Matrices

A rectangular array of m x n numbers (real or complex) in the form of m horizontal lines (called rows) and n vertical lines (called columns), is called a matrix of order m by n, written as m x n matrix. Such an array is enclosed by [] or () .

Table of Contents for Matrices

- Introduction to Matrices
- Types of Matrices
- Matrix Operations
- Adjoint and Inverse of a Matrix
- Rank of a Matrix and Special Matrices
- Solving Linear Equations using Matrix

Introduction to Matrices

An m x n matrix is usually written as:

$$A = \begin{bmatrix} a_{11} & a_{12} & \cdots & a_{1n} \\ a_{21} & a_{22} & \cdots & a_{2n} \\ \vdots & \vdots & & \vdots \\ a_{m1} & a_{m2} & \cdots & a_{mn} \end{bmatrix}$$

In brief, the above matrix is represented by $A = [a_{ij}]_{m \times n}$. The number a_{ij}, a_{12}, \ldots etc., are known as the elements of the matrix A, where a_{ij} belongs to the i^{th} row and j^{th} column and is called the $(i, j)^{th}$ element of the matrix $A = [a_{ij}]$.

Important Formulas for Matrices

If A, B are square matrices of order n, and I_n is a corresponding unit matrix, then

(a) $A(adj.A) = |A| I_n = (adj A) A$

(b) $|adj A| = |A|^{n-1}$ (Thus $A(adj A)$ is always a scalar matrix)

(c) $adj(adj.A) = |A|^{n-2} A$

(e) $|adj (adj. A)| = |A|^{(n-1)^2}$

(f) $adj(AB) = (adj B)(adj A)$

(g) $adj(A^m) = (adj A)^m$

(h) $adj(kA) = k^{n-1}(adj. A), k \in R$

(i) $adj(I_n) = I_n$

(j) $adj 0 = 0$

(k) A is symmetric $\Rightarrow adj A$ is also symmetric

(l) A is diagonal $\Rightarrow adj A$ is also diagonal

(m) A is triangular $\Rightarrow adj A$ is also triangular
Matrices Introduction - Definition, Properties, Types and Examples

Types of Matrices

(i) **Symmetric Matrix**: A square matrix \(A = [a_{ij}] \) is called a symmetric matrix if \(a_{ij} = a_{ji} \), for all \(i, j \).

(ii) **Skew-Symmetric Matrix**: when \(a_{ij} = -a_{ji} \)

(iii) **Hermitian and skew – Hermitian Matrix**: \(A = A^\theta \) (Hermitian matrix)

(iv) **Orthogonal matrix**: if \(A^TA = I_n \)

(v) **Idempotent matrix**: \(A^2 = A \)

(vi) **Involuntary matrix**: \(A^2 = I \) or \(A^{-1} = A \)

(vii) **Nilpotent matrix**: if \(\exists p \in N \) such that \(A^p = 0 \)

Trace of matrix

(i) \(tr(\lambda A) = \lambda tr(A) \)

(ii) \(tr(A + B) = tr(A) + tr(B) \)

(iii) \(tr(AB) = tr(BA) \)

Transpose of matrix

(i) \((A^T)^T = A \)

(ii) \((A + B)^T = A^T + B^T \)

(iii) \((AB)^T = B^T A^T \)

(iv) \((kA)^T = k(A)^T \)

(v) \((A_1 A_2 A_3 \ldots A_{n-1} A_n)^T = A_n^T A_{n-1}^T \ldots A_2^T A_1^T \)

(vi) \(I^T = I \)

(vii) \(tr(A) = t(A^T) \)

Properties of Matrix Multiplication

(i) \(AB \neq BA \)

(ii) \((AB)C = A(BC) \)

(iii) \(A(B + C) = AB + AC \)

Adjoint of a Matrix

(i) \(A(adj A) = (adj A)A = |A|I_n \)

(ii) \(|adj A| = |A|^{n-1} \)

(iii) \((adj AB) = (adj B)(adj A) \)

(iv) \(|adj A| = |A|^{n-2} \)

Inverse of a Matrix

A matrix which has \(m \) rows and \(n \) columns is called a matrix of order \(m \times n \).

E.g. the order of \(\begin{bmatrix} 4 & -1 & 5 \\ 6 & 8 & -7 \end{bmatrix} \) matrix is \(2 \times 3 \).
Note: (a) The matrix is just an arrangement of certain quantities.
(b) The elements of a matrix may be real or complex numbers. If all the elements of a matrix are real, then the matrix is called a real matrix.
(c) An m x n matrix has m.n elements.

Illustration 1: Construct a 3×4 matrix \(A = [a_{ij}] \), whose elements are given by \(a_{ij} = 2i + 3j \).

\[
\begin{bmatrix}
a_{11} & a_{12} & a_{13} & a_{14} \\
a_{21} & a_{22} & a_{23} & a_{24} \\
a_{31} & a_{32} & a_{33} & a_{34}
\end{bmatrix}; \quad \therefore a_{11} = 2 \times 1 + 3 \times 1 = 5; a_{12} = 2 \times 1 + 3 \times 2 = 8.
\]

Solution: In this problem, \(i \) and \(j \) are the number of rows and columns respectively. By substituting the respective values of rows and columns in \(a_{ij} = 2i + 3j \) we can construct the required matrix.

We have \(A = \).

Similarly, \(a_{13} = 11, a_{14} = 14, a_{21} = 7, a_{22} = 10, a_{23} = 13, a_{24} = 16, a_{31} = 9, a_{32} = 12, a_{33} = 15, a_{34} = 18 \)

\[
\therefore A = \begin{bmatrix} 5 & 8 & 11 & 14 \\ 7 & 10 & 13 & 16 \\ 9 & 12 & 18 & 18 \end{bmatrix}.
\]

Illustration 2: Construct a 3 x 4 matrix, whose elements are given by: \(a_{ij} = \frac{1}{2} |3i + j| \)

Solution:

Method for solving this problem is the same as in the above problem.

Since \(a_{ij} = \frac{1}{2} |3i + j| \) we have
\[
a_{11} = \frac{1}{2} |3(1) + 1| = \frac{1}{2} |3 + 1| = \frac{1}{2} |4| = \frac{1}{2} \times 2 = 1
\]
\[
a_{12} = \frac{1}{2} |3(1) + 2| = \frac{1}{2} |3 + 2| = \frac{1}{2} |5| = \frac{1}{2} \times 5 = 2.5
\]
\[
a_{13} = \frac{1}{2} |3(1) + 3| = \frac{1}{2} |3 + 3| = \frac{1}{2} |6| = \frac{1}{2} \times 6 = 3
\]
\[
a_{14} = \frac{1}{2} |3(1) + 4| = \frac{1}{2} |3 + 4| = \frac{1}{2} |7| = \frac{1}{2} \times 7 = 3.5
\]
\[
a_{21} = \frac{1}{2} |3(2) + 1| = \frac{1}{2} |6 + 1| = \frac{1}{2} |7| = \frac{1}{2} \times 7 = 3.5
\]
\[
a_{22} = \frac{1}{2} |3(2) + 2| = \frac{1}{2} |6 + 2| = \frac{1}{2} |8| = \frac{1}{2} \times 8 = 4
\]
\[
a_{23} = \frac{1}{2} |3(2) + 3| = \frac{1}{2} |6 + 3| = \frac{1}{2} |9| = \frac{1}{2} \times 9 = 4.5
\]
\[
a_{24} = \frac{1}{2} |3(2) + 4| = \frac{1}{2} |6 + 4| = \frac{1}{2} |10| = \frac{1}{2} \times 10 = 5
\]
\[
a_{31} = \frac{1}{2} |3(3) + 1| = \frac{1}{2} |9 + 1| = \frac{1}{2} |10| = \frac{1}{2} \times 10 = 5
\]
\[
a_{32} = \frac{1}{2} |3(3) + 2| = \frac{1}{2} |9 + 2| = \frac{1}{2} |11| = \frac{1}{2} \times 11 = 5.5
\]
\[
a_{33} = \frac{1}{2} |3(3) + 3| = \frac{1}{2} |9 + 3| = \frac{1}{2} |12| = \frac{1}{2} \times 12 = 6
\]
\[
a_{34} = \frac{1}{2} |3(3) + 4| = \frac{1}{2} |9 + 4| = \frac{1}{2} |13| = \frac{1}{2} \times 13 = 6.5
\]

Hence, the required matrix is given by
\[
A = \begin{bmatrix} 1 & \frac{1}{2} & 0 & \frac{1}{2} \\ \frac{5}{2} & 2 & \frac{3}{2} & 1 \\ 4 & \frac{7}{2} & 3 & \frac{5}{2} \end{bmatrix}
\]

Trace of a Matrix

Let \(A = [a_{ij}] \) and \(B = [b_{ij}] \) and \(\lambda \) be a scalar,

(i) \(\text{tr}(\lambda A) = \lambda \text{tr}(A) \) (ii) \(\text{tr}(A + B) = \text{tr}(A) + \text{tr}(B) \) (iii) \(\text{tr}(AB) = \text{tr}(BA) \)
Matrices Introduction - Definition, Properties, Types and Examples

Square Matrix

Transpose of Matrix

The matrix obtained from a given matrix A by changing its rows into columns or columns into rows is called the transpose of matrix (https://byjus.com/maths/transpose-of-a-matrix/) A and is denoted by A^T or A'. From the definition it is obvious that if the order of A is $m \times n$, then the order of A^T becomes $n \times m$; E.g. transpose of matrix

\[
\begin{bmatrix}
 a_1 & a_2 & a_3 \\
 b_1 & b_2 & b_3
\end{bmatrix}_{2\times3}
\]

is

\[
\begin{bmatrix}
 a_1 & b_1 \\
 a_2 & b_2 \\
 a_3 & b_3
\end{bmatrix}_{3\times2}
\]

Properties of Transpose of Matrix

(i) $(A^T)^T = A$
(ii) $(A + B)^T = A^T + B^T$
(iii) $(AB)^T = B^T A^T$
(iv) $(kA)^T = k(A^T)$
(v) $(A_1 A_2 A_3 \ldots A_{n-1} A_n)^T = A_n^T A_{n-1}^T \ldots A_3^T A_2^T A_1^T$
(vi) $I^T = I$
(vii) $tr(A) = tr(A^T)$

Problems on Matrices

Illustration 3: If $A = \begin{bmatrix}
 1 & -2 & 3 \\
 -4 & 2 & 5
\end{bmatrix}$ and $B = \begin{bmatrix}
 1 & 3 \\
 -1 & 0 \\
 2 & 4
\end{bmatrix}$, then prove that $(AB)^T = B^T A^T$.

Solution:

By obtaining the transpose of AB i.e. $(AB)^T$ and multiplying B^T and A^T we can easily get the result.
Here, \(AB = \)

\[
A = \begin{bmatrix}
1 & -2 & 3 \\
-4 & 2 & 5
\end{bmatrix}
\text{ and } B = \begin{bmatrix}
1 & 3 \\
-1 & 0 \\
2 & 4
\end{bmatrix} = \begin{bmatrix}
1(1) - 2(-1) + 3(2) & 1(3) - 2(0) + 3(4) \\
-4(1) + 2(-1) + 5(2) & -4(3) + 2(0) + (4)
\end{bmatrix}
\]

\[
= \begin{bmatrix}
9 & 15 \\
4 & 8
\end{bmatrix}
\]

\[
\therefore (AB)^T = \begin{bmatrix}
9 & 4 \\
15 & 8
\end{bmatrix}; B^T A^T = \begin{bmatrix}
1 & -1 & 2 \\
3 & 0 & 4
\end{bmatrix} \begin{bmatrix}
1 & -4 \\
2 & 2 \\
3 & 5
\end{bmatrix} = \begin{bmatrix}
9 & 4 \\
15 & 8
\end{bmatrix} = (AB)^T
\]

Illustration 4: If \(A = \begin{bmatrix}
5 & -1 & 3 \\
0 & 1 & 2
\end{bmatrix} \text{ and } B = \begin{bmatrix}
0 & 2 \\
1 & -1 \\
3 & 4
\end{bmatrix} \) then what is \(AB \) equal to?

Solution:

In this problem, we use the properties of the transpose of a matrix to get the required result.

We have \((B')'A' = BA' = \begin{bmatrix}
0 & 2 \\
1 & -1 \\
3 & 4
\end{bmatrix} \begin{bmatrix}
5 & 0 \\
-1 & 1 \\
3 & 2
\end{bmatrix} = \begin{bmatrix}
7 & 8 \\
18 & 7
\end{bmatrix}.
\]

Illustration 5: If the matrix \(A = \begin{bmatrix}
3 - x & 2 & 2 \\
2 & 4 - x & 1 \\
-2 & -4 & -1 - x
\end{bmatrix} \) is a singular matrix then find \(x \). Verify whether \(AA^T = I \) for that value of \(x \).

Solution:

Using the condition of a singular matrix, i.e. \(|A| = 0 \), we get the value of \(x \) and then substituting the value of \(x \) in matrix \(A \) and multiplying it to its transpose we will obtain the required result.

Here, \(A \) is a singular matrix if \(|A| = 0 \), i.e.,

\[
\begin{vmatrix}
3 - x & 2 & 2 \\
2 & 4 - x & 1 \\
-2 & -4 & -1 - x
\end{vmatrix}
\]

\[
= 0 \quad \Rightarrow \quad u \sin g R_3 \rightarrow R_3 + R_2 \quad \text{or} \quad R_2 \rightarrow R_2 - x
\]

\[
\begin{vmatrix}
3 - x & 0 & 2 \\
2 & 3 - x & 1 \\
0 & 0 & -x
\end{vmatrix}
\]

\[
= 0, \quad u \sin g C_2
\]

\[
\rightarrow C_2 - C_3
\]

\[
\text{or} \quad (3x)^2 = 0, \quad x = 0, 3.
\]

When \(x = 0 \), \(A = \begin{bmatrix}
3 & 2 & 2 \\
2 & 4 & 1 \\
-2 & -4 & -1
\end{bmatrix}
\)

\[
\therefore AA^T = \begin{bmatrix}
3 & 2 & 2 \\
2 & 4 & 1 \\
-2 & -4 & -1
\end{bmatrix} \begin{bmatrix}
3 & 2 & -2 \\
2 & 4 & -4 \\
-2 & 1 & -1
\end{bmatrix}
\]
= \begin{bmatrix} 17 & 16 & -16 \\ 16 & 21 & -21 \\ -16 & -21 & 21 \end{bmatrix} \neq I

When x = 3, A = \begin{bmatrix} 0 & 2 & 2 \\ 2 & 1 & 1 \\ -2 & -4 & -4 \end{bmatrix} ;

\therefore AA^T = \begin{bmatrix} 0 & 2 & 2 \\ 2 & 1 & 1 \\ -2 & -4 & -4 \end{bmatrix} \begin{bmatrix} 0 & 2 & -2 \\ 2 & 1 & -4 \\ -2 & -4 & -4 \end{bmatrix} = \begin{bmatrix} 8 & 4 & -16 \\ 4 & 6 & -12 \\ -16 & -12 & 36 \end{bmatrix} \neq I

Note: simple way to solve is that if A is a singular matrix then |A| = 0 and |A^T| = 0. But |I| is 1.

Hence, AA^T \neq I if |A| = 0.

Illustration 6: If the matrix A = \begin{bmatrix} a & b & c \\ b & c & a \\ c & a & b \end{bmatrix}

where a, b, c, are positive real numbers such that abc = 1 and ATA = I then find the value of a^3 + b^3 + c^3.

Solution:

Here, A= \begin{bmatrix} a & b & c \\ b & c & a \\ c & a & b \end{bmatrix} . So, A^T = \begin{bmatrix} a & b & c \\ b & c & a \\ c & a & b \end{bmatrix} ,

Interchanging rows and columns.

⇒ A^T A = \begin{bmatrix} a & b & c \\ b & c & a \\ c & a & b \end{bmatrix} \begin{bmatrix} a & b & c \\ b & c & a \\ c & a & b \end{bmatrix} = A^2

⇒ |A^T A| = |A^2|; But A^T A = I (given).

∴ |I| = |A|^2 ⇒ 1 = |A|^2

Now, |A| = \begin{vmatrix} a & b & c \\ b & c & a \\ c & a & b \end{vmatrix} = (a + b + c) \begin{vmatrix} 1 & 1 & 1 \\ b & c & a \\ c & a & b \end{vmatrix}, R_1 \rightarrow R_1 + R_2 + R_3

= (a + b + c) \begin{vmatrix} 1 & 0 & 0 \\ b & c-a & b-c \\ c & a-b & b-c \end{vmatrix}, C_2 \rightarrow C_2 - C_1, C_3 \rightarrow C_3 - C_1

= (a + b + c) ((c b) (b c) - (a b) (a c)) = (a + b + c) (b^2 c^2 + 2 b c a + a c + a b c)

= (a + b + c) (a^2 + b^2 + c^2) b c a = (a^3 + b^3 + c^3) a b c

= (a^3 + b^3 + c^3) (a b c = 1) |A|^2 = 1 (a^3 + b^3 + c^3)^2 = 1(i)

As a, b, c are positive, \(\frac{a^3 + b^3 + c^3}{3} > \sqrt[3]{a^3 b^3 c^3}\)

Since, abc = 1 \(\Rightarrow (a^3)^{(3)} + (b^3)^{(3)} + (c^3)^{(3)} > 3\) \(\Rightarrow a^3 + b^3 + c^3 - 3 = 1\)
\[\therefore a^3 + b^3 + c^3 = 4 \]