Lesson Name: Matrices

URL: https://byjus.com/jee/matrices/

Matrices

A rectangular array of $m \times n$ numbers (real or complex) in the form of m horizontal lines (called rows) and n vertical lines (called columns), is called a matrix of order m by n, written as $m \times n$ matrix. Such an array is enclosed by [] or () |.

Table of Contents for Matrices

- Introduction to Matrices
- Types of Matrices (https://byjus.com/jee/types-of-matrices/)
- Matrix Operations (https://byjus.com/jee/matrix-operations/)
- Adjoint and Inverse of a Matrix (https://byjus.com/jee/adjoint-and-inverse-of-a-matrix/)
- Rank of a Matrix and Special Matrices (https://byjus.com/jee/rank-of-a-matrix-and-special-matrices/)
- Solving Linear Equations using Matrix (https://byjus.com/jee/solving-linear-equations-using-matrix/)

Introduction to Matrices

An $m \times n$ matrix is usually written as:
$A=\left[\begin{array}{cccc}a_{11} & a_{12} & \ldots \ldots & a_{1 n} \\ a_{21} & a_{22} & \ldots \ldots & a_{2 n} \\ \vdots & \vdots & \vdots & \vdots \\ a_{m 1} & a_{m 2} & \ldots \ldots & a_{m n}\end{array}\right]$
In brief, the above matrix is represented by $A=\left[a_{i j}\right]_{m x n}$. The number a_{11}, a_{12}, \ldots. . etc., are known as the elements of the matrix A , where a_{ij} belongs to the $\mathrm{i}^{\text {th }}$ row and $\mathrm{j}^{\text {th }}$ column and is called the $(\mathrm{i}, \mathrm{j})^{\text {th }}$ element of the matrix $A=\left[a_{i j}\right]$.

Important Formulas for Matrices

If A, B are square matrices of order n, and I_{n} is a corresponding unit matrix (https://byjus.com/maths/identity-matrix/), then
(a) $A(\operatorname{adj} . A)=|A| I_{n}=(\operatorname{adj} A) A$
(b) $|\operatorname{adj} A|=|A| n^{-1}($ Thus $A(\operatorname{adj} A)$ is always a scalar matrix)
(c) $\operatorname{adj}(\operatorname{adj} . A)=|A|^{n-2} A$
(e) $|\operatorname{adj}(\operatorname{adj} . A)|=|A|^{(n-1)^{2}}$
(f) $\operatorname{adj}(A B)=(\operatorname{adj} B)(\operatorname{adj} A)$
$(\mathbf{g}) \operatorname{adj}\left(A^{m}\right)=(\operatorname{adj} A)^{m}$,
(h) $\operatorname{adj}(k A)=k^{n-1}(a d j . A), k \in R$
(i) $\operatorname{adj}\left(I_{n}\right)=I_{n}$
(j) $\operatorname{adj} 0=0$
(k) A is symmetric $\Rightarrow \operatorname{adj} A$ is also symmetric
(I) A is diagonal $\Rightarrow \operatorname{adj} A$ is also diagonal
$(m) A$ is triangular $\Rightarrow \operatorname{adj} A$ is also triangular
(\mathbf{n}) A is singular $\Rightarrow|\operatorname{adj} A|=0$

Types of Matrices

(i) Symmetric Matrix: A square matrix $\mathrm{A}=\left[a_{i j}\right]$ is called a symmetric matrix if $a_{i j}=a_{j i}$, for all i, j.
(ii) Skew-Symmetric Matrix: when $a_{i j}=-a_{j i}$
(iii) Hermitian and skew - Hermitian Matrix: $A=A^{\theta}$ (Hermitian matrix)
$A^{\theta}=-A$ (skew-Hermitian matrix)
(iv) Orthogonal matrix: if $A A^{T}=I_{n}=A^{T} A$
(v) Idempotent matrix: if $A^{2}=A$
(vi) Involuntary matrix: if $A^{2}=I$ or $A^{-1}=A$
(vii) Nilpotent matrix: if $\exists p \in N$ such that $A^{P}=0$

Trace of matrix
(i) $\operatorname{tr}(\lambda A)=\lambda \operatorname{tr}(A)$
(ii) $\operatorname{tr}(A+B)=\operatorname{tr}(A)+\operatorname{tr}(B)$
(iii) $\operatorname{tr}(A B)=\operatorname{tr}(B A)$

Transpose of matrix

$(i)\left(A^{T}\right)^{T}=A \quad(i i)(A \pm B)^{T}=A^{T} \pm B^{T} \quad(i i i)(A B)^{T}=B^{T} A^{T}$
$(i v)(k A)^{T}=k(A)^{T} \quad(v)\left(A_{1} A_{2} A_{3} \ldots \ldots . A_{n-1} A_{n}\right)^{T}=A_{n}^{T} A_{n-1}^{t} \ldots \ldots . A_{3}^{T} A_{2}^{T} A_{1}^{T}$
$(v i) I^{T}=I \quad(v i i) \operatorname{tr}(A)=t\left(A^{T}\right)$
Properties of Matrix Multiplication
(i) $A B \neq B A$
$(i i)(A B) C=A(B C)$
$($ iii $) A .(B+C)=A . B+A . C$

Adjoint of a Matrix
(i) $A(\operatorname{adj} A)=(\operatorname{adj} A) A=|A| I_{n}$
(ii) $|\operatorname{adj} A|=|A|^{n-1}$
$(i i i)(\operatorname{adj} A B)=(a d j B)(a d j A)$
$(i v) \operatorname{adj}(\operatorname{adj} A)=|A|^{n-2}$

Inverse of a Matrix

A^{-1} exists if A is non singular i.e. $|A| \neq 0$
$(i) A^{-1}=\frac{1}{|A|}(A d j . A)$
(ii) $A^{-1} A=I_{n}=A A^{-1}$
$(i i i)\left(A^{T}\right)^{-1}=\left(A^{-1}\right)^{T}$
$(i v)\left(A^{-1}\right)^{-1}=A$
$(v)\left|A^{-1}\right|=|A|^{-1}=\frac{1}{|A|}$

Order of a Matrix
A matrix which has m rows and n columns is called a matrix of order (https://byjus.com/maths/determine-the-order-of-matrix/) $m \times n$
E.g. the order of $\left[\begin{array}{ccc}4 & -1 & 5 \\ 6 & 8 & -7\end{array}\right]$ matrix is 2×3.

Note: (a) The matrix is just an arrangement of certain quantities.
(b) The elements of a matrix may be real or complex numbers. If all the elements of a matrix are real, then the matrix is called a real matrix.
(c) An mxn matrix has m.n elements.

Illustration 1: Construct a 3×4 matrix $A=\left[a_{i j}\right]$, whose elements are given by $a_{i j}=2 i+3 j$.

$$
\left[\begin{array}{llll}
a_{11} & a_{12} & a_{13} & a_{14} \\
a_{21} & a_{22} & a_{23} & a_{24} \\
a_{31} & a_{32} & a_{33} & a_{34}
\end{array}\right] ; \quad \therefore \mathrm{a}_{11}=2 \times 1+3 \times 1=5 ; \mathrm{a}_{12}=2 \times 1+3 \times 2=8 .
$$

Solution: In this problem, I and j are the number of rows and columns respectively. By substituting the respective values of rows and columns in $\mathrm{a}_{\mathrm{ij}}=2 \mathrm{i}+3 \mathrm{j}$ we can construct the required matrix.

We have $\mathrm{A}=$.
Similarly, $a_{13}=11, a_{14}=14, a_{21}=7, a_{22}=10, a_{23}=13, a_{24}=16, a_{31}=9, a_{32}=12, a_{33}=15, a_{34}=18$
$\therefore A=\left[\begin{array}{cccc}5 & 8 & 11 & 14 \\ 7 & 10 & 13 & 16 \\ 9 & 12 & 18 & 18\end{array}\right]$.
Illustration 2: Construct a 3×4 matrix, whose elements are given by: $\mathrm{a}_{\mathrm{ij}}=\frac{1}{2}|3 i+j|$

Solution:

Method for solving this problem is the same as in the above problem.
Since $a_{i j}=\frac{1}{2}|-3 i+j|$ we have $a_{11}=\frac{1}{2}|-3(1)+1|=\frac{1}{2}|-3+1|=\frac{1}{2}|-2|=\frac{2}{2}=1$
$a_{12}=\frac{1}{2}|-3(1)+2|=\frac{1}{2}|-3+2|=\frac{1}{2}|-1|=\frac{1}{2}$
$a_{13}=\frac{1}{2}|-3(1)+3|=\frac{1}{2}|-3+3|=\frac{1}{2}(0)=0$
$a_{14}=\frac{1}{2}|-3(1)+4|=\frac{1}{2}|-3+4|=\frac{1}{2} ; \quad a_{21} \frac{1}{2}|-3(2)+1|=\frac{1}{2}|-6+1|=\frac{5}{2}$
$a_{22}=\frac{1}{2}|-3(2)+2|=\frac{1}{2}|-6+2|=\frac{4}{2}=2 ; \quad a_{23} \frac{1}{2}|-3(2)+3|=\frac{1}{2}|-6+3|=\frac{3}{2}$
$a_{24}=\frac{1}{2}|-3(2)+4|=\frac{1}{2}|-6+4|=\frac{2}{2}=1 ; \quad$ Similarlya ${ }_{31}=4, a_{32}=\frac{7}{2}, a_{33}=3, a_{34}=\frac{5}{2}$
Hence, the required matrix is given by $A=\left[\begin{array}{cccc}1 & \frac{1}{2} & 0 & \frac{1}{2} \\ \frac{5}{2} & 2 & \frac{3}{2} & 1 \\ 4 & \frac{7}{2} & 3 & \frac{5}{2}\end{array}\right]$

Trace of a Matrix

Let $A=\left[a_{i j}\right]_{n \times n}$ and $B=\left[b_{i j}\right]_{n \times n}$ and λ be a scalar,
(i) $\operatorname{tr}(\lambda \mathrm{A})=\lambda \operatorname{tr}(\mathrm{A})$ (ii) $\operatorname{tr}(\mathrm{A}+\mathrm{B})=\operatorname{tr}(\mathrm{A})+\operatorname{tr}(\mathrm{B})$ (iii) $\operatorname{tr}(\mathrm{AB})=\operatorname{tr}(\mathrm{BA})$

Square Matrix

Triangular Matrix

Matrix

$$
\text { If } a_{i j}=0 \forall i>j
$$

$$
A=\left[\begin{array}{lll}
x & x & x \\
0 & x & x \\
0 & 0 & x
\end{array}\right], \quad A=\left[\begin{array}{lll}
x & 0 & 0 \\
x & x & 0 \\
x & x & x
\end{array}\right]
$$

Diagonal Matrix

Atleast one, $\mathrm{a}_{\mathrm{ii}} \neq 0$ and $\mathrm{a}_{\mathrm{ij}}=0$ if $\mathrm{i} \neq \mathrm{j}$

$$
\left[\begin{array}{ccc}
d_{1} & 0 & 0 \\
0 & d_{2} & 0 \\
0 & 0 & d_{3}
\end{array}\right]
$$

Abbreviated as dia $\left(d_{1}, d_{2}, d_{3}\right.$, \qquad .d_{n})

$$
\text { If } d_{1}=d_{2}=d_{3} \ldots .=a \neq 0
$$

$$
\left[\begin{array}{lll}
\mathrm{a} & 0 & 0 \\
0 & \mathrm{a} & 0 \\
0 & 0 & \mathrm{a}
\end{array}\right]
$$

Unit Matrix
If $d_{1}=d_{2}=d_{3} \ldots .=1$
$\left[\begin{array}{lll}1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1\end{array}\right]=I_{3}$

Transpose of Matrix

The matrix obtained from a given matrix A by changing its rows into columns or columns into rows is called the transpose of matrix (https://byjus.com/maths/transpose-of-a-matrix/) A and is denoted by A^{\top} or A^{\prime}. From the definition it is obvious that if the order of A is $m \times n$, then the order of A^{\top} becomes $n \times m$; E.g. transpose of matrix

$$
\left[\begin{array}{ccc}
a 1 & a 2 & a 3 \\
b 1 & b 2 & b 3
\end{array}\right]_{2 \times 3} i s\left[\begin{array}{ll}
a 1 & b 1 \\
a 2 & b 2 \\
a 3 & b 3
\end{array}\right]_{3 \times 2}
$$

Properties of Transpose of Matrix

(i) $\left(A^{\top}\right)^{\top}=A$ (ii) $(A+B)^{\top}=A^{\top}+B^{\top}$ (iii) $(A B)^{\top}=B^{\top} A^{\top}$ (iv) $(k A)^{\top}=k(A)^{\top}$
(v) $\left(\mathrm{A}_{1} \mathrm{~A}_{2} \mathrm{~A}_{3} \ldots \ldots . \mathrm{A}_{\mathrm{n}-1} \mathrm{~A}_{\mathrm{n}}\right)^{\top}=A_{n}^{T} A_{n-1}^{T} \ldots \ldots A_{3}^{T} A_{2}^{T} A_{1}^{T}\left(\right.$ vi) $\mathrm{I}^{\top}=\mathrm{I}(\mathrm{vii}) \operatorname{tr}(\mathrm{A})=\operatorname{tr}\left(\mathrm{A}^{\top}\right)$

Problems on Matrices

Illustration 3: If $A=\left[\begin{array}{ccc}1 & -2 & 3 \\ -4 & 2 & 5\end{array}\right]$ and $B=\left[\begin{array}{cc}1 & 3 \\ -1 & 0 \\ 2 & 4\end{array}\right]$. then prove that $(A B)^{\top}=\mathrm{B}^{\top} \mathrm{A}^{\top}$.

Solution:

By obtaining the transpose of $A B$ i.e. $(A B)^{\top}$ and multiplying B^{\top} and A^{\top} we can easily get the result.

Here, $A B=$
$A=\left[\begin{array}{ccc}1 & -2 & 3 \\ -4 & 2 & 5\end{array}\right]$ and $B=\left[\begin{array}{cc}1 & 3 \\ -1 & 0 \\ 2 & 4\end{array}\right]=\left[\begin{array}{cc}1(1)-2(-1)+3(2) & 1(3)-2(0)+3(4) \\ -4(1)+2(-1)+5(2) & -4(3)+2(0)+(4)\end{array}\right]$. $=\left[\begin{array}{cc}9 & 15 \\ 4 & 8\end{array}\right]$
$\therefore(A B)^{T}=\left[\begin{array}{cc}9 & 4 \\ 15 & 8\end{array}\right] ; B^{T} A^{T}==\left[\begin{array}{ccc}1 & -1 & 2 \\ 3 & 0 & 4\end{array}\right]\left[\begin{array}{cc}1 & -4 \\ -2 & 2 \\ 3 & 5\end{array}\right]$
$=\left[\begin{array}{ll}1(1)-1(-2)+2(3) & 1(-4)-1(2)+2(5) \\ 3(1)+0(-2)+4(3) & 3(-4)+0(2)+4(5)\end{array}\right]=\left[\begin{array}{cc}9 & 4 \\ 15 & 8\end{array}\right]=(A B)^{T}$

Illustration 4: If $\mathrm{A}=A=\left[\begin{array}{ccc}5 & -1 & 3 \\ 0 & 1 & 2\end{array}\right]$ and $B=\left[\begin{array}{ccc}0 & 2 & 3 \\ 1 & -1 & 4\end{array}\right]$. then what is is equal to?

Solution:

In this problem, we use the properties of the transpose of a matrix to get the required result.
We have $=\left(B^{\prime}\right)^{\prime} A^{\prime}=B A^{\prime}=\left[\begin{array}{ccc}0 & 2 & 3 \\ 1 & -1 & 4\end{array}\right]\left[\begin{array}{cc}5 & 0 \\ -1 & 1 \\ 3 & 2\end{array}\right]=\left[\begin{array}{cc}7 & 8 \\ 18 & 7\end{array}\right]$.

Illustration 5: If the matrix $A=\left[\begin{array}{ccc}3-x & 2 & 2 \\ 2 & 4-x & 1 \\ -2 & -4 & -1-x\end{array}\right]$
is a singular matrix then find x. Verify whether $A A^{\top}=1$ for that value of x.

Solution:

Using the condition of a singular matrix, i.e. $|A|=0$, we get the value of x and then substituting the value of x in matrix A and multiplying it to its transpose we will obtain the required result.

Here, A is a singular matrix if $|\mathrm{A}|=0$, i.e., $\left|\begin{array}{ccc}3-x & 2 & 2 \\ 2 & 4-x & 1 \\ -2 & -4 & -1-x\end{array}\right|=0$
or $\left|\begin{array}{ccc}3-x & 2 & 2 \\ 2 & 4-x & 1 \\ 0 & -x & -x\end{array}\right|=0, u \sin g R_{3} \rightarrow R_{3}+R_{2}$ or $\left|\begin{array}{ccc}3-x & 0 & 2 \\ 2 & 3-x & 1 \\ 0 & 0 & -x\end{array}\right|=0, u \sin g C_{2}$
$\rightarrow C_{2}-C_{3}$
$\operatorname{orx}(3 x)^{2}=0, x=0,3$.
When $\mathrm{x}=0, \mathrm{~A}=\left[\begin{array}{ccc}3 & 2 & 2 \\ 2 & 4 & 1 \\ -2 & -4 & -1\end{array}\right]$
$\therefore A A^{T}=\left[\begin{array}{ccc}3 & 2 & 2 \\ 2 & 4 & 1 \\ -2 & -4 & -1\end{array}\right]\left[\begin{array}{ccc}3 & 2 & -2 \\ 2 & 4 & -4 \\ 2 & 1 & -1\end{array}\right]$
$=\left[\begin{array}{ccc}17 & 16 & -16 \\ 16 & 21 & -21 \\ -16 & -21 & 21\end{array}\right] \neq I$
When $\mathrm{x}=3, \mathrm{~A}=\left[\begin{array}{ccc}0 & 2 & 2 \\ 2 & 1 & 1 \\ -2 & -4 & -4\end{array}\right]$;
$\therefore A A^{T}=\left[\begin{array}{ccc}0 & 2 & 2 \\ 2 & 1 & 1 \\ -2 & -4 & -4\end{array}\right]\left[\begin{array}{ccc}0 & 2 & -2 \\ 2 & 1 & -4 \\ 2 & 1 & -4\end{array}\right]=\left[\begin{array}{ccc}8 & 4 & -16 \\ 4 & 6 & -12 \\ -16 & -12 & 36\end{array}\right] \neq I$
Note: simple way to solve is that if A is a singular matrix then $|A|=0$ and $\left|A^{\top}\right|=0$. But $\|\|$ is 1 .
Hence, $\mathrm{AA}^{\top} \neq \mid$ if $|\mathrm{A}|=0$.

Illustration 6: If the matrix $\mathrm{A}=\left[\begin{array}{lll}a & b & c \\ b & c & a \\ c & a & b\end{array}\right]$
where a, b, c, are positive real numbers such that $a b c=1$ and ATA $=1$ then find the value of $a^{3}+b^{3}+c^{3}$.

Solution:

Here, $\mathrm{A}=\left[\begin{array}{lll}a & b & c \\ b & c & a \\ c & a & b\end{array}\right] . S o, A^{T}=\left[\begin{array}{lll}a & b & c \\ b & c & a \\ c & a & b\end{array}\right]$,
Interchanging rows and columns.
$\Rightarrow A^{T} A=\left[\begin{array}{lll}a & b & c \\ b & c & a \\ c & a & b\end{array}\right]^{2}=A^{2}$
$\Rightarrow\left|A^{T} A\right|=\left|A^{2}\right| ; B u t A^{T} A=I($ given $)$.
$\therefore|I|=|A|^{2} \Rightarrow 1=|A|^{2}$
Now, $|\mathrm{A}|=\left|\begin{array}{lll}a & b & c \\ b & c & a \\ c & a & b\end{array}\right|=(a+b+c)\left|\begin{array}{ccc}1 & 1 & 1 \\ b & c & a \\ c & a & b\end{array}\right|, R_{1} \rightarrow R_{1}+R_{2}+R_{3}$
$=(a+b+c)\left|\begin{array}{ccc}1 & 0 & 0 \\ b & c-b & a-b \\ c & a-c & b-c\end{array}\right|, \begin{aligned} & C_{2} \rightarrow C_{2}-C_{1} \\ & C_{3} \rightarrow C_{3}-C_{1}\end{aligned}$
$=(a+b+c)\{(c b)(b c)-(a b)(a c)\}=(a+b+c)\left(b^{2} c^{2}+2 b c a^{2}+a c+a b b c\right)$
$=(a+b+c)\left(a^{2}+b^{2}+c^{2} b c c a a b\right)=\left(a^{3}+b^{3}+c^{3} 3 a b c\right)$
$=\left(a^{3}+b^{3}+c^{3} 3\right)(a b c=1)|A|^{2}=1\left(a^{3}+b^{3}+c^{3} 3\right)^{2}=1$
As $\mathrm{a}, \mathrm{b}, \mathrm{c}$ are positive, $\frac{a^{3}+b^{3}+c^{3}}{3}>\sqrt{a^{3} b^{3} c^{3}}$
Since, $\left.\mathrm{abc}=1 \therefore\left\{\{\mathrm{a}\}^{\wedge}\{3\}\right\}+\left\{\{\mathrm{b}\}^{\wedge}\{3\}\right\}+\left\{\{\mathrm{c}\}^{\wedge}\{3\}\right\}>3 \backslash\right)(i) \Rightarrow a^{3}+b^{3}+c^{3}-3=1$
$\therefore a^{3}+b^{3}+c^{3}=4$

