12. यदि \[\tan^{-1}x + \tan^{-1}y + \tan^{-1}z = \frac{\pi}{2} \] तो सिद्ध कीजिए कि \(xy + yz + zx = 1 \). 4 अंक

If \[\tan^{-1}x + \tan^{-1}y + \tan^{-1}z = \frac{\pi}{2} \] then prove that \(xy + yz + zx = 1 \).

OR (अथवा)

सिद्ध कीजिए कि \(\sin^{-1} \frac{3}{5} + \tan^{-1} \frac{3}{5} = \tan^{-1} \frac{27}{11} \).

Prove that \(\sin^{-1} \frac{3}{5} + \tan^{-1} \frac{3}{5} = \tan^{-1} \frac{27}{11} \).

13. प्रथम सिद्धांत से \(\sin x \) का अवकल गुणांक ज्ञात कीजिए। 4 अंक

Find the differential coefficient of \(\sin x \) by first principle:
Find the differential coefficient of e^x by first principle.

If $y = (\sin^{-1} x)^2$ then prove that $(1 - x^2) \frac{d^2 y}{dx^2} - x \frac{dy}{dx} - 2 = 0$.

Find the differential coefficient of $\log_e \sqrt{\frac{1 + \sin x}{1 - \sin x}}$ with respect to x.

One particle is moving in straight line the distance s travelled by its given relation $s = 4t^3 + 2t^2$. Find the velocity and acceleration of the particle after $t = 4$ sec.

Verify the Rolle's theorem for the function $f(x) = x^3 - 6x^2 + 11x - 6$ on $[1, 3]$.

Table 1

<table>
<thead>
<tr>
<th>x</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
</tr>
</thead>
<tbody>
<tr>
<td>y</td>
<td>2</td>
<td>5</td>
<td>7</td>
<td>8</td>
<td>10</td>
</tr>
</tbody>
</table>

Find the Karl Pearson's correlation coefficient between variable x and y for the following data:

Table 2

<table>
<thead>
<tr>
<th>x</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
</tr>
</thead>
<tbody>
<tr>
<td>y</td>
<td>2</td>
<td>5</td>
<td>7</td>
<td>8</td>
<td>10</td>
</tr>
</tbody>
</table>
If r is coefficient of correlation of two variables x and y then prove that

$$r = \frac{\sigma_x^2 + \sigma_y^2 - \sigma_{x-y}^2}{2\sigma_x\sigma_y}$$

When σ_x^2, σ_y^2 and σ_{x-y}^2 are coefficient of variance of x, y and $x - y$.

17. Given the following data is related to the expenditure on advertisement and sell at farm:

<table>
<thead>
<tr>
<th></th>
<th>Advertisement (Caror)</th>
<th>Sell (Caror)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mean</td>
<td>40</td>
<td>06</td>
</tr>
<tr>
<td>Standard deviation</td>
<td>10</td>
<td>1.5</td>
</tr>
</tbody>
</table>

Following data are related to the expenditure on advertisement and sell at farm:

<table>
<thead>
<tr>
<th></th>
<th>Advertisement (Caror)</th>
<th>Sell (Caror)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mean</td>
<td>40</td>
<td>06</td>
</tr>
<tr>
<td>Standard deviation</td>
<td>10</td>
<td>1.5</td>
</tr>
</tbody>
</table>

Coefficient of correlation $r = 0.9$ if the proposed advertisement expenditure is ₹10 Caror then find out the expected sell.

OR (अथवा)

दो समाधायन रेखाओं $x + 3y = 11$ और $2x + y = 7$ के आधार पर x और y के बीच वह समाधायन ज्ञात कीजिए। $y = 4$ के लिए x के मान की गणना कीजिए।
Find the correlation coefficient between \(x \) and \(y \) on the basis of two regression lines \(x + 3y = 11 \) and \(2x + y = 7 \) calculate the value of \(x \) when \(y = 4 \).

18. सिद्ध कीजिए कि एक घन के किन्हीं दो विकंकर के बीच का कोण \(\cos^{-1}\left(\frac{1}{3}\right) \) होता है।

5 अंक

Prove that the angle between any two diagonals of a cube is \(\cos^{-1}\left(\frac{1}{3}\right) \).

OR (अथवा)

एक समतल निर्देशांको को क्रमशः \(A, B \) तथा \(C \) पर काटता है। यदि \(\Delta ABC \) का केंद्र (\(-2, 4, 6\)) है तो समतल का समीकरण ज्ञात कीजिए।

A plane intersects the co-ordinate axes at point \(A, B \) and \(C \) respectively.

If the centroid of the \(\Delta ABC \) is \((-2, 4, 6)\) then find the equation of the plane.

19. मान ज्ञात कीजिए—

5 अंक

\[
\lim_{x \to 0} \frac{\tan 2x - x}{3x - \sin x}
\]

Find the value of

\[
\lim_{x \to 0} \frac{\tan 2x - x}{3x - \sin x}
\]

OR (अथवा)

यदि \(f(x) = \begin{cases} 1 - \cos 4x & x \neq 0 \\ x^2 & x = 0 \end{cases} \) तो \(f(x) \) की \(x = 0 \) पर सांतत्यता की विवेचना कीजिए।

If \(f(x) = \begin{cases} 1 - \cos 4x & x \neq 0 \\ x^2 & x = 0 \end{cases} \) then discuss the continuity of \(f(x) \) at \(x = 0 \)

20. \(\int \frac{1}{1-2\sin x} \) का मान ज्ञात कीजिए—

5 अंक

Find the value of \(\int \frac{1}{1-2\sin x} \) \(dx \)
OR (अथवा)

\[
\int \frac{1}{\sin x + \cos x} \, dx
\]

Find the value of \(\int \frac{1}{\sin x + \cos x} \, dx \)

21. निम्न अवकल समीकरण को हल कीजिए—

\((1 + x^2) \, dy = (1 + y^2) \, dx\)

Solve the following differential equation

\((1 + x^2) \, dy = (1 + y^2) \, dx\)

OR (अथवा)

निम्न अवकल समीकरण को हल कीजिए—

\((e^x + e^{-x}) \, dy = (e^x - e^{-x}) \, dx\)

Solve the following differential equation

\((e^x + e^{-x}) \, dy = (e^x - e^{-x}) \, dx\)

22. दो घनाकार पांसे एक साथ फेंके जाते हैं। पहले पांसे पर विषम संख्या अथवा दोनों पांसों के ऊपरी संख्याओं का योग 9 पाते करने की प्रायिकता ज्ञात कीजिए।

Two cubical disc are thrown simultaneously find the probability of getting an odd number on the first disc or a sum 9 on the two dice.

OR (अथवा)

52 पत्तों की फेंटी हुई ताश की गड्ढी में से 2 पत्ते निकाले जाते हैं। दोनों के लाल या इक्की होने की प्रायिकता ज्ञात कीजिए।

Two cards are drown from a well shuffled pack of 52 cards find the probability that both cards are Red or Ace.

23. उस गोले का समीकरण ज्ञात कीजिए जो \(x^2 + y^2 + z^2 - 2x - 4y - 6z - 11 = 0 \) के संकेतन्द्रिय है तथा जिसकी त्रिज्या इस गोले की त्रिज्या से 3 गुनी है।

Find the equation of sphere which co-centric to the sphere \(x^2 + y^2 + z^2 - 2x - 4y - 6z - 11 = 0 \) and having the radius 3 times of it.
OR (अथवा)

सिद्ध कीजिए कि रेखाएं \(\frac{x+1}{3} = \frac{y+3}{5} = \frac{z+5}{7} \) एवं \(\frac{x-2}{1} = \frac{y-4}{3} = \frac{z-6}{5} \) परस्पर भ्रमित
करती है, भ्रमित बिन्दु के निर्देशांक भी ज्ञात कीजिए।

Show the lines \(\frac{x+1}{3} = \frac{y+3}{5} = \frac{z+5}{7} \) and \(\frac{x-2}{1} = \frac{y-4}{3} = \frac{z-6}{5} \) intersect each other

find the point of intersection also.

24. सदिश विधि से सिद्ध कीजिए— 6 अंक

\[\sin (A + B) = \sin A \cdot \cos B + \cos A \cdot \sin B \]

Prove that by vector method

\[\sin (A + B) = \sin A \cdot \cos B + \cos A \cdot \sin B \]

OR (अथवा)

रेखाओं \(\vec{r} = (\hat{i} + 2\hat{j} + 3\hat{k}) + t (2\hat{i} + 3\hat{j} + 4\hat{k}) \)

\(\vec{r} = (2\hat{i} + 4\hat{j} + 5\hat{k}) + s (3\hat{i} + 4\hat{j} + 5\hat{k}) \)

के बीच की न्यूनतम दूरी ज्ञात कीजिए।

Find the minimum distance between the lines:

\(\vec{r} = (\hat{i} + 2\hat{j} + 3\hat{k}) + t (2\hat{i} + 3\hat{j} + 4\hat{k}) \)

\(\vec{r} = (2\hat{i} + 4\hat{j} + 5\hat{k}) + s (3\hat{i} + 4\hat{j} + 5\hat{k}) \)