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8.1 INTRODUCTION

Early in our lives, we become aware of the tendency of all
material objects to be attracted towards the earth. Anything
thrown up falls down towards the earth, going uphill is lot
more tiring than going downhill, raindrops from the clouds
above fall towards the earth and there are many other such
phenomena. Historically it was the Italian Physicist Galileo
(1564-1642) who recognised the fact that all bodies,
irrespective of their masses, are accelerated towards the earth
with a constant acceleration. Itis said that he made a public
demonstration of this fact. To find the truth, he certainly did
experiments with bodies rolling down inclined planes and
arrived at a value of the acceleration due to gravity which is
close to the more accurate value obtained later.

A seemingly unrelated phenomenon, observation of stars,
planets and their motion has been the subject of attention in
many countries since the earliest of times. Observations since
early times recognised stars which appeared in the sky with
positions unchanged year after year. The more interesting
objects are the planets which seem to have regular motions
against the background of stars. The earliest recorded model
for planetary motions proposed by Ptolemy about 2000 years
ago was a ‘geocentric’ model in which all celestial objects,
stars, the sun and the planets, all revolved around the earth.
The only motion that was thought to be possible for celestial
objects was motion in a circle. Complicated schemes of motion
were put forward by Ptolemy in order to describe the observed
motion of the planets. The planets were described as moving
in circles with the centre of the circles themselves moving in
larger circles. Similar theories were also advanced by Indian
astronomers some 400 years later. However a more elegant
model in which the Sun was the centre around which the
planets revolved — the ‘heliocentric’ model — was already
mentioned by Aryabhatta (5% century A.D.) in his treatise. A
thousand years later, a Polish monk named Nicolas
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Copernicus (1473-1543) proposed a definitive
model in which the planets moved in circles
around a fixed central sun. His theory was
discredited by the church, but notable amongst
its supporters was Galileo who had to face
prosecution from the state for his beliefs.

It was around the same time as Galileo, a
nobleman called Tycho Brahe (1546-1601)
hailing from Denmark, spent his entire lifetime
recording observations of the planets with the
naked eye. His compiled data were analysed
later by his assistant Johannes Kepler (1571-
1640). He could extract from the data three
elegant laws that now go by the name of Kepler’s
laws. These laws were known to Newton and
enabled him to make a great scientific leap in
proposing his universal law of gravitation.

8.2 KEPLER’S LAWS

The three laws of Kepler can be stated as follows:
1. Law of orbits : All planets move in elliptical
orbits with the Sun situated at one of the foci

< 2a

v

Fig. 8.1(a) An ellipse traced out by a planet around
the sun. The closest point is P and the
Jarthest point is A, P is called the
perihelion and A the aphelion. The
semimajor axis is half the distance AP.

Pko e

Fig. 8.1(b) Drawing an ellipse. A string has its ends
Jixed at F, and F,,. The tip of a pencil holds
the string taut and is moved around.

* Refer to information given in the Box on Page 182

of the ellipse (Fig. 8.1a). This law was a deviation
from the Copernican model which allowed only
circular orbits. The ellipse, of which the circle is
a special case, is a closed curve which can be
drawn very simply as follows.

Select two points F, and F,. Take a length

of a string and fix its ends at I, and F, by pins.
With the tip of a pencil stretch the string taut
and then draw a curve by moving the pencil
keeping the string taut throughout.(Fig. 8.1(b))
The closed curve you get is called an ellipse.
Clearly for any point T on the ellipse, the sum of
the distances from F, and F,is a constant. F,
F, are called the focii. Join the points I, and F,
and extend the line to intersect the ellipse at
points P and A as shown in Fig. 8.1(b). The
midpoint of the line PA is the centre of the ellipse
O and the length PO = AO is called the semi-
major axis of the ellipse. For a circle, the two
focii merge into one and the semi-major axis
becomes the radius of the circle.
2. Law of areas : The line that joins any planet
to the sun sweeps equal areas in equal intervals
of time (Fig. 8.2). This law comes from the
observations that planets appear to move slower
when they are farther from the sun than when
they are nearer.

Fig. 8.2 The planet P moves around the sun in an
elliptical orbit. The shaded area is the area
AA swept out in a small interval of time At.

3. Law of periods : The square of the time period
of revolution of a planet is proportional to the
cube of the semi-major axis of the ellipse traced
out by the planet.

Table 8.1 gives the approximate time periods
of revolution of eight* planets around the sun
along with values of their semi-major axes.
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Table 8.1 Data from measurement of
planetary motions given below
confirm Kepler’s Law of Periods

(@ = Semi-major axis in units of 10° m
T = Time period of revolution of the planet
in years(y).
= The quotient (' T?/a® ) in units of
10 3¢ y?2 m3)
_-_
Mercury 5.79 0.24 2.95
Venus 10.8 0.615 3.00
Earth 15.0 1 2.96
Mars 22.8 1.88 2.98
Jupiter 77.8 11.9 3.01
Saturn 143 29.5 2.98
Uranus 287 84 2.98
Neptune 450 165 2.99
Pluto* 590 248 2.99

The law of areas can be understood as a
consequence of conservation of angular
momentum whch is valid for any central force .
A central force is such that the force on the
planet is along the vector joining the sun and
the planet. Let the sun be at the origin and let
the position and momentum of the planet be
denoted by r and p respectively. Then the area
swept out by the planet of mass m in time

interval At is (Fig. 8.2) AA given by

AA =¥ (r x VAD (8.1)
Hence
AA /At =% (r x p)/m, (since v =p/m)

= L/((2m) (8.2)

where v is the velocity, L is the angular
momentum equal to (r x p ). For a central
force, which is directed along r, L is a constant

Johannes Kepler
(1571-1630) was a
scientist of German
origin. He formulated
the three laws of
planetary motion based
on the painstaking
observations of Tycho
Brahe and coworkers. Kepler himself was an
assistant to Brahe and it took him sixteen long
years to arrive at the three planetary laws. He
is also known as the founder of geometrical
optics, being the first to describe what happens
to light after it enters a telescope.

Refer to information given in the Box on Page 182

as the planet goes around. Hence, AA /Atis a
constant according to the last equation. This is
the law of areas. Gravitation is a central force
and hence the law of areas follows.

P Example 8.1 Let the speed of the planet
at the perihelion Pin Fig. 8.1(a) be v, and
the Sun-planet distance SP be r.. Relate
{rp, Uy} to the corresponding quantities at
the aphelion {r, v,. Will the planet take
equal times to traverse BAC and CPB ?

Answer The magnitude of the angular
momentum at Pis L, = m,r,v,, since inspection
tells us that r, and v, are mutually
perpendicular. Similarly, L, = m,r,v, From
angular momentum conservation

M,T,V, = M,Ta0,

Y _Ta
or - <
vy T

Since 1, > 71, U, > U,.

The area SBAC bounded by the ellipse and
the radius vectors SBand SCis larger than SBPC
in Fig. 8.1. From Kepler’s second law, equal areas
are swept in equal times. Hence the planet will
take a longer time to traverse BAC than CPB.

8.3 UNIVERSAL LAW OF GRAVITATION

Legend has it that observing an apple falling
from a tree, Newton was inspired to arrive at an
universal law of gravitation that led to an
explanation of terrestrial gravitation as well as
of Kepler’s laws. Newton’s reasoning was that
the moon revolving in an orbit of radius R_was
subject to a centripetal acceleration due to
earth’s gravity of magnitude

o =V _ ARy

m Rm TZ
where V is the speed of the moon related to the
time period T by the relation V=2z R, /T. The

time period T is about 27.3 days and R was
already known then to be about 3.84 x 10°m. If
we substitute these numbers in Eq. (8.3), we
get a value of a, much smaller than the value of
acceleration due to gravity g on the surface of
the earth, arising also due to earth’s gravitational
attraction.

(8.3)
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Central Forces

We know the time rate of change of the angular momentum of a single particle about the origin
is

ﬂ =rxF

dt

The angular momentum of the particle is conserved, if the torque t=r xF due to the
force F on it vanishes. This happens either when F is zero or when F is along r. We are
interested in forces which satisfy the latter condition. Central forces satisfy this condition.

A ‘central force is always directed towards or away from a fixed point, i.e., along the position

vector of the point of application of the force with respect to the fixed point. (See Figure below.)

Further, the magnitude of a central force F depends on r, the distance of the point of application

of the force from the fixed point; F = F(n).

In the motion under a central force the angular momentum is always conserved. Two important
results follow from this:

(1) The motion of a particle under the central force is always confined to a plane.

(2) The position vector of the particle with respect to the centre of the force (i.e. the fixed point)
has a constant areal velocity. In other words the position vector sweeps out equal areas in
equal times as the particle moves under the influence of the central force.

Try to prove both these results. You may need to know that the areal velocity is given by :
dA/dt =¥ r v sin a.

An immediate application of the above discussion can be made to the motion of a planet
under the gravitational force of the sun. For convenience the sun may be taken to be so heavy
that it is at rest. The gravitational force of the sun on the planet is directed towards the sun.
This force also satisfies the requirement F = F(r), since F = G m;m, /r> where m and m, are
respectively the masses of the planet and the sun and G is the universal constant of gravitation.
The two results (1) and (2) described above, therefore, apply to the motion of the planet. In fact,
the result (2) is the well-known second law of Kepler.

Tr is the trejectory of the particle under the central force. At a position P, the force is directed
along OP, O is the centre of the force taken as the origin. In time At, the particle moves fromP to P’,
arc PP’ = As = v At. The tangent PQ at P to the trajectory gives the direction of the velocity at P. The
area swept in At is the area of sector POP’ = (T sin 0!) PP’/2 = (rv sin a) At/2.)
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This clearly shows that the force due to
earth’s gravity decreases with distance. If one
assumes that the gravitational force due to the
earth decreases in proportion to the inverse
square of the distance from the centre of the

earth, we will have a,, « R,”: g R, and we get

2

=_T
2
RE

g

a = 3600

(8.4)

m

in agreement with a value of g = 9.8 m s? and
the value of a_ from Eq. (8.3). These
observations led Newton to propose the following
Universal Law of Gravitation :

Every body in the universe attracts every other
body with a force which is directly proportional
to the product of their masses and inversely
proportional to the square of the distance
between them.

The quotation is essentially from Newton’s
famous treatise called ‘Mathematical Principles
of Natural Philosophy’ (Principia for short).

Stated Mathematically, Newton’s gravitation
law reads : The force F on a point mass m, due
to another point mass m, has the magnitude

m, m
IFl=G —lrz - (8.5)
Equation (8.5) can be expressed in vector form as
F=G _mlrzmz (-t)=-G —mermZE
m, my ~
=-G ——=r
[

where G is the universal gravitational constant,
r is the unit vector from m tom,andr=r, -r,

as shown in Fig. 8.3.
z

T,

I,

Y]

Fig. 8.3 Gravitational force on m, due to m, is along
r where the vectorr is (r,- r ).

The gravitational force is attractive, i.e., the
force F is along - r. The force on point mass m,
due to m, is of course — F by Newton'’s third law.
Thus, the gravitational force F , on the body 1
due to 2 and F, on the body 2 due to 1 are
relatedas F =-F, .

Before we can apply Eq. (8.5) to objects under
consideration, we have to be careful since the
law refers to point masses whereas we deal with
extended objects which have finite size. . If we
have a collection of point masses,the force on
any one of them is the vector sum of the
gravitational forces exerted by the other point
masses as shown in Fig 8.4.

m,

i‘\12=(— i‘\zl)

AN\ N
l',3=(— rSl]

Fig. 8.4 Gravitational force on point mass m, is the
vector sum of the gravitational forces exerted
by m,, m, and m,.

The total force on m, is

F - Gm,m; ~ . Gmym; - em, m; ~
| = s I21 5 — T4
1 T3 T

L Example 8.2 Three equal masses of m kg
each are fixed at the vertices of an
equilateral triangle ABC.
(@) What is the force acting on a mass 2m
placed at the centroid G of the triangle?
(b) What is the force if the mass at the
vertex A is doubled ?

Take AG =BG = CG = 1m (see Fig. 8.5)
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2m
N \)\300 > X

Fig. 8.5 Three equal masses are placed at the three
vertices of the A ABC. A mass 2m is placed
at the centroid G.

Answer (a) The angle between GC and the
positive x-axis is 30° and so is the angle between
GB and the negative x-axis. The individual forces
in vector notation are

Gm(2m) .
A~ 5 )
Gm(2m) . 03 e o
Fip = . (—1 co0s 30° — j sin 30 )
Gm(2m) . 03 e o
Fic = (+1 co0s 30° — j sin 30 )

From the principle of superposition and the law
of vector addition, the resultant gravitational
force F; on (2m) is

Fr = Foo+ Fg + Foc

Fi = 2Gm? j+26m? (- cos 30°~j sin 30°)

+2Gm? (i cos 30° - jsin 30°)= 0
Alternatively, one expects on the basis of
symmetry that the resultant force ought to be

ZET0.

(b) By symmetry the x-component of the
force cancels out. The y-component survives.

Fy = 4Gm%j - 2Gm?j = 2Gm?j <

For the gravitational force between an

extended object (like the earth) and a point mass,
Eq. (8.5) is not directly applicable. Each point mass
in the extended object will exert a force on the
given point mass and these force will not all be in
the same direction. We have to add up these forces
vectorially for all the point masses in the extended
object to get the total force. This is easily done
using calculus. For two special cases, a simple
law results when you do that :

(1) The force of attraction between a hollow
spherical shell of uniform density and a
point mass situated outside is just as if
the entire mass of the shell is
concentrated at the centre of the shell.
Qualitatively this can be understood as
follows: Gravitational forces caused by the
various regions of the shell have
components along the line joining the point
mass to the centre as well as along a
direction prependicular to this line. The
components prependicular to this line
cancel out when summing over all regions
of the shell leaving only a resultant force
along the line joining the point to the centre.
The magnitude of this force works out to
be as stated above.

Newton’s Principia

Kepler had formulated his third law by 1619. The announcement of the underlying universal law of
gravitation came about seventy years later with the publication in 1687 of Newton’'s masterpiece
Philosophiae Naturalis Principia Mathematica, often simply called the Principia.

Around 1685, Edmund Halley (after whom the famous Halley’s comet is named), came to visit
Newton at Cambridge and asked him about the nature of the trajectory of a body moving under the
influence of an inverse square law. Without hesitation Newton replied that it had to be an ellipse,
and further that he had worked it out long ago around 1665 when he was forced to retire to his farm
house from Cambridge on account of a plague outbreak. Unfortunately, Newton had lost his papers.
Halley prevailed upon Newton to produce his work in book form and agreed to bear the cost of
publication. Newton accomplished this feat in eighteen months of superhuman effort. The Principia
is a singular scientific masterpiece and in the words of Lagrange it is “the greatest production of the
human mind.” The Indian born astrophysicist and Nobel laureate S. Chandrasekhar spent ten
years writing a treatise on the Principia. His book, Newton's Principia for the Common Reader
brings into sharp focus the beauty, clarity and breath taking economy of Newton’s methods.
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(2) The force of attraction due to a hollow
spherical shell of uniform density, on a
point mass situated inside it is zero.
Qualitatively, we can again understand this
result. Various regions of the spherical shell
attract the point mass inside it in various
directions. These forces cancel each other
completely.

8.4 THE GRAVITATIONAL CONSTANT

The value of the gravitational constant G
entering the Universal law of gravitation can be
determined experimentally and this was first
done by English scientist Henry Cavendish in
1798. The apparatus used by him is
schematically shown in figure.8.6

Ll

W
S’l oooo @SZ
A :" B

Fig. 8.6 Schematic drawing of Cavendish’s
experiment. S, and S, are large spheres
which are kept on either side (shown
shades) of the masses at A and B. When
the big spheres are taken to the other side
of the masses (shown by dotted circles), the
bar AB rotates a little since the torque
reverses direction. The angle of rotation can
be measured experimentally.

The bar AB has two small lead spheres
attached at its ends. The bar is suspended from
a rigid support by a fine wire. Two large lead
spheres are brought close to the small ones but
on opposite sides as shown. The big spheres
attract the nearby small ones by equal and
opposite force as shown. There is no net force
on the bar but only a torque which is clearly
equal to F times the length of the bar,where F is
the force of attraction between a big sphere and

its neighbouring small sphere. Due to this
torque, the suspended wire gets twisted till such
time as the restoring torque of the wire equals
the gravitational torque . If 0 is the angle of
twist of the suspended wire, the restoring torque
is proportional to 6, equal to 76. Where 7 is the
restoring couple per unit angle of twist. T can be
measured independently e.g. by applying a
known torque and measuring the angle of twist.
The gravitational force between the spherical
balls is the same as if their masses are
concentrated at their centres. Thus if d is the
separation between the centres of the big and
its neighbouring small ball, M and m their
masses, the gravitational force between the big
sphere and its neighouring small ball is.

Mm
d2
If L is the length of the bar AB , then the
torque arising out of F is F multiplied by L. At
equilibrium, this is equal to the restoring torque
and hence

Mm

d2

Observation of O thus enables one to
calculate G from this equation.

Since Cavendish’'s experiment, the

measurement of G has been refined and the

currently accepted value is
G =6.67x10"" N m?/kg”

F=G

(8.6)

G L=10 (8.7)

(8.8)

8.5 ACCELERATION DUE TO GRAVITY OF
THE EARTH

The earth can be imagined to be a sphere made
of a large number of concentric spherical shells
with the smallest one at the centre and the
largest one at its surface. A point outside the
earth is obviously outside all the shells. Thus,
all the shells exert a gravitational force at the
point outside just as if their masses are
concentrated at their common centre according
to the result stated in section 8.3. The total mass
of all the shells combined is just the mass of the
earth. Hence, at a point outside the earth, the
gravitational force is just as if its entire mass of
the earth is concentrated at its centre.

For a point inside the earth, the situation
is different. This is illustrated in Fig. 8.7.
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<«—FEarth’s surface

Fig. 8.7 The mass mis in a mine located at a depth
d below the surface of the Earth of mass
M, and radius R;. We treat the Earth to be

spherically symmetric.

Again consider the earth to be made up of
concentric shells as before and a point mass m
situated at a distance r from the centre. The
point P lies outside the sphere of radius r. For
the shells of radius greater than r, the point P
lies inside. Hence according to result stated in
the last section, they exert no gravitational force
on mass mkept at P. The shells with radius <r
make up a sphere of radius r for which the point
P lies on the surface. This smaller sphere
therefore exerts a force on a mass m at P as if
its mass M is concentrated at the centre. Thus
the force on the mass m at P has a magnitude

Gm (M,)
r2
We assume that the entire earth is of uniform

F= (8.9

4
density and hence its mass is My = ?ﬂ: Rf’,; fo

where M, is the mass of the earth R, is its radius
and p is the density. On the other hand the

4r
mass of the sphere M of radius ris ?P r® and

hence

4 s M, \r®
F:Gm[—npj r_2 = Gm|—= r_2
3 r R, )r
GmM,
T RE r (8.10)
E
If the mass m is situated on the surface of
earth, then r= R, and the gravitational force on
it is, from Eq. (8.10)
M_m
R2 (8.11)

E

F=G

The acceleration experienced by the mass m,
which is usually denoted by the symbol g is
related to F by Newton’s 2™ law by relation
F =mg. Thus

_F_GM,
m R}

(8.12)

Acceleration g is readily measurable. R_is a
known quantity. The measurement of G by
Cavendish’s experiment (or otherwise), combined
with knowledge of g and R, enables one to
estimate M, from Eq. (8.12). This is the reason
why there is a popular statement regarding
Cavendish : “Cavendish weighed the earth”.

8.6 ACCELERATION DUE TO GRAVITY
BELOW AND ABOVE THE SURFACE OF
EARTH

Consider a point mass mat a height habove the
surface of the earth as shown in Fig. 8.8(a). The
radius of the earth is denoted by R, . Since this
point is outside the earth,

/ Earth's surface

(a)

Fig. 8.8 (a) g at a height h above the surface of the
earth.

its distance from the centre of the earthis (R, +
h). If F(h denoted the magnitude of the force
on the point mass m, we get from Eq. (8.5) :

GM,m

Fh)= ———~
(R, +h)

(8.13)

The acceleration experienced by the point
mass is F(h)/m=g(h)and we get
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F(h) GM
(h = = E .
glh)=—- R, +h)? (8.14)
This is clearly less than the value of g on the
GM,

surface ofearth : 9 :R—z' For h << R;;,we can
E

expand the RHS of Eq. (8.14) :

GMy =g(1+h/R;)"

gth) "RE1+h/R,)

h
For R <1, using binomial expression,
E

2h
h)zg|1-—
aly=a1-24).
Equation (8.15) thus tells us that for small
heights h above the value of g decreases by a
factor (1-2h/Rg).
Now, consider a point mass m at a depth d

below the surface of the earth (Fig. 8.8(b)), so
that its distance from the centre of the earth is

(8.15)

(Rg —d) as shown in the figure. The earth can

be thought of as being composed of a smaller
sphere of radius (R, —d) and a spherical shell
of thickness d. The force on m due to the outer
shell of thickness d is zero because the result
quoted in the previous section. As far as the
smaller sphere of radius (R, —d ) is concerned,
the point mass is outside it and hence according
to the result quoted earlier, the force due to this
smaller sphere is just as if the entire mass of
the smaller sphere is concentrated at the centre.
If M, is the mass of the smaller sphere, then,
M,/ M, =(R,—d)®/R>? (8.16)
Since mass of a sphere is proportional to be
cube of its radius.

‘/ Earth's surface

(b)

Fig. 8.8 (b) g at a depth d. In this case only the
smaller sphere of radius (RE—d)
contributes to g.

Thus the force on the point mass is
Fld= GMm/ (R -d)? (8.17)
Substituting for M_ from above , we get
Fld =G M, m(R,-d)/ R? (8.18)

and hence the acceleration due to gravity at
a depth d,

_ Fla)
gld) = m is
glay= "4 (d):GIZ{E (Rp —d)
m R;
R, -d
=g—L2 —=g1-d/R;) (8.19)

E

Thus, as we go down below earth’s surface,
the acceleration due gravity decreases by a factor

(1-d/Rg). The remarkable thing about

acceleration due to earth’s gravity is that it is
maximum on its surface decreasing whether you
go up or down.

8.7 GRAVITATIONAL POTENTIAL ENERGY

We had discussed earlier the notion of potential
energy as being the energy stored in the body at
its given position. If the position of the particle
changes on account of forces acting on it, then
the change in its potential energy is just the
amount of work done on the body by the force.
As we had discussed earlier, forces for which
the work done is independent of the path are
the conservative forces.

The force of gravity is a conservative force
and we can calculate the potential energy of a
body arising out of this force, called the
gravitational potential energy. Consider points
close to the surface of earth, at distances from
the surface much smaller than the radius of the
earth. In such cases, the force of gravity is
practically a constant equal to mg, directed
towards the centre of the earth. If we consider
a point at a height h from the surface of the
earth and another point vertically above it at a
height h, from the surface, the work done in
lifting the particle of mass m from the first to
the second position is denoted by W,

W, = Force x displacement

=myg (h,-h) (8.20)
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If we associate a potential energy W(h) at a
point at a height h above the surface such that

W(H) = mgh + W, (8.21)
(where W, = constant) ;
then it is clear that

W, =Wh) - Wh) (8.22)

The work done in moving the particle is just
the difference of potential energy between its
final and initial positions.Observe that the
constant W_ cancels out in Eq. (8.22). Setting
h =0 in the last equation, we get W(h=0) =
W_ . h=0 means points on the surface of the
carth. Thus, W_is the potential energy on the
surface of the earth.

If we consider points at arbitrary distance
from the surface of the earth, the result just
derived is not valid since the assumption that
the gravitational force mg is a constant is no
longer valid. However, from our discussion we
know that a point outside the earth, the force of
gravitation on a particle directed towards the
centre of the earth is

F= Gl\ffm (8.23)

where M, = mass of earth, m = mass of the
particle and rits distance from the centre of the
earth. If we now calculate the work done in
lifting a particle fromr=r tor=r, (r,>r) along
a vertical path, we get instead of Eq. (8.20)

VV12 J‘rz GMmdr
11

=—GMgm (———j (8.24)
I, N

In place of Eq. (8.21), we can thus associate
a potential energy W(r) at a distance r, such that

GM.m

W(r)=—fE+W1 , (8.25)

valid for r > R,

so that once again W, = W(r) - W(r).
Setting r = infinity in the last equation, we get
W (r=infinity ) = W, . Thus, W, is the
potential energy at infinity. One should note that
only the difference of potential energy between
two points has a definite meaning from Eqs.
(8.22) and (8.24). One conventionally sets W,
equal to zero, so that the potential energy at a
point is just the amount of work done in

displacing the particle from infinity to that point.

We have calculated the potential energy at
a point of a particle due to gravitational forces
on it due to the earth and it is proportional to
the mass of the particle. The gravitational
potential due to the gravitational force of the
earth is defined as the potential energy of a
particle of unit mass at that point. From the
earlier discussion, we learn that the gravitational
potential energy associated with two particles
of masses m and m, separated by distance by a
distance r is given by

V=- Gmflmz (if we choose V=0 as r — )

It should be noted that an isolated system
of particles will have the total potential energy
that equals the sum of energies (given by the
above equation) for all possible pairs of its
constituent particles. This is an example of the
application of the superposition principle.

p Example 8.3 Find the potential energy of
a system of four particles placed at the
vertices of a square of side l. Also obtain
the potential at the centre of the square.

Answer Consider four masses each of mass m
at the corners of a square of side [; See Fig. 8.9.
We have four mass pairs at distance l and two

diagonal pairs at distance 2

Hence,
Gm® G m?
Wir)=—

l «F 21
m
.".
. ®
m m

Fig. 8.9
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~ 2Gm? 5 1) 541Gm2
__f +E =-5, T

The gravitational potential at the centre of

the square (r =J21 / 2) is

U@ = — 4@%

8.8 ESCAPE SPEED

If a stone is thrown by hand, we see it falls back
to the earth. Of course using machines we can
shoot an object with much greater speeds and
with greater and greater initial speed, the object
scales higher and higher heights. A natural
query that arises in our mind is the following:
‘can we throw an object with such high initial
speeds that it does not fall back to the earth?’

The principle of conservation of energy helps
us to answer this question. Suppose the object
did reach infinity and that its speed there was
V.. The energy of an object is the sum of potential
and Kinetic energy. As before W denotes that
gravitational potential energy of the object at
infinity. The total energy of the projectile at
infinity then is

2
mvV;
2

If the object was thrown initially with a speed
V, from a point at a distance (h+R,) from the
centre of the earth (R, = radius of the earth), its
energy initially was
1 , GmM;
Eh+Ry)=—mV' -———+W,
2 (h+ Rg)
By the principle of energy conservation
Eqgs. (8.26) and (8.27) must be equal. Hence
mv?  GmM, _ mv?

2 (h+Rj) 2

The R.H.S. is a positive quantity with a

minimum value zero hence so must be the L.H.S.

Thus, an object can reach infinity as long as V,
is such that

mv?  GmM,
2 (h+Rg)

The minimum value of V, corresponds to the
case when the L.H.S. of Eq. (8.29) equals zero.

E (o) =W, +

(8.26)

(8.27)

(8.28)

20 (8.29)

Thus, the minimum speed required for an object
to reach infinity (i.e. escape from the earth)
corresponds to

lm (‘/12) = GmME
2 min h 4+ R,

If the object is thrown from the surface of
the earth, h = 0, and we get

(8.30)

2GM,,
RE

(V) =

(8.31)

Using the relation g =GM, / R., we get

(V). =20R; (8.32)

Using the value of g and R_, numerically
(V) ..=11.2 km/s. This is called the escape
speed, sometimes loosely called the escape
velocity.

Equation (8.32) applies equally well to an
object thrown from the surface of the moon with
g replaced by the acceleration due to Moon’s
gravity on its surface and r, replaced by the
radius of the moon. Both are smaller than their
values on earth and the escape speed for the
moon turns out to be 2.3 km/s, about five times
smaller. This is the reason that moon has no
atmosphere. Gas molecules if formed on the
surface of the moon having velocities larger than
this will escape the gravitational pull of the
moon.

> Example 8.4 Two uniform solid spheres
of equal radii R, but mass M and 4 M have
a centre to centre separation 6 R, as shown
in Fig. 8.10. The two spheres are held fixed.
A projectile of mass m is projected from
the surface of the sphere of mass M directly
towards the centre of the second sphere.
Obtain an expression for the minimum
speed v of the projectile so that it reaches
the surface of the second sphere.

6R

Fig. 8.10

Answer The projectile is acted upon by two
mutually opposing gravitational forces of the two
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spheres. The neutral point N (see Fig. 8.10) is
defined as the position where the two forces
cancel each other exactly. If ON = r, we have

GMm 4GMm

2 6R-rf
(BR-12 =4r°
6R—-r1r=%2r

r=2R or-6R.

The neutral point r = —6R does not concern
us in this example. Thus ON = r = 2R. It is
sufficient to project the particle with a speed
which would enable it to reach N. Thereafter,
the greater gravitational pull of 4M would
suffice. The mechanical energy at the surface
of Mis

B-lmy? GMm_ 4GMm
2 R 5R

At the neutral point N, the speed approaches
zero. The mechanical energy at N is purely
potential.

GMm 4GMm
Ey=- -
2R 4R

From the principle of conservation of
mechanical energy

1, GM 4GM GM GM
22 8 _ e
2 R  5R 2R R

or

5 2GM(4 1)
U=

R |5 2
(3GM Y <
5R

A point to note is that the speed of the projectile
is zero at N, but is nonzero when it strikes the
heavier sphere 4 M. The calculation of this speed
is left as an exercise to the students.

8.9 EARTH SATELLITES

Earth satellites are objects which revolve around
the earth. Their motion is very similar to the
motion of planets around the Sun and hence
Kepler’s laws of planetary motion are equally
applicable to them. In particular, their orbits
around the earth are circular or elliptic. Moon
is the only natural satellite of the earth with a
near circular orbit with a time period of
approximately 27.3 days which is also roughly
equal to the rotational period of the moon about

its own axis. Since, 1957, advances in
technology have enabled many countries
including India to launch artificial earth
satellites for practical use in fields like
telecommunication, geophysics and
meteorology.

We will consider a satellite in a circular orbit
of a distance (R, + h) from the centre of the earth,
where R, = radius of the earth. If mis the mass
of the satellite and V its speed, the centripetal
force required for this orbit is

mv?

F(centripetal) = m (8.33)
E

directed towards the centre. This centripetal force
is provided by the gravitational force, which is

GmM;

F(gravitation) = m (8.34)
E

where M, is the mass of the earth.
Equating R.H.S of Eq¢s. (8.33) and (8.34) and
cancelling out m, we get

2 GMy
(R, + h) (8.35)
Thus V decreases as h increases. From
equation (8.35),the speed V for h=0 is
V? (h=0) = GM/R; = gR; (8.36)

where we have used the relation
g =GM/R,” .
traverses a distance 27(R_+ h) with speed V. Its
time period T therefore is
27(R, +h) 27(R, +h)*/?
= (8.37)
| JG My
on substitution of value of V from Eq. (8.35).
Squaring both sides of Eq. (8.37), we get
T?=Ik (R,+hfP (wherek=4m"/GM,) (8.38)

which is Kepler’'s law of periods, as applied to
motion of satellites around the earth. For a
satellite very close to the surface of earth h can
be neglected in comparison to R, in Eq. (8.38).
Hence, for such satellites, T'is T,, where

T, =2nJR; /g (8.39)

If we substitute the numerical values
g = 9.8ms”?and R, = 6400 km., we get

6.4 x10°
T, =27,/ 04 X10°
0T M Tgg  ®

Which is approximately 85 minutes.

In every orbit, the satellite

T:
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» Example 8.5 The planet Mars has two
moons, phobos and delmos. (i) phobos has
a period 7 hours, 39 minutes and an orbital
radius of 9.4 x10° km. Calculate the mass
of mars. (i) Assume that earth and mars
move in circular orbits around the sun,
with the martian orbit being 1.52 times
the orbital radius of the earth. What is
the length of the martian year in days ?

Answer (i) We employ Eq. (8.38) with the sun’s
mass replaced by the martian mass M,

2
2 4m 3

T = R
GM,,

" 4n* R®

"™ g 12

B 4%(3.14)% x(9.4)° x10'®
T 6.67x10 " x(459% 60)>
| 4x(3.14)% x(9.4)° x 108

™ 6.67x(4.59x6)2x107
=6.48 x 10%°kg.
(i) Once again Kepler's third law comes to our
aid,

2 3

T _ Rus
Ty Rug

where R, is the mars -sun distance and Ry is
the earth-sun distance.
= Ty =(1.52)%2 x 365
=684 days

We note that the orbits of all planets except
Mercury, Mars and Pluto* are very close to
being circular. For example, the ratio of the
semi-minor to semi-major axis for our Earth
is, b/a =0.99986. <

Example 8.6 Weighing the Earth : You
are given the following data: g =9.81 ms™2,
R; =6.37x10° m, the distance to the moon
R =3.84x10® m and the time period of the
moon’s revolution is 27.3 days. Obtain the
mass of the Earth M in two different ways.

Answer From Eq. (8.12) we have

R2
ME — gGE

* Refer to information given in the Box on Page 182

) 9.81x(6.37x10°)"

6.67x10 !
=5.97x 10 Kkg.
The moon is a satellite of the Earth. From

the derivation of Kepler’s third law [see Eq.
(8.38)]

2 - 4n°R®
G Mg
_4n’R8
FTGr?

4x3.14%3.14x(3.84)° x10**
T 6.67x10 " x(27.3% 24 x 60 % 60)°
=6.02x10%* kg
Both methods yield almost the same answer,

the difference between them being less than 1%.
<

» Example 8.7 Express the constant k of
Eq. (8.38) in days and kilometres. Given
k = 10'% s> m™. The moon is at a distance
0f3.84 x 10°km from the earth. Obtain its
time-period of revolution in days.

Answer Given
k=101¥s’m=

= 10‘13r ! d21 |r ! T|
[(24 x 60x 60)> J | (1/1000)°km® |
=1.33 x10*d? km™

Using Eq. (8.38) and the given value of k,
the time period of the moon is

T?=(1.33 x 1011)(3.84 x 109)*

T =27.3d <

Note that Eq. (8.38) also holds for elliptical
orbits if we replace (R;+h) by the semi-major
axis of the ellipse. The earth will then be at one
of the foci of this ellipse.

8.10 ENERGY OF AN ORBITING SATELLITE

Using Eq. (8.35), the kinetic energy of the
satellite in a circular orbit with speed v is

1
K«E =—mv?
2

_ GmM,

"R, +h) (8.40)
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Considering gravitational potential energy at ~ While finally
infinity to be zero, the potential energy at G Mem
distance (R+h) from the centre of the earth is Ef= —ﬁ
: E
p. E:_—GmME 8.41) The change in the total energy is
(Rp +h) ' AE=E,-E,
The K.E is positive whereas the P.E is
negative. However, in magnitude the K.E. is half _GMpm (G Mg \m Rgp
the P.E, so that the total E is ~ 8Rp R%; ) )
GmM 6
E=KE+PE=——""E_ (8.42) AE - gmRg _9.81x400x6.37x10 _313x10%J
2(R; +h) ) )

The total energy of an circularly orbiting
satellite is thus negative, with the potential
energy being negative but twice is magnitude of
the positive kinetic energy.

When the orbit of a satellite becomes
elliptic, both the K.E. and PE. vary from point
to point. The total energy which remains
constant is negative as in the circular orbit case.
This is what we expect, since as we have
discussed before if the total energy is positive or
zero, the object escapes to infinity. Satellites
are always at finite distance from the earth and
hence their energies cannot be positive or zero.

Example 8.8 A 400 kg satellite is in a
circular orbit of radius 2R, about the
Earth. How much energy is required to
transfer it to a circular orbit of radius 4R, ?
What are the changes in the kinetic and
potential energies ?

Answer Initially,
_ GM Em

Ei=
ARy

The kinetic energy is reduced and it mimics
AE, namely, AK=K;- K, =-3.13 x 10°d.

The change in potential energy is twice the
change in the total energy, namely

AV=V, -V =-6.25x10°J <
8.11 GEOSTATIONARY AND POLAR
SATELLITES

An interesting phenomenon arises if in we
arrange the value of (R+ h) such that T in
Eq. (8.37) becomes equal to 24 hours. If the
circular orbit is in the equatorial plane of the
earth, such a satellite, having the same period
as the period of rotation of the earth about its
own axis would appear stationery viewed from
a point on earth. The (R + h) for this purpose
works out to be large as compared to R :

oM.\’
E
—J (8.43)

R, +h= [ i
and for T= 24 hours, h works out to be 35800 km.
which is much larger than R. Satellites in a
circular orbits around the earth in the

India’s Leap into Space

India entered the space age with the launching of the low orbit satellite Aryabhattain 1975. In the first
few years of its programme the launch vehicles were provided by the erstwhile Soviet Union. Indigenous
launch vehicles were employed in the early 1980’s to send the Rohini series of satellites into space.
The programme to send polar satellites into space began in late 1980’s. A series of satellites labelled
IRS (Indian Remote Sensing Satellites) have been launched and this programme is expected to continue
in future. The satellites have been employed for surveying, weather prediction and for carrying out
experiments in space. The INSAT (Indian National Satellite) series of satellites were designed and
made operational for communications and weather prediction purposes beginning in 1982. European
launch vehicles have been employed in the INSAT series. India tested its geostationary launch capability
in 2001 when it sent an experimental communications satellite (GSAT-1) into space. In 1984 Rakesh
Sharma became the first Indian astronaut. The Indian Space Research Organisation (ISRO) is the
umbrella organisation that runs a number of centre. Its main lauch centre at Sriharikota (SHAR) is
100 km north of Chennai. The National Remote Sensing Agency (NRSA) is near Hyderabad. Its national
centre for research in space and allied sciences is the Physical Research Laboratory (PRL) at Ahmedabad.
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equatorial plane with T = 24 hours are called
Geostationery Satellites. Clearly, since the earth
rotates with the same period, the satellite would
appear fixed from any point on earth. It takes
very powerful rockets to throw up a satellite to
such large heights above the earth but this has
been done in view of the several benefits of many
practical applications.

It is known that electromagnetic waves above
a certain frequency are not reflected from
ionosphere. Radio waves used for radio
broadcast which are in the frequency range 2
MHz to 10 MHz, are below the critical frequency.
They are therefore reflected by the ionosphere.
Thus radio waves broadcast from an antenna
can be received at points far away where the
direct wave fail to reach on account of the
curvature of the earth. Waves used in television
broadcast or other forms of communication have
much higher frequencies and thus cannot be
received beyond the line of sight. A
Geostationery satellite, appearing fixed above the
broadcasting station can however receive these
signals and broadcast them back to a wide area
on earth. The INSAT group of satellites sent up
by India are one such group of Geostationary
satellites widely used for telecommunications in
India.

Fig. 8.11 A Polar satellite. A strip on earth’s surface
(shown shaded) is visible from the satellite
during one cycle. For the next revolution of
the satellite, the earth has rotated a little
onits axis so that an adjacent strip becomes
visible.

Another class of satellites are called the Polar
satellites (Fig. 8.11). These are low altitude (h=
500 to 800 km) satellites, but they go around
the poles of the earth in a north-south direction
whereas the earth rotates around its axis in an
east-west direction. Since its time period is
around 100 minutes it crosses any altitude many
times a day. However, since its height h above
the earth is about 500-800 km, a camera fixed
on it can view only small strips of the earth in
one orbit. Adjacent strips are viewed in the next
orbit, so that in effect the whole earth can be
viewed strip by strip during the entire day. These
satellites can view polar and equatorial regions
at close distances with good resolution.
Information gathered from such satellites
is extremely useful for remote sensing,
meterology as well as for environmental studies
of the earth.

8.12 WEIGHTLESSNESS

Weight of an object is the force with which the
earth attracts it. We are conscious of our own
weight when we stand on a surface, since the
surface exerts a force opposite to our weight to
keep us at rest. The same principle holds good
when we measure the weight of an object by a
spring balance hung from a fixed point e.g. the
ceiling. The object would fall down unless it is
subject to a force opposite to gravity. This is
exactly what the spring exerts on the object. This
is because the spring is pulled down a little by
the gravitational pull of the object and in turn
the spring exerts a force on the object vertically
upwards.

Now, imagine that the top end of the balance
is no longer held fixed to the top ceiling of the
room. Both ends of the spring as well as the
object move with identical acceleration g. The
spring is not stretched and does not exert any
upward force on the object which is moving down
with acceleration g due to gravity. The reading
recorded in the spring balance is zero since the
spring is not stretched at all. If the object were
a human being, he or she will not feel his weight
since there is no upward force on him. Thus,
when an object is in free fall, it is weightless
and this phenomenon is usually called the
phenomenon of weightlessness.

In a satellite around the earth, every part
and parcel of the satellite has an acceleration
towards the centre of the earth which is exactly
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the value of earth’s acceleration due to gravity
at that position. Thus in the satellite everything
inside it is in a state of free fall. This is just as
if we were falling towards the earth from a height.
Thus, in a manned satellite, people inside

experience no gravity. Gravity for us defines the
vertical direction and thus for them there are no
horizontal or vertical directions, all directions are
the same. Pictures of astronauts floating in a
satellite show this fact.

SUMMARY

1. Newton’s law of universal gravitation states that the gravitational force of attraction

between any two particles of masses m; and m, separated by a distance r has the
magnitude
F=gl2
r

where G is the universal gravitational constant, which has the value 6.672 x10'* N m? kg2.
If we have to find the resultant gravitational force acting on the particle m due to a
number of masses M;, M,, ....M, etc. we use the principle of superposition. Let F}, F,, ....F,
be the individual forces due to M,, M,, ....M, each given by the law of gravitation. From
the principle of superposition each force acts independently and uninfluenced by the
other bodies. The resultant force Fy is then found by vector addition

where the symbol ‘Y’ stands for summation.

Kepler's laws of planetary motion state that

(a) All planets move in elliptical orbits with the Sun at one of the focal points

(b) The radius vector drawn from the sun to a planet sweeps out equal areas in equal
time intervals. This follows from the fact that the force of gravitation on the planet is
central and hence angular momentum is conserved.

(c) The square of the orbital period of a planet is proportional to the cube of the semi-
major axis of the elliptical orbit of the planet

The period T and radius R of the circular orbit of a planet about the Sun are related

by
T2 = 4n* s
GM,

where M, is the mass of the Sun. Most planets have nearly circular orbits about the
Sun. For elliptical orbits, the above equation is valid if R is replaced by the semi-major
axis, a.

. The acceleration due to gravity.

(@) at a height h above the Earth’s surface

GM
gh) = ——F
(R + h)
GM 2h
= R}%E [1 - R_E] for h << R
glh) = 9(0)[1 = %j where g(0) = GAfE
RE RE
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(b) at depth d below the Earth’s surface is

5. The gravitational force is a conservative force, and therefore a potential energy function
can be defined. The gravitational potential energy associated with two particles separated
by a distance ris given by

Vo G my my
r
where Vis taken to be zero at r — . The total potential energy for a system of particles
is the sum of energies for all pairs of particles, with each pair represented by a term of
the form given by above equation. This prescription follows from the principle of
superposition.

6. If an isolated system consists of a particle of mass m moving with a speed v in the
vicinity of a massive body of mass M, the total mechanical energy of the particle is given by

E= l m U2— le—m

2 r
That is, the total mechanical energy is the sum of the kinetic and potential energies.
The total energy is a constant of motion.

7. If mmoves in a circular orbit of radius a about M, where M >> m, the total energy of the
system is

GMm
2a

with the choice of the arbitrary constant in the potential energy given in the point 5.,
above. The total energy is negative for any bound system, that is, one in which the orbit
is closed, such as an elliptical orbit. The kinetic and potential energies are

E=-

e B
2a
V:_GMm
a

8. The escape speed from the surface of the Earth is

_ 26 Mg
Ve = RE = 2gRE

and has a value of 11.2 km s™.

9. If a particle is outside a uniform spherical shell or solid sphere with a spherically
symmetric internal mass distribution, the sphere attracts the particle as though the
mass of the sphere or shell were concentrated at the centre of the sphere.

10.If a particle is inside a uniform spherical shell, the gravitational force on the particle is
zero. If a particle is inside a homogeneous solid sphere, the force on the particle acts
toward the centre of the sphere. This force is exerted by the spherical mass interior to
the particle.

11. A geostationary (geosynchronous communication) satellite moves in a circular orbit in
the equatorial plane at a approximate distance of 4.22 x 10* km from the Earth’s centre.
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Physical Quantity | Symbol | Dimensions | Unit | Remarks

Gravitational Constant G M L°T?] N m’kg® 6.67x10"
Gravitational Vir) M L*T7 J GMm
Potential Energy —
(scalar)
Gravitational Ulr) [L’T] J kg™ GM
Potential ~
(scalar)
Gravitational E [LT™] ms” GM .
Intensity or g 2T
(vector)

POINTS TO PONDER

1. In considering motion of an object under the gravitational influence of another object
the following quantities are conserved:
(a) Angular momentum
(b) Total mechanical energy
Linear momentum is not conserved

2. Angular momentum conservation leads to Kepler’'s second law. However, it is not special
to the inverse square law of gravitation. It holds for any central force.

3. In Kepler's third law (see Eq. (8.1) and T? = KsR’. The constant Ks is the same for all
planets in circular orbits. This applies to satellites orbiting the Earth [(Eq. (8.38)].

4. An astronaut experiences weightlessness in a space satellite. This is not because the
gravitational force is small at that location in space. It is because both the astronaut
and the satellite are in “free fall” towards the Earth.

5. The gravitational potential energy associated with two particles separated by a distance
ris given by

Gmm

V=- 2 + constant

r
The constant can be given any value. The simplest choice is to take it to be zero. With
this choice
Voo Gm, m,
r

This choice implies that V— 0 as r - . Choosing location of zero of the gravitational

energy is the same as choosing the arbitrary constant in the potential energy. Note that

the gravitational force is not altered by the choice of this constant.

6. The total mechanical energy of an object is the sum of its kinetic energy (which is always
positive) and the potential energy. Relative to infinity (i.e. if we presume that the potential
energy of the object at infinity is zero), the gravitational potential energy of an object is
negative. The total energy of a satellite is negative.

7. The commonly encountered expression mg h for the potential energy is actually an
approximation to the difference in the gravitational potential energy discussed in the
point 6, above.

8. Although the gravitational force between two particles is central, the force between two
finite rigid bodies is not necessarily along the line joining their centre of mass. For a
spherically symmetric body however the force on a particle external to the body is as if
the mass is concentrated at the centre and this force is therefore central.

9. The gravitational force on a particle inside a spherical shell is zero. However, (unlike a
metallic shell which shields electrical forces) the shell does not shield other bodies outside
it from exerting gravitational forces on a particle inside. Gravitational shielding is not
possible.
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EXERCISES

8.1 Answer the following :

(@) You can shield a charge from electrical forces by putting it inside a hollow conductor.
Can you shield a body from the gravitational influence of nearby matter by putting
it inside a hollow sphere or by some other means ?

(b) An astronaut inside a small space ship orbiting around the earth cannot detect
gravity. If the space station orbiting around the earth has a large size, can he hope
to detect gravity ?

(c) If you compare the gravitational force on the earth due to the sun to that due
to the moon, you would find that the Sun’s pull is greater than the moon’s pull.
(you can check this yourself using the data available in the succeeding exercises).
However, the tidal effect of the moon’s pull is greater than the tidal effect of sun.
Why ?

8.2 Choose the correct alternative :

(a) Acceleration due to gravity increases/decreases with increasing altitude.

(b) Acceleration due to gravity increases/decreases with increasing depth (assume
the earth to be a sphere of uniform density).

(c) Acceleration due to gravity is independent of mass of the earth/mass of the body.

(d) The formula -GMm(1/r, — 1/r;) is more/less accurate than the formula
mg(r, — r)) for the difference of potential energy between two points r, and r, distance
away from the centre of the earth.

8.3 Suppose there existed a planet that went around the sun twice as fast as the earth.
What would be its orbital size as compared to that of the earth ?

8.4 o, one of the satellites of Jupiter, has an orbital period of 1.769 days and the radius
of the orbit is 4.22 x 10® m. Show that the mass of Jupiter is about one-thousandth
that of the sun.

8.5 Let us assume that our galaxy consists of 2.5 x 10*! stars each of one solar mass. How
long will a star at a distance of 50,000 ly from the galactic centre take to complete one
revolution ? Take the diameter of the Milky Way to be 10° ly.

8.6 Choose the correct alternative:

(a) If the zero of potential energy is at infinity, the total energy of an orbiting satellite
is negative of its kinetic/potential energy.

(b) The energy required to launch an orbiting satellite out of earth’s gravitational
influence is more/less than the energy required to project a stationary object at
the same height (as the satellite) out of earth’s influence.

8.7 Does the escape speed of a body from the earth depend on (a) the mass of the body, (b)
the location from where it is projected, (c) the direction of projection, (d) the height of
the location from where the body is launched?

8.8 A comet orbits the sun in a highly elliptical orbit. Does the comet have a constant (a)
linear speed, (b) angular speed, (c) angular momentum, (d) kinetic energy, (e) potential
energy, (f) total energy throughout its orbit? Neglect any mass loss of the comet when
it comes very close to the Sun.

8.9 Which of the following symptoms is likely to afflict an astronaut in space (a) swollen
feet, (b) swollen face, (c) headache, (d) orientational problem.

8.10 In the following two exercises, choose the correct answer from among the given ones:
The gravitational intensity at the centre of a hemispherical shell of uniform mass
density has the direction indicated by the arrow (see Fig 8.12) (i) a, (ii) b, (iii) ¢, (iv) O.

Fig. 8.12
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8.11 For the above problem, the direction of the gravitational intensity at an arbitrary
point P is indicated by the arrow (i) d, (i) e, (iii) f, (iv) g.

8.12 Arocket is fired from the earth towards the sun. At what distance from the earth’s
centre is the gravitational force on the rocket zero ? Mass of the sun = 2x10%° kg,
mass of the earth = 6x10** kg. Neglect the effect of other planets etc. (orbital radius
=1.5x 10 m).

8.13 How will you ‘weigh the sun’, that is estimate its mass? The mean orbital radius of
the earth around the sun is 1.5 x 10® km.

8.14 A saturn year is 29.5 times the earth year. How far is the saturn from the sun if the
earth is 1.50 x 10® km away from the sun ?

8.15 A body weighs 63 N on the surface of the earth. What is the gravitational force on it
due to the earth at a height equal to half the radius of the earth ?

8.16 Assuming the earth to be a sphere of uniform mass density, how much would a body
weigh half way down to the centre of the earth if it weighed 250 N on the surface ?

8.17 Arocket is fired vertically with a speed of 5 km s from the earth’s surface. How far
from the earth does the rocket go before returning to the earth ? Mass of the earth
= 6.0 x 10** kg; mean radius of the earth = 6.4 x 10°m; G = 6.67 x 10" N m?kg=2.

8.18 The escape speed of a projectile on the earth’s surface is 11.2 km s*. A body is
projected out with thrice this speed. What is the speed of the body far away from the
earth? Ignore the presence of the sun and other planets.

8.19 A satellite orbits the earth at a height of 400 km above the surface. How much
energy must be expended to rocket the satellite out of the earth’s gravitational
influence? Mass of the satellite = 200 kg; mass of the earth = 6.0x10%** kg; radius of
the earth = 6.4 x 10°m; G = 6.67 x 10 N m?kg=.

8.20 Two stars each of one solar mass (= 2x10%° kg) are approaching each other for a head
on collision. When they are a distance 10° km, their speeds are negligible. What is
the speed with which they collide ? The radius of each star is 10* km. Assume the
stars to remain undistorted until they collide. (Use the known value of G).

8.21 Two heavy spheres each of mass 100 kg and radius 0.10 m are placed 1.0 m apart
on a horizontal table. What is the gravitational force and potential at the mid point
of the line joining the centres of the spheres ? Is an object placed at that point in
equilibrium? If so, is the equilibrium stable or unstable ?

Additional Exercises

8.22 Asyou have learnt in the text, a geostationary satellite orbits the earth at a height of
nearly 36,000 km from the surface of the earth. What is the potential due to earth’s
gravity at the site of this satellite ? (Take the potential energy at infinity to be zero).
Mass of the earth = 6.0x10?* kg, radius = 6400 km.

8.23 A star 2.5 times the mass of the sun and collapsed to a size of 12 km rotates with a
speed of 1.2 rev. per second. (Extremely compact stars of this kind are known as
neutron stars. Certain stellar objects called pulsars belong to this category). Will an
object placed on its equator remain stuck to its surface due to gravity ? (mass of the
sun = 2x10% kg).

8.24 A spaceship is stationed on Mars. How much energy must be expended on the
spaceship to launch it out of the solar system ? Mass of the space ship = 1000 kg;
mass of the sun = 2x10% kg; mass of mars = 6.4x10% kg; radius of mars = 3395 km;
radius of the orbit of mars = 2.28 x10® km; G = 6.67x10*' N m? kg=2.

8.25 A rocket is fired ‘vertically’ from the surface of mars with a speed of 2 km s™. If 20%
of its initial energy is lost due to martian atmospheric resistance, how far will the
rocket go from the surface of mars before returning to it ? Mass of mars = 6.4x10%*
kg; radius of mars = 3395 km; G =6.67x10"* N m?*kg=.
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APPENDIX A1l
THE GREEK ALPHABET

Alpha A o lota I 1+ Rho P p
Beta B B Kappa K « Sigma X o
Gamma T y Lambda A A Tau T =
Delta A 8§ Mu M p Upsilon Y v
Epsilon E ¢ Nu N v Phi (OO0}
Zeta Z ¢ Xi E & Chi X ¥
Eta H 1 Omicron O o Psi Y vy
Theta ® 0 Pi II n Omega Q o

APPENDIX A 2
COMMON SI PREFIXES AND SYMBOLS FOR MULTIPLES AND SUB-MULTIPLES

Factor Prefix Symbol Factor Prefix symbol
10" Exa E 107" atto  a

10" Peta P 107°  femto f

10" Tera T 107 pico  p

10° Giga G 107° nano n

10° Mega M 10°° micro  p

10° kilo  k 107 mili @ m

10? Hecto h 1072 centi ©

10 Deca  da 107 deci d




204

PHYSICS

APPENDIX A3

SOME IMPORTANT CONSTANTS

Name

Speed of light in vacuum

Charge of electron
Gravitational constant

Planck constant
Boltzmann constant

Avogadro number

Universal gas constant

Mass of electron
Mass of neutron

Mass of proton

Electron-charge to mass ratio  e/m

Faraday constant

Rydberg constant
Bohr radius

Stefan-Boltzmann constant

Wien's Constant

Permittivity of free space

Permeability of free space

Symbal

¢ 2.9979x10° ms”
e 1.602 x 107" C
G 6.673x 107" N'm? kg™
h 6.626 x107*J s
k 1.381 x 1072 7K™
N, 6.022 x 10*mol '
R 8.314 J mol 'K
m, 9.110 x10”" kg
My, 1.675 x 107 kg
my 1.673 x 107 kg
] 1.759 x 10" C/kg
F 9.648 x 10* C/mol
R 1.097 x 10’ m"'
a, 5292 x10 "'m
o 5670x10° Wm® K*
b 2.898 x10° mK
€ 8.854x102C* N'm”
1/4m ey 8987 x10° Nm’C”
i, 4t x 10’ Tm A"

=1257x10°WbA'm"

Other useful constants

Name Symbol
Mechanical equivalent of heat J
Standard atmospheric pressure 1 atm
Absolute zero 0K
Electron volt eV
Unified Atomic mass unit lu
Electron rest energy mc’
Energy equivalent of 1 u luc?
Volume of ideal gas(0 “C and 1atm) \Y
Acceleration due to gravity g

(sea level, at equator)

Value

4.186 J cal™
1.013 x 10°Pa
—-273.15°C
1.602x 107
1.661 x 10 kg
0.511 MeV
931.5 MeV
224 L mol™

9.78049 m s 2
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APPENDIX A4
CONVERSION FACTORS

Conversion factors are written as equations for simplicity.

Length

1 km = 0.6215 mi

1mi = 1.609 km

Im = 1.0936 yd = 3.281 ft = 39.37 in
1in=2.54 cm

1ft=12in=30.48 cm

1 yd =3ft =91.44 cm

1 lightyear = 1 ly = 9.461 x 10'°m

1 A=0.1nm

Area

1 m?=10* cm?

1km? = 0.3861 mi® = 247.1 acres

1 in’= 6.4516 cm?

1ft?>= 9.29 x 10 %m?

1 m?= 10.76 ft?

1 acre = 43,560 ft?

1 mi%= 460 acres = 2.590 km?
Volume

1m3= 10%m3

1 L=1000cm®=10°m?

1 gal=3.786 L

1 gal=4qt =8 pt =128 oz = 231 in®
1 in® = 16.39 cm®

1ft> = 1728 in® = 28.32 L = 2.832 x 10* cm®
Speed

l1kmh'!=0.2778 ms'=0.6215mih’
Imih!=0.4470ms ! =1.609 km h'!
Imih!=1467fts!

Magnetic Field

1G=10"T

1T=1Wbm?=10'G

Angle and Angular Speed

nrad = 180

1 rad = 57.30°

1'=1.745 x 102 rad

1 revmin ! =0.1047 rad s}

1 rad s ! = 9.549 rev min

Mass

1 kg=1000g

1 tonne = 1000 kg = 1 Mg

1 u=1.6606x 10?% kg

1 kg = 6.022 x 10*°u

1 slug = 14.59 kg

1 kg = 6.852 x 10 % slug

1 u=931.50 MeV/c?

Density

1gem®=1000kgm>=1kgL!

Force

1 N = 0.2248 Ibf = 10° dyn

1 Ibf = 4.4482 N

1 kgf = 2.2046 Ibf

Time

1 h =60 min = 3.6 ks

1 d=24h = 1440 min = 86.4 ks

ly =365.24 d = 31.56 Ms

Pressure

1Pa=1Nm?

1 bar = 100 kPa

1 atm = 101.325 kPa = 1.01325 bar

latm = 14.7 Ibf/in? = 760 mm Hg
= 29.9in Hg = 33.8 ft H,O

1 Ibf in ?= 6.895 kPa

1 torr = Imm Hg = 133.32 Pa
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Energy

1kWh=23.6MJ

1cal=4.186J

1ft Ibf = 1.356 J = 1.286 x 10 Btu

1 Latm=101.325J

1 Latm=24.217 cal

1 Btu=778 ft Ib = 252 cal = 1054.35 J
1eV=1.602x10'°J

1 uc®=931.50 MeV

Power
1 horsepower (hp) = 550 {t Ibf/s
=745.7W
1 Btumin!=17.58 W
1W=1.341x10"° hp
= 0.7376 ft Ibf/s
Thermal Conductivity
1 Wm 'K =6.938 Btu in/hft? °F
1 Btuin/hft’ °F=0.1441 W/m K

lerg=10"J
APPENDIX A5
MATHEMATICAL FORMULAE

Geometry sing=Y cos =2
Circle of radius r: circumference = 2nr; r r
area = nr? tano=Y  coto=2
Sphere of radius r: area = 4nr’; * J

4 sec 6= r csc o= I
volume = 3" r X y
Right circular cylinder of radius r Pythagorean Theorem

and height h: area = 2n P +on T h;

volume =7 rh;
Triangle of base a and altitude h.

1
area=— ah
2

Quadratic Formula

If a +bx+c=0,

—btyb% —dac

then x=
2a
Trigonometric Functions of Angle 6
y axis
r y
0 :
0 X X axis
Fig. A 5.1

In this right triangle, a® + b? = ¢?

b
Fig. A 5.2

Triangles
Angles are A, B, C

Opposite sides are a, b, ¢
Angles A + B + C = 180°

sinA sinB sinC

a b c

?=a%+b*-2ab cos C
Exterior angle D=A +C
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C

Fig. A 5.3

Mathematical Signs and Symbols

= equals

= equals approximately

~ is the order of magnitude of

# is not equal to

= is identical to, is defined as

> is greater than (>> is much greater than)

< is less than (<< is much less than)

> is greater than or equal to (or, is no less
than)

<is less than or equal to (or, is no more
than)

+ plus or minus

o< is proportional to

2. the sum of

% Or <Xx> or x,, the average value of x

Trigonometric Identities

sin (90°-9) = cos 0

cos (90° - 0) = sin 6

sin 6/ cos 6 = tan 6

sin®  + cos? 9 =1

sec? @ -tan® =1

csc®f-cot’ 0 =1

sin2 # = 2 sin fcos 6

cos2 0 = cos® #—sin® @ = 2cos? -1
=1-2sin’0

sin(e+ ) = sin @ cos B + cos a sin f

cos (= ) =cos acos f T sin asin B

(o2 ) - - fettont,

1 1
sin a+sin f = 2sin§(oc 1 B) cosa(oc 7 B)

cos o+ cos B
=2 cosl(a+ﬁ) cosl(a— B)
2 2

cos o —cos f

o1 1
=2 51n§(0c+[3) SIHE(OC_B)

Binomial Theorem

_ 2
%JFHJF ..... x2 <1)

n _
lxx)" =1+ o

2
4D 2 DX n(n + 1)x
20" =159 =

Exponential Expansion

2 3
X X
e =l+x+—+—+.....

23
Logarithmic Expansion
In (1+x) = x- éx2+ —x%-... (|X|<1)

Trigonometric Expansion

(0 in radians)

. 6> 6°
Sln9=9—§+g— .....
6> o*
COSB=1—§+E— .....
63  26°
tan H—H‘F?‘Fﬁ— .....

Products of Vectors

Let i, jand k be unit vectors in the x, y and z
directions. Then

iri=jj=kk=11ij=jk=ki=0
ixi:]x]:ﬁxﬁzo,ix]:ﬁ,]xﬁ:i,ﬁxi:]

Any vector a with components a,, a,, and a,
along the x,y, and z axes can be written,

a=a,i+aj+ak
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Let a, b and ¢ be arbitary vectors with
magnitudes a, b and c¢. Then

ax(b+c)=(axb)+(axc)

(sa) xb =ax(sb) =s(axb) (s is a scalar)

Let 6 be the smaller of the two angles
between a and b. Then

a-b=b-a=a;b,+ayby, +a,b, =abcosé

|a><b| =absiné
i
axb=-bxa=|a,
b

X

= (aybz - byaz) i+(ab, -ba)j+ (axby - bxay) k

(:c‘ (EQ Cdo?
N@‘ NQ -

a-(bxc)=b- (cxa)=c-(axb)
ax(bxc)=(a-c)b-(a-b)c

APPENDIX A 6
SI DERIVED UNITS
A 6.1 Some SI Derived Units expressed in SI Base Units

Physical quantity | SiUmt |
Area square metre m?2

Symbol

Volume

Speed, velocity
Angular velocity
Acceleration
Angular acceleration

Wave number
Density, mass density

Current density

density

substance)

Specific volume
illumination
Kinematic viscosity

Momentum

Moment of inertia
Radius of gyration

expansivities
Flow rate

Magnetic field strength, magnetic
intensity, magnetic moment

Concentration (of amount of

Luminance, intensity of

Linear/superficial/volume

cubic metre

metre per second
radian per second
metre per second
square

radian per second
square

per metre
kilogram per cubic
metre

ampere per square
metre

ampere per metre

mole per cubic metre

cubic metre per
kilogram

candela per square
metre

square metre per
second

kilogram metre per
second

kilogram square metre
metre

per kelvin

cubic metre per
second

m3

m/s or m s-!
rad/s or rad s-!
m/s2orms 2
rad/s?2 or rad s-2

m-1
kg/m3 or kg m-3

A/m?2 or A m-2

A/m or A m-!

mol/m3 or mol m-3
m3/kg or m3 kg-!
cd/m?2 or cd m-2
m2/s or m?2 s-!

kg m s-1

kg m?2

m

K-1

m3 s-1
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A 6.2 SI Derived Units with special names

Physical quantity

Frequency
Force

Pressure, stress

Energy, work, quantity of
heat

Power, radiant flux

Quantity of electricity,
electric charge
Electric potential,
potential difference,
electromotive force
Capacitance

Electric resistance
Conductance
Magnetic flux

Magnetic field, magnetic
flux density, magnetic
induction

Inductance

Luminous flux, luminous
power

Iluminance
Activity (of a radio
nuclide/radioactive
source)

Absorbed dose, absorbed
dose index

hertz Hz
newton N
pascal Pa
joule J
watt W
coulomb C
volt Vv
farad F
ohm Q
siemens S
weber Wb
tesla T
henry H
lumen Im
lux Ix

becquerel Bq

gray Gy

Expression in
terms of other
units

N/m?2 or N m-2
N m

J/s ordJ s-!

W/A or W A-1

C/V

V/A

A/V
VsorJ/A
Wb /m?2

Whb/A

Im/m?2

J/kg

Expression in
terms of SI
base Units

§-1
kg m s2 or
kg m/s2

kg m-1s2 or
kg /s2m

kg m2 s2or
kg m2/s2

kg m?2 s-3or
kg m2/s3
As

kg m2s-3 A-1 or
kg m2/s3 A

A2 s* kg-1 m-2
kgm?2s -3 A2
m2kg-1s3 A2
kg m2 s2 A-l
kg s2 Al

kg m2 s2 A2
cd /sr

m-2 cd sr-!

s-1

m2/s2or m2s-2

Physical quantity

Magnetic moment
Dipole moment
Dynamic viscosity

Torque, couple, moment
of force

Surface tension

Power density,
irradiance, heat flux
density

Name

joule per tesla
coulomb metre
poiseiulles or pascal
second or newton
second per square
metre

newton metre

newton per metre
watt per square metre

Symbol

JT"
Cm
Pl or Pa s or
N s m”

N m

N/m
W/m’

A 6.3 Some SI Derived Units expressed by means of SI Units with special names

Expression in
terms of SI
base units

sAm
m' kg s’

m’ kg s

kg s’
kg s
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Heat capacity, entropy  joule per kelvin J/K m’ kg s* K'
Specific heat capacity, joule per kilogram J/kg K m’s” K"
specific entropy kelvin
Specific energy, latent joule per kilogram J/kg m’ s?
heat
Radiant intensity watt per steradian W sr' kg m’ s sr’’
Thermal conductivity watt per metre kelvin Wm'K' mkgs®K'
Energy density joule per cubic metre J/m’ kgm's”®
Electric field strength volt per metre V/m mkgs® A’
Electric charge density  coulomb per cubic Cc/m’ m°As
metre
Electric flux density coulomb per square C/m’ m>*As
metre
Permittivity farad per metre F/m m®° kg s' A
Permeability henry per metre H/m m kg s* A”?
Molar energy joule per mole J/mol m” kg s mol"
Angular momentum, joule second Js kg m® s
Planck’s constant
Molar entropy, molar joule per mole kelvin J/mol K m® kg s® K'
heat capacity mol™
Exposure (x-rays and coulomb per kilogram C/kg kg's A
y-rays)
Absorbed dose rate gray per second Gy/s m’s”®
Compressibility per pascal Pa’ mkg' s’
Elastic moduli newton per square N/m’orNm® kgm's?
metre
Pressure gradient pascal per metre Pa/mor Nm~® kgm®s”
Surface potential joule per kilogram J/kg or m’s”
N m/kg
Pressure energy pascal cubic metre Pam’orNm kgm®s®
Impulse newton second N s kg m s
Angular impulse newton metre second Nm s kg m’ s’
Specific resistance ohm metre Qm kg m’s® A”®
Surface energy joule per square metre J/m’or N/m kgs”

APPENDIX A7
GENERAL GUIDELINES FOR USING SYMBOLS FOR PHYSICAL QUANTITIES, CHEMICAL
ELEMENTS AND NUCLIDES

Symbols for physical quantities are normally single letters and printed in italic (or sloping) type.
However, in case of the two letter symbols, appearing as a factor in a product, some spacing is
necessary to separate this symbol from other symbols.

Abbreviations, i.e., shortened forms of names or expressions, such as p.e. for potential energy,
are not used in physical equations. These abbreviations in the text are written in ordinary
normal/roman (upright) type.

Vectors are printed in bold and normal/roman (upright) type. However, in class room situations,
vectors may be indicated by an arrow on the top of the symbol.

Multiplication or product of two physical quantities is written with some spacing between them.
Division of one physical quantity by another may be indicated with a horizontal bar or with
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solidus, a slash or a short oblique stroke mark (/) or by writing it as a product of the
numerator and the inverse first power of the denominator, using brackets at appropriate
places to clearly distinguish between the numerator and the denominator.

e Symbols for chemical elements are written in normal/roman (upright) type. The symbol is
not followed by a full stop.
For example, Ca, C, H, He, U, etc.

e The attached numerals specifying a nuclide are placed as a left subscript (atomic number)
and superscript (mass number).

For example, a U-235 nuclide is expressed as 2;§U (with 235 expressing the mass number

and 92 as the atomic number of uranium with chemical symbol U).
e The right superscript position is used, if required, for indicating a state of ionisation (in
case of ions).

For example, Ca**, PO}~

APPENDIX A8

GENERAL GUIDELINES FOR USING SYMBOLS FOR SI UNITS, SOME OTHER UNITS, AND
SI PREFIXES

e Symbols for units of physical quantities are printed /written in Normal/Roman (upright) type.

e Standard and recommended symbols for units are written in lower case roman (upright)

type, starting with small letters. The shorter designations for units such as kg, m, s, cd,
etc., are symbols and not the abbreviations. The unit names are never capitalised. However,
the unit symbols are capitalised only if the symbol for a unit is derived from a proper name
of scientist, beginning with a capital, normal/roman letter.

For example, m for the unit ‘metre’, d for the unit ‘day’, atm for the unit ‘atmospheric
pressure’, Hz for the unit ‘hertz’, Wb for the unit ‘weber’, J for the unit joule’, A for the unit
‘ampere’, V for the unit ‘volt’, etc. The single exception is L, which is the symbol for the
unit ‘litre’. This exception is made to avoid confusion of the lower case letter 1 with the
Arabic numeral 1.

e Symbols for units do not contain any final full stop at the end of recommended letter and

remain unaltered in the plural, using only singular form of the unit.
For example, for a length of 25 centimetres the unit symbol is written as 25 cm
and not 25 cms or 25 cm. or 25 cms., etc.

e Usec ofsolidus ( /) is recommended only for indicating a division of one letter unit symbol by

another unit symbol. Not more than one solidus is used.

For example :

m/s? or m s 2 (with a spacing between m and s2) but not m/s/s;
1PI=1Nsm 2=1Ns/m?=1 kg/s m=1 kg m s, but not 1 kg/m/s;
J/K mol or J K mol!, but not J/K/mol; etc.

e Prefix symbols are printed in normal/roman (upright) type without spacing between the

prefix symbol and the unit symbol. Thus certain approved prefixes written very close to the
unit symbol are used to indicate decimal fractions or multiples of a SI unit, when it is
inconveniently small or large.

For example :

megawatt ( 1MW = 10°W); nanosecond (1 ns = 10 9s);
centimetre (1 cm = 102 m); picofarad (1 pF = 102 ..
Kilometre (1 km = 103 m); microsecond (1us = 10%s):

millivolt (1 mV= 1073 V); gigahertz (1GHz = 10° Hz);
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kilowatt-hour (1 kWh=10°Wh=3.6 MJ = 3.6 x 10°J);
microampere (1pA= 10%A); micron (1 um = 10 %m);
angstrom (1 A=0.1 nm = 10"'°m); etc.

The unit ‘micron’ which equals 10°° m, i.e. a micrometre, is simply the name given to
convenient sub-multiple of the metre. In the same spirit, the unit ‘fermi’, equal to a
femtometre or 10'° m has been used as the convenient length unit in nuclear studies.
Similarly, the unit ‘barn’, equal to 10 2® m?, is a convenient measure of cross-sectional
areas in sub-atomic particle collisions. However, the unit ‘micron’ is preferred over the
unit ‘micrometre’ to avoid confusion of the ‘micrometre’ with the length measuring
instrument called ‘micrometer’. These newly formed multiples or sub-multiples (cm, km,
um, us, ns) of SI units, metre and second, constitute a new composite inseparable symbol
for units.

When a prefix is placed before the symbol of a unit, the combination of prefix and symbol is

considered as a new symbol, for the unit, which can be raised to a positive or negative
power without using brackets. These can be combined with other unit symbols to form
compound unit. Rules for binding-in indices are not those of ordinary algebra.

For example :

cm® means always (cm)®=(0.01 m)®= (10 2m)®= 10 "°m?, but never 0.01 m® or

102 m?® or 1cm® (prefix ¢ with a spacing with m® is meaningless as prefix c is to be attached
to a unit symbol and it has no physical significance or independent existence without
attachment with a unit symbol).

Similarly, mA? means always (mA)?= (0.001A)%2 = (102 A)?2 =10° A?, but never 0.001 A2 or
10° A% or m A%

lem!'=(102%m) '=10°m !, butnot lem ' or 102m';

lus_1 means always (10%)1=10°s !, but not 1 x 10 %s7!;

1 km? means always (km)? = (10° m)?=10° m?, but not 10° m?;

1mm? means always (mm)?= (10 °m)?=10 ®*m?, but not 103 m?.

A prefix is never used alone. It is always attached to a unit symbol and written or fixed

before (pre-fix) the unit symbol.

For example :

10%/m® means 1000/m> or 1000 m 3, but not k/m> or k m 3.

10°%/m® means 10,00,000/m> or 10,00,000 m 3, but not M/m3 or M m 3

Prefix symbol is written very close to the unit symbol without spacing between them, while
unit symbols are written separately with spacing when units are multiplied together.

For example :

m s’! (symbols m and s !, in lower case, small letter m and s, are separate and independent
unit symbols for metre and second respectively, with spacing between them) means ‘metre
per second’, but not ‘milli per second’.

Similarly, ms ™! [symbol m and s are written very close to each other, with prefix symbol m
(for prefix milli) and unit symbol s, in lower case, small letter (for unit ‘second’) without
any spacing between them and making ms as a new composite unit] means ‘per millisecond’,
but never ‘metre per second’.

mS '[symbol m and S are written very close to each other, with prefix symbol m (for prefix
milli) and unit symbol S, in capital roman letter S (for unit ‘siemens’) without any spacing
between them, and making mS as a new composite unit] means ‘per millisiemens’, but
never ‘per millisecond’.

Cm [symbol C and m are written separately, representing unit symbols C (for unit ‘coulomb’)
and m (for unit ‘metre’), with spacing between them] means ‘coulomb metre’, but never
‘centimetre’, etc.

The use of double prefixes is avoided when single prefixes are available.
For example :
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10 °m = 1nm (nanometre), but not 1m um (millimicrometre),
10%m=1 um (micron), but not Immm(millimillimetre),

10 2F=1 PF (picofarad), but not 1upF (micromicrofarad),
109W=1 GW (giga watt), but not 1 kMW (kilomegawatt), etc.

e The use of a combination of unit and the symbols for units is avoided when the physical quantity

is expressed by combining two or more units.

For example :

joule per mole kelvin is written as J/mol K or J mol'! K'!, but not joule/mole K or
J/ mol kelvin or J/mole K, etc.

joule per tesla is written as J/T or J T™!, but not joule /T or J per tesla or J/tesla, etc.

newton metre second is written as N m s, but not Newton m second or N m second or N metre s
or newton metre s, etc.

joule per kilogram kelvin is written as J/kg K or J kg ! K!, but not J /kilog K or joule /kg K or J/
kg kelvin or J /kilogram K, etc.

¢ To simplify calculations, the prefix symbol is attached to the unit symbol in the numerator and

not to the denominator.

For example :

10 N/m? is written more conveniently as MN/ m?, in preference to N/ mm?.

A preference has been expressed for multiples or sub-multiples involving the factor 1000, 1
where n is the integer.

OiSH

e Proper care is needed when same symbols are used for physical quantities and units of physical

quantities.

For example :

The physical quantity weight (W) expressed as a product of mass (m) and acceleration due to
gravity (g) may be written in terms of symbols W, mand g printed in italic ( or sloping) type as W
= m g, preferably with a spacing between m and g. It should not be confused with the unit
symbols for the units watt (W), metre (m) and gram (g). However, in the equation W=m g, the
symbol W expresses the weight with a unit symbol J, m as the mass with a unit symbol kg and
gas the acceleration due to gravity with a unit symbol m/s?. Similarly, in equation F=m a, the
symbol Fexpresses the force with a unit symbol N, m as the mass with a unit symbol kg, and a
as the acceleration with a unit symbol m/s?. These symbols for physical quantities should not
be confused with the unit symbols for the units ‘farad’ (F), ‘metre’(m) and ‘are’ (a).

Proper distinction must be made while using the symbols h (prefix hecto, and unit hour), ¢
(prefix centi, and unit carat), d (prefix deci and unit day), T (prefix tera, and unit tesla), a (prefix
atto, and unit are), da (prefix deca, and unit deciare), etc.

e Sl base unit ‘kilogram’ for mass is formed by attaching SI prefix (a multiple equal to 10°) ‘kilo’ to

a cgs (centimetre, gram, second) unit ‘gram’ and this may seem to result in an anomaly. Thus,
while a thousandth part of unit of length (metre) is called a millimetre (mm), a thousandth part
of the unit of mass (kg) is not called a millikilogram, but just a gram. This appears to give the
impression that the unit of mass is a gram (g) which is not true. Such a situation has arisen
because we are unable to replace the name ‘kilogram’ by any other suitable unit. Therefore, as
an exception, name of the multiples and sub-multiples of the unit of mass are formed by attaching
prefixes to the word ‘gram’ and not to the word ‘kilogram’.

For example :

10° kg =1 megagram ( 1Mg), but not 1 kilo kilogram (1 kkg);

10 °kg = 1 milligram ( 1 mg), but not 1 microkilogram ( 1pkg);

10 kg = 1 gram (1g), but not 1 millikilogram (1 mkg), etc.

It may be emphasised again that you should use the internationally approved and recommended
symbols only. Continual practice of following general rules and guidelines in unit symbol writing
would make you learn mastering the correct use of SI units, prefixes and related symbols for physical
quantities in a proper perspective.
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APPENDIX A9
DIMENSIONAL FORMULAE OF PHYSICAL QUANTITIES

Dimensional
formula

Dimensions

Physical quantity

Relationship with other
physical quantities

10.

11.

12.

13.

14.

15

16.

17.

18.

19.

20.

21.

22.

23.

Area

Volume

Mass density
Frequency
Velocity, speed
Acceleration
Force

Impulse

Work, Energy
Power
Momentum
Pressure, stress

Strain

Modulus of elasticity

Surface tension
Surface energy
Velocity

gradient

Pressure gradient
Pressure energy

Coefficient of
viscosity

Angle, Angular
displacement

Trigonometric ratio
(sinb, cosb, tanb, etc.)

Angular velocity

Length x breadth

Length x breadth x height

Mass/volume
1/time period
Displacement/time
Velocity /time

Mass X acceleration
Force x time

Force X distance
Work/time

Mass x velocity
Force/area

Change in dimension

Oringinal dimension

Stress/strain

Force/length
Energy/area

Velocity/distance

Pressure/distance
Pressure x volume

Force/area x velocity
gradient

Arc/radius

Length/length

Angle/time

[L%]

(L]

[MJ[L*] or [ML7]
1/[T]

[LVT]

[LT 'J/[T]
[M][LT ]

[M LT ][T]
[MLT “] [L]

[ML’ T}/ [T]

[M] [LT ]

[M LT?)/[L?]
[L]/[L] or [L']/[L]
ML T2
M°LOT?)

[MLT ~*J/[L]
[ML?T*)/[L*]

[LT VL]
[ML™ T J/[L]
[ML™T~] [L]

[MLT 2
[L2ILT ! /1)

[L°V[T]

M° L% T
ML T
[ML T
ML T
M'LT]
[MLT *]
[MLT’]
[MLT"]
ML’ T?
ML*T"]
[MLT ']
[ML 'T?]

[M °L° T°]
[ML'T %
ML’ T2

[ML°T~2]

M°LOT Y
[ML’T 7]
[ML? T2]
[ML 'T™
M°L°TY)
M°L°T)

[MOLOTfl ]
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21°F

24.

25.

26.

27.

28.

29.

30.

31.

32.

33.

34.

35.

36.

37.

38.

39.

40

41.

42.

43.

44,

45.

Angular acceleration

Radius of gyration

Moment of inertia

Angular momentum

Moment of force,

moment of couple

Torque

Angular frequency
Wavelength
Hubble constant
Intensity of wave

Radiation pressure

Energy density

Critical velocity

Escape velocity
Heat energy, internal
energy

Kinetic energy
Potential energy

Rotational kinetic

energy

Efficiency

Angular impulse

Gravitational

constant

Planck constant

Angular velocity/time [T [T]

Distance [L]

Mass X (radius of gyration ~ [M] [L’]

Moment of inertia x angular ~ [ML’] [T ]
velocity

Force x distance [MLT ] [L]
Angular momentum/time, [ML® T']/[T]
Or or
Force x distance [MLT*][L]
27 x Frequency [T']
Distance [L]
Recession speed/distance [LT')/[L]
(Energy/time)/area [ML* T*/T)/[L*]
Intensity of wave [MT /LT "]
Speedof light
Energy/volume [ML T/ [L"]
Reynold's number x coefficient of viscocity — MOLOTO| ML T ]
Mass density x radius ML 3][L]
(2 x acceleration due to [LT*]" x [L]"?

gravity x earth’s radius) '

Work (= Force x distance) [MLT* ][L]

(1/2) mass x (velocity) * [M] [LT ']
Mass x acceleration [M] [LT® ] [L]
due to gravity x height
Y5 x moment of inertia X [M°L°T] [ML? X[T™']’
(angular velocity)?
Output work or energy ML’ T ]

Input work or energy [ML* T ]
Torque X time [ML’ T7] [T]
Force x (distance)? [MLT *][L’]

mass X mass M] [M]

Energy/frequency ML’ T7] /[T]

[MO LO TfZ]

[M°LT]
[ML* T°]

[ML* T']

ML T? ]

[ML’ T 7]

[M'L'T ']
[M'LT’]
[M'L'T ']
[ML'T ]

[ML'T?]

[ML'T?]

[M°LT ']

[M°LT ']

[ML? T"]

[ML*T?]

ML’ T?]

[ML*T?]

[M°L’T"]

ML T']

[M1L3 TfZ]

[ML’T "]
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46.

47.

48.

49.

50.

51.

52.

53.

54.

55.

56.

57.

58.

59.

60.

61.

62.

63.

64.

Heat capacity,
entropy

Specific heat capacity

Latent heat

Thermal expansion

coefficient or

Thermal expansivity

Thermal conductivity

Bulk modulus

or (compressibility) -

Centripetal
acceleration

Stefan constant

Wien constant

Boltzmann constant

Universal gas
constant

Charge
Current density

Voltage, electric
potential,

electromotive force

Resistance

Capacitance

Electrical
resistivity

or (electrical
conductivity)”

Electric field

Electric flux

Heat energy / temperature

Heat Energy
Mass x temperature

Heat energy/mass

Change in dimension

Original dimension x temperature

Heat energy x thickness

Area x temperature x time

Volume x (change in pressure)

(change in volume)

(Velocity)? /radius

(Energy / area x time)

(Temperatulre)4

Wavelength x temperature

Energy/temperature

Pressure x volume
mole x temperature

Current X time
Current /area

Work/charge

Potential difference

Current

Charge/potential difference

Resistance x area
length

Electrical force/charge

Electric field x area

ML’ T*)/[K]

[ML* T*)/[M] [K]

[ML* T°}/[M]

(L] /[L]K]

[ML’T ][]
[L*] [K] [T]

[C][ML'T 2]

[L]
[LT'T /L]

[ML” T7]
[L*][T] [KT

(L] [K]

[ML* T J/[K]

ML T?][L*]
[mol] [K]

[A][T]
[AT/IL]

[ML*T*)/[AT]

IML’T A"
[A]

[AT]

ML’ T A”]
[L’}[L]

[MLT *]/[AT]

[MLT A 'J[L*]

[ML*T’K ']

[M'L*T° K]
[M'L* T7]

[M°L'K™]

[MLT” K]

[ML" T7]

M’ LT?]
[ML’ T°K™
[M® LT°K]
[ML* T° K]
[ML* T K
mol ']
[M°L°TA]
[M'L” T°A]

[ML* T® A™]

[ML*T® A7)

[M—IL—Z T Az]

ML’ T* A”]

[MLT® A"]

[ML' T A™]
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65.

66.

67.

68.

69.

70.

71.

72

73.

74.

75.

76.

77.

78.

79.

Electric dipole
moment

Electric field strength
or electric intensity

Magnetic field,
magnetic flux density,
magnetic induction

Magnetic flux

Inductance

Magnetic dipole
moment

Magnetic field
strength, magnetic
intensity or magnetic
moment density

Permittivity constant
(of free space)

Permeability constant
(of free space)

Refractive index

Faraday
constant

Wave number

Radiant flux, Radiant
power

Luminosity of radiant Radiant power or radiant flus of source

flux or radiant
intensity

Luminous power or
luminous flux of
source

Torque/electric field

Potential difference
distance

Force
Current * length

Magnetic field x area

Magnetic flux
Current

Torque/magnetic field

or
current x area

Magnetic moment
Volume

Charge x charge

4 1t x electric force x (distance)2

2t x force x distance

current x current x length

Speed of light in vacuum

Speed of light in medium

Avogadro constant x
elementary charge

2m/wavelength

Energy emitted/time

[ML* T?]
[MLT® A™]
[ML*T® A™]
[L]

[MLT “V[A] [L]

[MT” A™] [L’]
[ML*T?A™]
[A]
[ML* T?]/[MT? A™]

or
[A][L]

[AT][AT]

[MLT2][L

ML T°J[MLT?][L]

Solid angle

Luminous energy emitted

time

[AJ[A][L]

[LT /LT

[AT}/[mol]

[M°L°T"] / [L]
[ML*T)/[T]

[ML*T]/ [M°L°T’]

[ML® T/[T]

[M’ LTA]

[MLT® A™]

[ML’ T*A™']

[ML*T?A™]

[ML*T? A7

[M'L’T°A]

[M°L'T’A]

[MIL—S T4 AZ]

[MLT™ A

[M'L°T’]

[M’L’TA mol ']

[MOLfl T(]]
[ML*T™]

[ML* T°]

[ML> T"]
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80.

81.

82.

83.

84.

85.

86.

87.

88.

89.

90.

91.

92.

93

94.

Luminous intensity or
illuminating power of
source

Intensity of
illumination or
luminance

Relative luminosity

Luminous efficiency

Illuminance or
illumination

Mass defect
Binding energy of
nucleus

Decay constant

Resonant frequency

Quality factor or Q-
factor of coil

Power of lens

Magnification

Fluid flow rate

Capacitive reactance

Inductive reactance

Luminous flux

Soild angle

Luminous intensity

(distam:e)2

Luminous flux of a source of
given wavelength

luminous flux of peak sensitivity
wavelength (555 nm) source of
same power

Total luminous flux

Total radiant flux

Luminous flux incident

area

(sum of masses of nucleons)-
(mass of the nucleus)

Mass defect x (speed of light
in vacuum)’

0.693/half life

1
(Inductance x capacitance) 2

Resonant frequency x inductance

Resistance

(Focal length)™

Image distance
Object distance

(n/8) (pressure)x (radius )4
(viscosity coefﬁcient)x (length)

(Angular frequency x
capacitance)”

(Angular frequency x
inductance)

ML’ T°]

[M’L°T"]

[ML> T[]

[ML’T"]

[ML’T ]

[ML* T°]/[ ML*T ]
MLATJ/[1]

M]

MI[LT'P

[T

IME2T2ATT x

1
MTLPT'A’ 2

[T [ML2T2A2]
[MET®A™%]

(L]

(L1/L]

[ML'T™? [L*Y
[ML T [LI]

[T—l]—l [M—l L—zT 4A2]—1

[T'[ML* T® A7)

[ML* T7]

[ML'T"]

[ML'T"]

[M'L'T’]
[ML'T]
[ML'T]

[ML® T7]

[ML'T ']

[MOLO AO T—l]

[ML'T"]

[MOLfl TO]

[ML'T"]

[M’L’T ]

ML’ T7 A7)

[ML* T® A7)




2.1
2.2
2.5
2.6
2.7
2.9

.11
.12
.13
14

N N NN

.15
.16
.17
.18

N N NN

2.19
2.20
2.23

2.24

ANSWERS

Chapter 2

(@) 10°; (b) 1.5x 10*; () 5:(d) 11.3, 1.13 x 10",
(a) 10”; (b) 10 ;(c) 3.9 x 10*; (d) 6.67 x 10°®.
500

()

0.035 mm

94.1

@1:;M0)3;0@4;4;()4;14.

8.72m? 0.0855 m?®

(@) 2.3kg; () 0.02¢g

13%; 3.8

(b) and (c) are wrong on dimensional grounds. Hint: The argument of a trigonometric
function must always be dimensionless.

The correct formula is m=m, (1 —v* /)™
3% 107" m®

n

n

10% intermolecular separation in a gas is much larger than the size of a molecule.

Near objects make greater angle than distant (far off) objects at the eye of the observer.
When you are moving, the angular change is less for distant objects than nearer objects.
So, these distant objects seem to move along with you, but the nearer objects in opposite
direction.

=3 x 10'°m; as a unit of length 1 parsec is defined to be equal to 3.084 x 10'° m.
1.32 parsec; 2.64” (second of arc)

1.4 x 10° kg m®; the mass density of the Sun is in the range of densities of liquids /
solids and not gases. This high density arises due to inward gravitational attraction
on outer layers due to inner layers of the Sun.

1.429 x 10° km



2.26
2.27

2.28
2.29
2.30
2.31
2.32
2.33

3.1
3.2
3.4
3.5
3.6
3.7
3.8
3.9
3.10

3.11

3.14

3.15

3.16

3.17

3.18

PHYSICS
Hint: tan 6 must be dimensionless. The correct formula is tan 6 = v/v ' where v'is the
speed of rainfall.
Accuracy of 1 part in 10" to 10"
= 0.7 x 10° kg m™®. In the solid phase atoms are tightly packed, so the atomic mass
density is close to the mass density of the solid.
=0.3 x 10"® kg m® - Nuclear density is typically 10'° times atomic density of matter.
3.84 x 10°m
55.8 km
2.8 x 10” km
3,581 km
Hint: the quantity ¢*/ (16 n° ef)mp m?c® G) has the dimension of time.
Chapter 3
(@, (b)
(a) A....B, (b) A....B, (c) B....A, (d) Same, (e) B....A....once.
37s
1000 km/h

3.06ms?;11.4s

1250 m (Hint: view the motion of B relative to A)

1 m s (Hint: view the motion of B and C relative to A)

T'=9 min, speed =40 km/h. Hint: vT/(v-20)=18;, vT/(v+20)=6

(a) Vertically downwards; (b) zero velocity, acceleration of 9.8 m s downwards;
(¢) x > O (upward and downward motion); v < O (upward), v > O (downward), a > O
throughout; (d) 44.1 m, 6 s.

(@) True;, (b) False; (c) True (if the particle rebounds instantly with the same speed, it
implies infinite acceleration which is unphysical); (d) False (true only when the chosen
positive direction is along the direction of motion)

@5kmh',5kmh: (10, 6knh": (¢ 2 kmh',* kmh'
8 8

Because, for an arbitrarily small interval of time, the magnitude of displacement is equal
to the length of the path.

All the four graphs are impossible. (a) a particle cannot have two different positions at
the same time; (b) a particle cannot have velocity in opposite directions at the same
time; (c) speed is always non-negative; (d) total path length of a particle can never
decrease with time. (Note, the arrows on the graphs are meaningless).

No, wrong. x- t plot does not show the trajectory of a particle. Context: A body is dropped
from a tower (x=0) at t=0.

105ms™*
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3.19 (a) Aballatreston a smooth floor is kicked, it rebounds from a wall with reduced speed
and moves to the opposite wall which stops it; (b) A ball thrown up with some initial
velocity rebounding from the floor with reduced speed after each hit; (¢) A uniformly
moving cricket ball turned back by hitting it with a bat for a very short time-interval.

3.20 x<0,v<0,a >0; x>0,v>0,a<0; x<0,v>0,a>0.
3.21 Greatestin3,leastin2; v>0in1 and 2, v< 0 in 3.

3.22 Acceleration magnitude greatest in 2; speed greatestin3; v>0in1,2and 3; a>0in1
and 3, a <0in2;a=0atA, B, C, D.

3.23 A straight line inclined with the time-axis for uniformly accelerated motion; parallel to
the time- axis for uniform motion.

3.24 10s,10s

3.25 (@) 1I3kmh™; (b) 5km h™"; (¢) 20 s in either direction, viewed by any one of the parents,
the speed of the child is 9 km h™ in either direction; answer to (c) is unaltered.

3.26 x, —x, =15 t (linear part); x, —x, = 200 + 30 t -5 t*(curved part).
3.27 @60m,6ms* ;(b)36m,9ms*
3.28 (c), (d), (M

Chapter 4

4.1 Volume, mass, speed, density, number of moles, angular frequency are scalars; the rest
are vectors.

4.2 Work, current

4.3 Impulse

4.4 Only (c) and (d) are permissible
45 @T,MF QF @T, (T

4.6 Hint: The sum (difference) of any two sides of a triangle is never less (greater) than the
third side. Equality holds for collinear vectors.

4.7 All statements except (a) are correct
4.8 400 m for each; B
4.9 (@)O0; MO; (c)21.4kmh™

4.10 Displacement of magnitude 1 km and direction 60° with the initial direction; total path
length = 1.5 km (third turn); null displacement vector; path length = 3 km (sixth turn);
866 m, 30°, 4 km (eighth turn)

4.11 (@)49.3kmh™;(b) 21.4 km h™". No, the average speed equals average velocity magnitude
only for a straight path.

4.12 About 18° with the vertical, towards the south.
4.13 15min, 750 m

4.14 East (approximately)

4.15 150.5m

4.16 50m
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4.17
4.18
4.19

4.20

4.21

4.22
4.23
4.24
4.25
4.27
4.28
4.29

4.30
4.31

5.1

5.2

5.3

5.4
5.5
5.6

5.7

5.8

5.9
5.10

9.9 m s, along the radius at every point towards the centre.
6.4g
(a) False (true only for uniform circular motion)

(b) True, (c) True.

@ ve)=G01i-40r) a@) =-40j
(b) 8.54 m s, 70° with x-axis.
(@2s,24m,21.26ms"

ﬁ,45°w1’ththex—ax1‘s; x/E,—45° with the x - axis, (S/ﬁ, -1/ ﬁ)

(b) and (e)

Only (e) is true

182ms’!

No. Rotations in general cannot be associated with vectors
A vector can be associated with a plane area

No

At an angle of sin' (1/3) = 19.5° with the vertical; 16 km.
0.86 m s, 54.5° with the direction of velocity

Chapter 5

(@) to (d) No net force according to the First Law
(e) No force, since it is far away from all material agencies producing electromagnetic
and gravitational forces.

The only force in each case is the force of gravity, (neglecting effects of air) equal to
0.5 N vertically downward. The answers do not change, even if the motion of the pebble
is not along the vertical. The pebble is not at rest at the highest point. It has a constant
horizontal component of velocity throughout its motion.

(@) 1 N vertically downwards (b) same as in (a)

(¢) same as in (a); force at an instant depends on the situation at that instant, not on
history.

(d) 0.1 N in the direction of motion of the train.

@T

a=-25ms” Usingv=u+at, 0=15-25¢t ie, t=60s

a=15/25 = 0.06m s~

F= 3x0.06 = 0.18 N in the direction of motion.

Resultant force = 10 N at an angle of tan' (3/4) = 37° with the direction of 8 N force.
Acceleration = 2 m s 2 in the direction of the resultant force.

a=-25ms?, Retarding force =465 x 2.5=1.2x 10° N

F-20,000 x 10 =20000 x 5.0, ie., F=3.0 x 10° N
a=-20ms? 0<t<30s



ANSWERS

223

5.20

5.21

t=-5s: x=ut=-10x5=-50m
t=25s: x = ut+(%) at’ = (10x25-10x 625)m = -6 km
t=100 s : First consider motion up to 30 s
x,=10x30-10 x 900 = -8700 m
At t=30s, v=10-20%x30=-590m s
For motion from 30sto 100s: x,=-590 x 70 =-41300 m
XxX=x, +x,=-50Kkm

(a) Velocity of car (att=108)=0+2x10=20m s’

By the First Law, the horizontal component of velocity is 20 m s™' throughout.
Vertical component of velocity (at t=11s)= 0+ 10x 1 = 10m s’

Velocity of stone (at t = 11s) =y20% +10% = /500 = 22.4 ms ' atanangle of tan* (%) with
the horizontal.
(b)10 m s vertically downwards.

(a) At the extreme position, the speed of the bob is zero. If the string is cut, it will fall
vertically downwards.
(b) At the mean position, the bob has a horizontal velocity. If the string is cut, it will fall
along a parabolic path.

The reading on the scale is a measure of the force on the floor by the man. By the Third
Law, this is equal and opposite to the normal force N on the man by the floor.
(@) N=70%x10=700N; Readingis 70 kg
(b) 70x 10-N=70x%x5; Readingis 35 kg
() N-70x10=70x%x5; Readingis 105 kg
(d 70x 10-N=70x 10; Reading would be zero; the scale would read zero.
(@) In all the three intervals, acceleration and, therefore, force are zero.
(b) 3kgms'at t=0 ;(c)-3kgms™" at t=4s.
If the 20 kg mass is pulled,
600-T=20a, T=10a
a=20ms?, T=200N
If the 10 kg mass is pulled, a =20 m s, T=400N
T-8x10=8a,12x10-T=12a
iec.a=2ms? T = 96N
By momentum conservation principle, total final momentum is zero. Two momentum
vectors cannot sum to a null momentum unless they are equal and opposite.
Impulse on each ball = 0.05 x12 = 0.6 kg m s' in magnitude. The two impulses are
opposite in direction.
Use momentum conservation : 100 v=0.02 x 80
v=0.016ms'=1.6cms™’

Impulse is directed along the bisector of the initial and final directions. Its magnitude is
0.15 x 2 x 15x cos22.5°=4.2 kgms™

V=21 X l.t'>><4—0:271:ms’1
60

mv®  0.25x 4rx”
R 1.5

T= =6.6N
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5.22
5.23

5.24

5.25

5.26

5.27

5.28

5.29
5.30

2
max

mo

200= ,which gives v, =35ms"’

Alternative (b) is correct, according to the First Law

(@) The horse-cart system has no external force in empty space. The mutual forces
between the horse and the cart cancel (Third Law). On the ground, the contact force
between the system and the ground (friction) causes their motion from rest.

(b) Due to inertia of the body not directly in contact with the seat.

(c) Alawn mower is pulled or pushed by applying force at an angle. When you push, the
normal force (N) must be more than its weight, for equilibrium in the vertical direction.
This results in greater friction f( fe< N) and, therefore, a greater applied force to move.
Just the opposite happens while pulling.

(d) To reduce the rate of change of momentum and hence to reduce the force necessary
to stop the ball.

A body with a constant speed of 1 cm s receives impulse of magnitude
0.04 kg x 0.02ms'= 8x 10" kg m s after every 2 s from the walls at x = 0 and
X=2cm.

Net force = 65kgx I ms” = 65N
a.,. =41 g=2ms’
Alternative (a) is correct. Note mg + T, =mw./R ; T,-mg=nmv’/R

The moral is : do not confuse the actual material forces on a body (tension, gravitational
force, etc) with the effects they produce : centripetal acceleration v?/R or v?/R in this
example.

(@) ‘Free body’ : crew and passengers
Force on the system by the floor = Fupwards; weight of system = mg downwards;
. F-mg=ma
F-300x 10=300x 15
F =7.5x 10° N upward
By the Third Law, force on the floor by the crew and passengers = 7.5 x 10°N downwards.
(b) ‘Free body’ : helicopter plus the crew and passengers
Force by air on the system = R upwards; weight of system = mg downwards
s~ R-mg=ma
R-1300x 10 = 1300 x 15
R =3.25 x 10" N upwards
By the Third Law, force (action) on the air by the helicopter = 3.25 x 10* N downwards.
(c) 3.25 x 10" N upwards
Mass of water hitting the wall per second
=10°kgm®°x 10° m’x 15ms ' =150kgs

Force by the wall = momentum loss of water per second = 150 kg s x 15ms'=2.25
x 10° N

(@) 3 mg(down) (b) 3 m g (down) (c) 4 mg(up)

If N is the normal force on the wings,
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2
Ncos6 =mg, Nsing ="
2
which give R=— o 200200 _ g
g tan 6 10xtanlb°
5.31 The centripetal force is provided by the lateral thrust by the rail on the flanges of the

5.32

5.33

5.34

5.35

5.36

wheels. By the Third Law, the train exerts an equal and opposite thrust on the rail
causing its wear and tear.

2 15x15
i =t 1 v =t ! =37°
Angle of banking = tan [R QJ an [SOX 10)

Consider the forces on the man in equilibrium : his weight, force due to the rope and
normal force due to the floor.

(@) 750 N (b) 250 N; mode (b) should be adopted.
(&) T-400 = 240, T=640N

(b) 400-T=160, T=240N

() T=400N

@ T=0

The rope will break in case (a).

We assume perfect contact between bodies A and B and the rigid partition. In that
case, the self-adjusting normal force on B by the partition (reaction) equals 200 N.
There is no impending motion and no friction. The action-reaction forces between A
and B are also 200 N. When the partition is removed, kinetic friction comes into play.

Accelerationof A+ B = [200-(150%0.15)]/15=11.8ms?
Fricionon A=0.15x50=7.5 N

200-75-F,;=5x%x11.8

F,,=1.3x 10’ N; opposite to motion .

F,, = 1.8 x 10” N; in the direction of motion.

(a) Maximum frictional force possible for opposing impending relative motion between
the block and the trolley = 150 x 0.18 =27 N, which is more than the frictional force of
15 x 0.5 = 7.5 N needed to accelerate the box with the trolley. When the trolley moves
with uniform velocity, there is no force of friction acting on the block.

(b) For the accelerated (non-inertial) observer, frictional force is opposed by the pseudo-
force of the same magnitude, keeping the box at rest relative to the observer. When the
trolley moves with uniform velocity there is no pseudo-force for the moving (inertial)
observer and no friction.

Acceleration of the box due to friction = ug=0.15x 10 = 1.5 m s . But the acceleration
of the truck is greater. The acceleration of the box relative to the truck is 0.5 m s”

towards the rear end. The time taken for the box to fall off the truck = |2X95 _ 20 s -
0.5

During this time, the truck covers a distance = 2 x 2 x 20 = 20 m.
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5.37 For the coin to revolve with the disc, the force of friction should be enough to provide the

2

. 2
necessary centripetal force, i.e <umg. Now v =rw, where o= ?nis the angular

frequency of the disc. For a given p and o, the condition is r< ug / o”. The condition is
satisfied by the nearer coin (4 cm from the centre).

2
5.38 At the uppermost point, N +mg = mv

,wWhere Nis the normal force (downwards) on the

motorcyclist by the ceiling of the chamber. The minimum possible speed at the uppermost
point corresponds to N=0.

ie.vy, =+JRg=+425x10 =16ms "’
5.39 The horizontal force N by the wall on the man provides the needed centripetal force: N

= m R o’. The frictional force f(vertically upwards) opposes the weight mg. The man
remains stuck to the wall after the floor is removed if mg = f<u Ni.e. mg<umR ®’. The

minimum angular speed of rotation of the cylinder is o,,, = {/g/#R = 5s

min

5.40 Consider the free-body diagram of the bead when the radius vector joining the centre of
the wire makes an angle 6 with the vertical downward direction. We have
mg=Ncos 6and mRsin® o’ = Nsin 6. These equations give cos 6 = g/Rw’. Since cos0<1,

the bead remains at its lowermost point for o < \/% .

For @ = 2_g cos6=l ie. 0=60".
\ R 2

Chapter 6

6.1 (@) +ve (b) —ve (c) —ve (d) + ve (e) —ve
6.2 (a) 882 J ; (b) 247 J; (¢)635J; (d)635J;

Work done by the net force on a body equals change in its kinetic energy.
6.3 @ x> a0 (c) x<a, x>b;-V,

(D) —0o <X <003 V| (dM-b/2 <x<-a/2, a/2<x<b/2 -V,

6.5 (@) rocket; (b) For a conservative force work done over a path is minus of change in
potential energy. Over a complete orbit, there is no change in potential energy; (c) K.E.
increases, but P.E. decreases, and the sum decreases due to dissipation against friction;
(d) in the second case.

6.6 (a) decrease; (b) kinetic energy; (c) external force; (d) total linear momentum, and also
total energy (if the system of two bodies is isolated).

6.7 @F; b F; (c) F; (d)F (true usually but not always, why?)

6.8 (a) No
(b) Yes
(¢) Linear momentum is conserved during an inelastic collision, Kinetic energy is, of

course, not conserved even after the collision is over.
(d) elastic.

6.9 b) ¢
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6.10 (o
6.11 12J
.12 The electron is faster, v,/ v,=13.5

6
6.13 0.082Jineachhalf; -0.163J
6

.14 Yes, momentum of the molecule + wall system is conserved. The wall has a recoil
momentum such that the momentum of the wall + momentum of the outgoing molecule
equals momentum of the incoming molecule, assuming the wall to be stationary initially.
However, the recoil momentum produces negligible velocity because of the large mass of
the wall. Since kinetic energy is also conserved, the collision is elastic.

6.15 43.6kW

6.16 (b)

6.17 It transfers its entire momentum to the ball on the table, and does not rise at all.
6.18 53ms’

6.19 27 km h' (no change in speed)

6.20 bH0d

6.21 (a) m=pAvt (b) K=pAv®’t/2 (o) P=4.5kW
6.22 (a)49,000J  (b)6.4510°kg

6.23 (a) 200 m*(b) comparable to the roof of a large house of dimension 14m x 14m.

6.24 21.2cm,28.5d

6.25 No, the stone on the steep plane reaches the bottom earlier; yes, they reach with the
same speed v, [since mgh=(1/2) mv’ |
v,=v.=141ms’ ,t,=2J2s, t, =22 s

6.26 0.125

6.27 8.82J for both cases.

6.28 The child gives an impulse to the trolley at the start and then runs with a constant
relative velocity of 4 m s™ with respect to the trolley’s new velocity. Apply momentum
conservation for an observer outside. 10.36 ms™, 25.9 m.

6.29 All except (V) are impossible.

Chapter 7

7.1 The geometrical centre of each. No, the CM may lie outside the body, as in case of a
ring, a hollow sphere, a hollow cylinder, a hollow cube etc.

7.2 Located on the line joining H and C1 nuclei at a distance of 1.24 A from the H end.

7.3  The speed of the CM of the (trolley + child) system remains unchanged (equal to v)
because no external force acts on the system. The forces involved in running on the
trolley are internal to this system.

7.6 L=xp,~yp.l. =yp,~zp, 1 =2zp —xp,

7.8 72 cm

7.9 3675 N on each front wheel, 5145 N on each back wheel.

7.10 (a) 7/5MR? (b) 3/2 MR?
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7.11 Sphere
.12 Kinetic Energy = 3125 J; Angular Momentum =62.5J s

~]

7.13 (a) 100 rev/min (use angular momentum conservation).

(b) The new kinetic energy is 2.5 times the initial kinetic energy of rotation. The child
uses his internal energy to increase his rotational kinetic energy.

.14 25s? 10ms?
.15 36kW

7
7
7.16 atR/6 from the center of original disc opposite to the center of cut portion.
7.17 66.0g

7

.18 (a) Yes; (b) Yes, (c) the plane with smaller inclination (*."a o sin 0)
7.19 4J
7.20 6.75%x10%rad s™
7.21 (@) 3.8m(b)3.0s
7.22  Tension=98 N, N, =245 N, N_ = 147 N.

7.23 (a) 59 rev/min, (b) No, the K.E. is increased and it comes from work done by man in
the process.

7.24 0.625rads™
7.27 (a) By angular momentum conservation, the common angular speed
0w =Tw +L,w) /0 +1)

(b) The loss is due to energy dissipation in frictional contact which brings the two
discs to a common angular speed ®. However, since frictional torques are internal
to the system, angular momentum is unaltered.

7.28 Velocity of A = @ R in the same direction as the arrow; velocity of B = @ R in the

opposite direction to the arrow; velocity of C = @, R/2 in the same direction as the
arrow. The disc will not roll on a frictionless plane.

7.29 (a) Frictional force at B opposes velocity of B. Therefore, frictional force is in the same
direction as the arrow. The sense of frictional torque is such as to oppose angular
motion. ®_ and T are both normal to the paper, the first into the paper, and the second
coming out of the paper.

(b) Frictional force decreases the velocity of the point of contact B. Perfect rolling
ensues when this velocity is zero. Once this is so, the force of friction is zero.

7.30 Frictional force causes the CM to accelerate from its initial zero velocity. Frictional
torque causes retardation in the initial angular speed @,. The equations of motion are

W, mg=maandl, mgR =-Iq, whichyield v=U,gt, ® = @, -, mgRt/I Rolling
begins when v= R®. Foraring, I = m R, and rolling begins at t = @, R/2 |, g. For a
disc, I =% m R and rolling starts at break line t= R®,/3 [, g. Thus, the disc begins to
roll earlier than the ring, for the same Rand @,. The actual times can be obtained for
R=10cm, @, = 10T rads™, i, = 0.2
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7.31

8.1

8.2
8.3
8.5
8.6
8.7

(@) 16.4 N
(b) Zero
(c) 37° approx.
Chapter 8

(a) No.
(b) Yes, if the size of the space ship is large enough for him to detect the variation in g.

(c) Tidal effect depends inversely on the cube of the distance unlike force, which depends
inversely on the square of the distance.

(a) decreases; (b) decreases; (c) mass of the body; (d) more.
Smaller by a factor of 0.63.

3.54 x 10° years.

(a) Kinetic energy, (b) less,

(a) No, (b) No, (c) No, (d) Yes

[The escape velocity is independent of mass of the body and the direction of projection.
It depends upon the gravitational potential at the point from where the body is launched.
Since this potential depends (slightly) on the latitude and height of the point, the escape
velocity (speed) depends (slightly) on these factors.]

8.8 All quantities vary over an orbit except angular momentum and total energy.

8.9 (b), (c) and (d)

8.10 and 8.11 For these two problems, complete the hemisphere to sphere. At both P, and C,

.12
.13
.14
.15
.16
.17
.18
.19

@ o @ o ® 0w ® w

potential is constant and hence intensity = 0. Therefore, for the hemisphere, (c) and (e)
are correct.

2.6x 10°m

2.0 x 10 kg

1.43x 10”m

28 N

125N

8.0 x 10° m from the earth’s centre
31.7km/s

59x 10°J
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8.20
8.21
8.22
8.23

8.24
8.25

2.6x10°m/s
0, 2.7 x 10°® J/kg; an object placed at the mid point is in an unstable equilibrium
-9.4 x 10°J/kg

GM/R=23x10"ms”,®w R=1.1x10°m s”; here o is the angular speed of rotation.
Thus in the rotating frame of the star, the inward force is much greater than the outward
centrifugal force at its equator. The object will remain stuck (and not fly off due to
centrifugal force). Note, if angular speed of rotation increases say by a factor of 2000,
the object will fly off.

3x10"J
495 km



