
https://byjus.com/jee/matrices/ 1/7

Matrices
A rectangular array of m x n numbers (real or complex) in the form of m horizontal lines (called rows) and n
vertical lines (called columns), is called a matrix of order m by n, written as m x n matrix. Such an array is
enclosed by [ ] or ( ) |.
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Introduction to Matrices
An m x n matrix is usually written as:

In brief, the above matrix is represented by A = [a ] . The number a , a , ….. etc., are known as the
elements of the matrix A, where a  belongs to the i  row and j  column and is called the (i, j)  element of
the matrix A = [a ].

Important Formulas for Matrices 
If A, B are square matrices of order n, and I  is a corresponding unit matrix
(https://byjus.com/maths/identity-matrix/), then

(a) A(adj.A) = | A | I  = (adj A) A

(b) | adj A | = | A |n  (Thus A (adj A) is always a scalar matrix)

(c) adj (adj.A) = | A |  A

(e) 

(f) adj (AB) = (adj B) (adj A)

(g) adj (A ) = (adj A) ,

(h) 

(i) adj

(j) adj 0 = 0

(k) A is symmetric ⇒adj A is also symmetric

(l) A is diagonal ⇒adj A is also diagonal

(m) A is triangular ⇒adj A is also triangular
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(n) A is singular ⇒| adj A | = 0

Types of Matrices
(i) Symmetric Matrix: A square matrix A  is called a symmetric matrix if  for all i, j.

(ii) Skew-Symmetric Matrix: when 

(iii) Hermitian and skew – Hermitian Matrix:  (Hermitian matrix)

 (skew-Hermitian matrix)

(iv) Orthogonal matrix: if 

(v) Idempotent matrix: if 

(vi) Involuntary matrix: if 

(vii) Nilpotent matrix: if  such that 

Trace of matrix
(i) 

(ii) 

(iii) 

Transpose of matrix

Properties of Matrix Multiplication

Adjoint of a Matrix

Inverse of a Matrix
A exists if A is non singular i.e.  

Order of a Matrix
A matrix which has m rows and n columns is called a matrix of order (https://byjus.com/maths/determine-
the-order-of-matrix/) m x n

E.g. the order of  matrix is 2 x 3.

= [ ]aij = ,aij aji

= −aij aji
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(i)AB ≠ BA (ii)(AB)C = A(BC) (iii)A. (B + C) = A.B + A.C

(i)A(adjA) = (adjA)A = |A| (ii)|adjA| = |AIn |n−1

(iii)(adj AB) = (adj B)(adj A) (iv)adj (adjA) = |A|n−2
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Note: (a) The matrix is just an arrangement of certain quantities.

(b) The elements of a matrix may be real or complex numbers. If all the elements of a matrix are real, then
the matrix is called a real matrix.

(c) An m x n matrix has m.n elements.

Illustration 1: Construct a 3×4 matrix A = [a ], whose elements are given by a  = 2i + 3j.

Solution: In this problem, I and j are the number of rows and columns respectively. By substituting the
respective values of rows and columns in a  = 2i + 3j we can construct the required matrix.

We have A =.

Similarly, a = 11, a =14, a = 7, a =10, a =13, a =16,a =9, a =12, a =15, a =18

∴ .

Illustration 2: Construct a 3 x 4 matrix, whose elements are given by: a  =

Solution:

Method for solving this problem is the same as in the above problem.

Since  

 

Hence, the required matrix is given by 

Trace of a Matrix
Let A = [a ]  and B = [b ]  and λ be a scalar,

(i) tr(λA) = λ tr(A) (ii) tr(A + B) = tr(A) + tr(B) (iii) tr(AB) = tr(BA)
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Transpose of Matrix
The matrix obtained from a given matrix A by changing its rows into columns or columns into rows is called
the transpose of matrix (https://byjus.com/maths/transpose-of-a-matrix/) A and is denoted by A  or A’.
From the de�nition it is obvious that if the order of A is m x n, then the order of A  becomes n x m; E.g.
transpose of matrix

 .

Properties of Transpose of Matrix
(i) (A ) = A (ii) (A + B)  = A + B  (iii) (AB)  = B A  (iv) (kA)  = k(A)

(v) (A A A  ……A A )  = (vi) I  = I (vii) tr(A) = tr(A )

Problems on Matrices

Illustration 3: If  . then prove that (AB)  = B A .

Solution:

By obtaining the transpose of AB i.e. (AB)  and multiplying B  and A  we can easily get the result.

T
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Here, AB =

.

∴ 

Illustration 4: If A = . then what is is equal to?

Solution:

In this problem, we use the properties of the transpose of a matrix to get the required result.

We have = .

Illustration 5: If the matrix 

is a singular matrix then �nd x. Verify whether AA  = I for that value of x.

Solution:

Using the condition of a singular matrix, i.e. |A| = 0, we get the value of x and then substituting the value of x
in matrix A and multiplying it to its transpose we will obtain the required result.

Here, A is a singular matrix if |A| = 0, i.e.,  

orx(3x)  = 0, x = 0, 3.

When x = 0, A = 

∴ 

A = [ ] andB = = [ ]1
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= 

When x = 3, A = 

∴ 

Note: simple way to solve is that if A is a singular matrix then |A| = 0 and |A | = 0. But |I| is 1.

Hence, AA  ≠ I if |A| = 0.

Illustration 6: If the matrix A = 

where a, b, c, are positive real numbers such that abc = 1 and ATA = I then �nd the value of a  + b  + c .

Solution:

Here, A= 

Interchanging rows and columns.

⇒ 

⇒ 

∴ 

Now, |A| = 

= 

= (a + b + c) {(c b) (b c) – (a b) (a c)} = (a + b +c) (b c + 2bca + ac + abbc)

= (a + b + c) (a + b + c bccaab) =(a + b + c 3 abc)

= (a  + b  + c 3) (abc = 1) |A|  = 1(a  + b  +c 3)  = 1 …..(i)

As a, b, c are positive, 

Since, abc=1 ∴ {{a}^{3}}+{{b}^{3}}+{{c}^{3}}>3\) 
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∴   + + = 4a3 b3 c3


