यரठ-6

वग्ठन, Өिठना भडे मवडी
 (Work, Energy and Power)

6.1 ब्रीनिर
6.2 वग्वस भुडे वाउत्न छिवस्स ही मिवस्थता: वग्वन-छिठता यूभेज (Theorem)
6.3 वग्गत्न
6.4 गाउत्त छि्वर्ता
6.5 uािद्वडी (variable) घल स्रभाग रीउग fिभा वंगत्र
6.6 यविद्यडी घल ल स्टी रागत छिवत्ता दिछिठम
6.7 मर्मिउत छिवत्स टी पगठठा
6.8 जंडविव छिठता सा मुपॅपिभट (conservation)
6.9 विमे वभाती (spring) ही मर्षिडउत्र छिगत्रा
6.10 हिगत्रा टीभां ॅॅघ-दॅष विमभां-

6.11 भरडी
6.12 टॅवठं (Collisions)

मग
दि्माठरजँगा दिमे
भाविभग्म
हाग्यानिभम्म
भถ्लल̆गा 6.1

6.1 ड़ाभिए (INTRODUCTION)

 उमहीठ घटा विग ने, पिडठां मर्गिभां लप्टी विग सांत्रा ने वि रेभ वठ ठठे

 टॅध-दॅध भगपां हिँछ वीडी सांटी नै। वठग्टे (Karate) सां भुवेष्वग्ती

6.1.1 भाटित्र गुटतठल (The Scalar Product)

 बैडिव वग्मीभां सिद्टें टिमपत्यठ (displacement), देता (velocity), यूटेता (acceleration), घल (force) भर्गि मरित्र गठ । भमीं मरिसमां से सभां,

 product) रर्गिंदे गठ । मित्रित्र ताटतहल से घाते भमीं यग्ठ 7 हिँच पन्ञांगो। पिम याठ हैँच भमीं लूव भरित्र ताटतहल (scalar product) डे हि्छित चतtr वतांतो।
 (scalar or dot product) 유 भrमीं A.B (A इाट B) से
 वगटे गं-
$\mathbf{A} \cdot \mathbf{B}=A B \cos \theta$

 भउे $\cos \theta$ भाटित्र गठ, टिम लप्टी \mathbf{A} भडे \mathbf{B} हा घित्ट
 भउे B टी टिमा नै।
 テै।

मनीवगर 6.1(a) अं

$$
\begin{aligned}
\mathbf{A} \cdot \mathbf{B} & =A(B \cos \theta) \\
& =B(A \cos \theta)
\end{aligned}
$$

निछिभिटती (Geometrically) से भठ्रम्व, $B \cos \theta$ \mathbf{B} ही \mathbf{A} 亏े यूनैवमर (Projection) चै, [fॅउत 6.1 (b)] भुे $A \cos \theta, \mathbf{A}$ ती \mathbf{B} डे चूनैसमत वै [चैँ 6.1 (c)]

 uटव से गाटतठल से घठम्वठ नै।

मभीवठत 6.1(a) ऊँ पित मिवेड ही fिलत्रा नै वि भरित्र गाटतहल क्रम-दटांटठ ठिजन (commutative law) स् या यक् वगता नै-

A.B = B. \mathbf{A}

भरितन ताटतहल दिउतट हिजा (distributive law) हा ही याल्लट वरता नै-
A. $(\mathbf{B}+\mathbf{C})=\mathbf{A} \cdot \mathbf{B}+\mathbf{A} . \mathbf{C}$

भडे
A. $(\lambda \mathbf{B})=\lambda(\mathbf{A} . \mathbf{B})$

टिपेषे λ टिव ट्मग्रट्टिर मिषिभा (Real number) चै।
 भाउिभग्म से उँठ 'डे ढॅठी सांत्टी नै।

ग्ट भमीं टेवंव रासमां (unit vectors) $\hat{\mathbf{i}}, \hat{\mathbf{j}}, \hat{\mathbf{k}}$ हा
 (perpendicular) गुंटे गठ, प्टिम लप्टी

$$
\begin{aligned}
& \hat{\mathbf{i} . \hat{\mathbf{i}}}=\hat{\mathbf{j}} \hat{\mathbf{j}}=\hat{\mathbf{k}} \cdot \hat{\mathbf{k}}=1 \\
& \hat{\mathbf{i} . \hat{\mathbf{j}}=\hat{\mathbf{j}} . \hat{\mathbf{k}}=\hat{\mathbf{k}} \cdot \hat{\mathbf{i}}=\mathbf{0}}
\end{aligned}
$$

₹ं महिग़ां

$$
\begin{aligned}
& \mathbf{A}=A_{x} \hat{\mathbf{i}}+A_{y} \hat{\mathbf{j}}+A_{z} \hat{\mathbf{k}} \\
& \mathbf{B}=B_{x} \hat{\mathbf{i}}+B_{y} \hat{\mathbf{j}}+B_{z} \hat{\mathbf{k}}
\end{aligned}
$$

टा भरिए गाटतढल गेटेगा-

$$
\begin{align*}
\mathbf{A} \cdot \mathbf{B} & =\left(A_{x} \hat{\mathbf{i}}+A_{y} \hat{\mathbf{j}}+A_{z} \hat{\mathbf{k}}\right) \cdot\left(B_{x} \hat{\mathbf{i}}+B_{y} \hat{\mathbf{j}}+B_{z} \hat{\mathbf{k}}\right) \\
& =A_{x} B_{x}+A_{y} B_{y}+A_{z} B_{z} \tag{6.1b}
\end{align*}
$$

(i) $\mathbf{A} . \mathbf{A}=A_{x} A_{x}+A_{y} A_{y}+A_{x} A_{z}$ सां $A^{2}=A_{x}^{2}+A_{y}^{2}+A_{z}^{2}$
विछिंदि $\mathbf{A} \cdot \mathbf{A}=|\mathbf{A}||\mathbf{A}| \cos 0=A^{2}$.
(ii) $\mathbf{A} \cdot \mathbf{B}=0$, ने \mathbf{A} भुे \mathbf{B} पिव-स्डमते से लूप (perpendicular) चै।

 (projection) चै (\boldsymbol{r}) $\mathbf{A} \cos \theta, \mathbf{A}$ ती \mathbf{B} डे प्रून्नैवमत तै।

Qिचागठत 6.1 घल $\mathbf{F}=(3 \hat{i}+4 \hat{j}-5 \hat{k})$ unit
भडे दिमषप्य $\mathbf{d}=(5 \hat{i}+4 \hat{j}-3 \hat{k})$ unit हिँच

Јॅ" :

$$
\begin{aligned}
\text { F.d } & =F_{x} d_{x}+F_{y} d_{y}+F_{z} d_{z} \\
& =3(5)+4(4)+(-5)(3) \\
& =16 \text { unit } \\
\text { दिम लप्ट F.d } & =F d \cos \theta=16 \text { unit } \\
\text { गट } \quad \text { F.F } & =F^{2}=F_{x}^{2}+F_{y}^{2}+F_{z}^{2} \\
& =9+16+25 \\
& =50 \text { unit } \\
\text { भुड } \quad \mathbf{d . d} & =d^{2}=d_{x}^{2}+d_{y}^{2}+d_{z}^{2} \\
& =25+16+9 \\
& =50 \text { unit } \\
\therefore \cos \theta & =\frac{16}{\sqrt{50} \sqrt{50}}=\frac{16}{50}=0.32 \\
\theta & =\cos ^{-1}(0.32)
\end{aligned}
$$

वा्वस-छ्हिठता यूभेज (Notions of work and kinetic energy : The work-energy theorem)

$$
\begin{equation*}
v^{2}-u^{2}=2 a s \tag{6.2}
\end{equation*}
$$

 भुे s हमड्ड स्रभात्व ऊैभ रीडी ताप्टी स्डी चै। ऐलें यर्मिभां 이 $m / 2$ ठाल ग्राटा वठत डे

$$
\begin{equation*}
\frac{1}{2} m w^{2}-\frac{1}{2} m u^{2}=m a s=F \mathrm{~s} \tag{6.2a}
\end{equation*}
$$

 (6.2) सा डिंत टिभी (three dimensional) टिभाधीवठर (generalization) वठ मरटे गंー

$$
v^{2}-u^{2}=2 \mathbf{a} . \mathbf{d}
$$

 वठत डे भमीं यूप्यउ वठटे गं

$$
\begin{equation*}
\frac{1}{2} m v^{2}-\frac{1}{2} m u^{2}=m \mathbf{a} \cdot \mathbf{d}=\mathbf{F} . \mathbf{d} \tag{6.2b}
\end{equation*}
$$

 यविबर्गमिड वतर लपी येंतिड रतला नै। मभीवतर (6.2 h)

 लिषसे गं। मभीवठत रा मॅसा पग्मा हमड्ड डे लॅठो घल
 हा गृटतहल नै। पिम गम्नी रों ‘वग्त’’ वर्गिसे गर भडे
 (6.2b) గ్ त्र गेठ लिषे भठ्माठ लिष मवसे गं।

$$
\begin{equation*}
K_{f}-K_{i}=W \tag{6.3}
\end{equation*}
$$

 हिठत्स नै। वग्तन विमे हमड्ड डे लॉठाट हाएले घल भने

 प्रू वग्तन वतरा वै।

मनीवतर (6.3) वग्तस हितना यूनेर (Theorem) ही

 वरंगो।
बिएगतर 6.2 भमीं छंती उतुं नाट्टे वां वि हतधा

 वाठुउा घल हैभाग वीउा विभा वग्वत्र वी चै ? (b)
 वी $\begin{gathered}\text { J ? }\end{gathered}$

$$
\begin{aligned}
K & =\frac{1}{2} m v^{2}-\frac{1}{2} m u^{2} \quad(\because \mathrm{u}=0) \\
& =\frac{1}{2} \times 10^{-3} \times 50 \times 50 \\
& =1.25 \mathrm{~J}
\end{aligned}
$$

 हिठाटा मुण्ड वठटी नै।

भंत एठ $g=10 \mathrm{~ms}^{-2}$ 手
टिम लप्टी $\mathrm{W}_{g}=m g h=10^{-3} \times 10 \times 10^{3}=10 \mathrm{~J}$
（b）वग्वस छिंगत्र यूभेज ऊं

$$
\Delta K=W_{g}+W_{r}
$$

 जै। टिम लप्टी

$$
\begin{aligned}
W_{r} & =\Delta K-W_{g} \\
& =1.25-10 \\
& =-8.75 \mathrm{~J} \text { fिटाउभव ने। }
\end{aligned}
$$

6.3 वग्ठस（Work）

 चै। मंत लछ वि टिव रमित घल（constant force） \mathbf{F} ，विमे
 यठाउभव x－fिमा（positive x－direction）दूँ च चट
 टिभा जै।

चिउत 6.2 विमे fिंच E लूटो घल F वागठ द्मिपप्यक（d）
दिम लप्टी विमे प्रल स्रभा्ता रीउा विाभा रा्तस＂घल
 राठभाट से गुटतढल＂से ग्रथ नूँच राठठगम्निउ वीउा स्षंत्रा नै। पिम लप्टी－

$$
\begin{equation*}
W=(F \cos \theta) d=\mathbf{F} \cdot \mathbf{d} \tag{6.4}
\end{equation*}
$$

 उां घू सा रविभाल विंतां ही हैय विधिं का चद्हे，हमड

वस्टी ही वग्व ठठीं वृंटा से－

 ही टेटलिकटत（weightlifter，उाठ चैवट टाल्ला氏िइग्ठो） 150 kg प्ंत्न से काठ గ़
 छिच वँ्टी वर्वत रणीं वठ विग नै।
（ii）घूल्ल क्नीत नै। विमे सीवटी fिउत्नी（smooth horizontal）भेत़् डे वाठीमीप्ल fिंइ डे वप्टी छिउन्नी घल वग्तक रगीं रठहा ने，（विणिंवि उठाइ तगों
 मवल्रा नै।
 किछिंक्र（ $\left.\theta=\pi / 2 \mathrm{rad}\left(-90^{\circ}\right), \cos (\pi / 2)-0\right)$ । विमे चीवटी किउन्ती मेक्ञ डे वाउीमील रिंइ से

 वग्वत्त वठ विग चै। पठउी से पित्य－fिग्र

 ला उउवर्गलि टिमपष्र（instantaneous displacement）मथठम्र ठेधी（tangential）चै सरैंवि पठडी टा घू भुगय टिभाग्म से मभांडठ बेंटठ टॅल（radially inwards）चै，भवपण्ड θ $=\pi / 2$ ।
वान्त पहाउसव（positive）भने fिटाउभव （negative）そलें उतुं सा ने मरहा नै। ने $\theta, 0^{\circ}$ भुजे 90° ，से टिसरा्व गेट्टे उां मभीवतर 6.4 दूँस $\cos \theta$ सा भाठ पठाउभव गेद्रेगा। ने $\theta, 90^{\circ}$ भुे 180° से टिसराठ

 रीउा विभा वागत विट्राउमव गृचा चै $\left(\cos 180^{\circ}=-1\right)$ ।

 （1811－1869）से मताग्र दैँस पिकठां सा SI भगउतव

 रीउा विभा नै।
 हैँ

भुगा（erg）	$10^{-7} \mathrm{~J}$
पिलेब ट्राठदెखट（ eV ）	$1.6 \times 10^{-19} \mathrm{~J}$
चैलतठ（cal）	4.186 J
	$3.6 \times 10^{6} \mathrm{~J}$

बिटागठत 6.3 ₹प्टी माप्टीवल मह्ग घेव लताम्छिट डे हिमलटा चसिभा 10 m ट्ड ता वे वूवरा जै।
 डे लठार्गपभा विभा घल 200 N ने ने छिमनी गठी टे छिलट चै। (a) मइब स्रभाव माप्टीवल डे विंतां वग्न वीउा विभा? (b) मम्टीवल ह्लभाग मइव डे विंठां वग्गत्स वीउा विभा ?

Јॅल : मइव स्थभाग मग्टीवल उे रीउा विभा रावत्त मइब स्भभाठ मम्टीवल्ल डे लठाए्टे गाप्टे हिठपी घप्ल (गठाइ घूल) स्भभात्र वीउा विभा वावक्त चै।
(a) टिपे टिठयी घल भुजे मम्टीवल से टिमघग्थठ से टि्तरात्त चट 180° (भां π radl) वै।

पिम लप्टी मइव स्रभाग वीउा विाभा वग्तन

$$
\begin{aligned}
W_{r} & =F d \cos \theta \\
& =200 \times 10 \times \cos \pi \\
& =-2000 \mathrm{~J}
\end{aligned}
$$

6.4 गाडित् हिठत्रा (Kinetic energy)

सिदें वि पविलां हिलेख रीउा विाभा नै वि से विमे

$$
\begin{equation*}
K=\frac{1}{2} m \mathbf{v} \cdot \mathbf{v}=\frac{1}{2} m v^{2} \tag{6.5}
\end{equation*}
$$

विमे रिंइ टी राउत्त छिठसा, Өिम रिंइ स्रभात्र
 से वग्ठर वठ मवता नै। पिम यम्ठता सा भंउर्ठवाभात
 हितक्ता टी हठउं भरान्त थीमट टे लप्टी रीडी सांटी नै।

याल हाल्ले मभ़्रिटती सगक्ष़ (sailing ships) गहा

ヘิ\%	Ûn (Kg)	चएल (ms^{-1})	K(J)
राठ	2000	25	6.3×10^{5}
लंइग्र (भैष<ीट)	70	10	3.5×10^{3}
वोली	5×10^{-2}	200	10^{3}
10 m टी Өिषम्टी उं శॅनाटा पॅघट	1	14	10^{2}
भींउभ देठा (terminal velocity) ठाल्ल इिताटी दृषा ही घूंस	3.5×10^{-5}	9	1.4×10^{-3}
गद्ड ता मट्ड	$\sqcup 10^{-26}$	500	$\sqcup 10^{-21}$

 हे वग्र गी माप्टीवल वूव सांटी चै।
(b) टिछिटर से गठी से डीमते टिज़ भहूमा्व मम्टीवल स्रभाठ मइव डे लताप्गिभा विभा घल मइव स्भभग्व मम्टीवल्ल डे लठाम्टे घल से घंग्वत थठ छिलट
 मइब स्टा टिमपष्धत रगीं गृंस्ता नै। प्टिम लप्टी माप्टीवल्ल स्रभाठ मइब डे रीउा विभा वग्रत क्षीठ नै।

 füउ B डे लवाप्टे घल से घटाप्वर भं छिलट fिप्रा

 fिभा वग्तन, यिंड A स्भाग्त B डे रीडे गाप्टे वागत्त से प्रठम्वत भडे छिकट fिमा निस्च चद्ने।
 भापिग्ठी 50 g ป्रंत्त टी ठोली గ్ पठउरण्ठ लॉवडी (यलाप्टीड्ड) डे $200 \mathrm{~ms}^{-1}$ ही चल्ल ठाल ढर्पषित वठटा चै। तठभ लॅवइी हैँचं भाग-यग्व उट से घाभर ठोली टी गाउत्त हिग्ना भर्वंबि हिग्ता टी 10% चरि संट्टी चै। लूरड़ी हैँचें हिवलसे मभें नोली टी चाल री चंदेगी?

Јॅल्ल : वोली टी भर्तंडर छिवत्रा

$$
\mathrm{mv}^{2} / 2=1000 \mathrm{~J}
$$

तोली टी भifउस वाउस हितन्ना $=0.1 \times 1000=100 \mathrm{~J}$
 v_{f} गॅе्टे उं,

$$
\begin{aligned}
& \frac{1}{2} m v_{f}^{2}=100 \mathrm{~J} \\
& v_{f}=\sqrt{\frac{2 \times 100 \mathrm{~J}}{0.05 \mathrm{~kg}}}=63.2 \mathrm{~ms}^{-1}
\end{aligned}
$$

ठठम लॅवडी नं भाग-थाठ Јट ₹ं घा्ट ठोली ही चाल लठाउता 68% щॅट च गाप्टी चै (90% रुों)।

6.5 राठट्टडडी घल स्रभाग वीउा विभा वग्त (Work done by a variable force)

 चै। टयेंे बतरे रागट्रठी पूल (variable force) से
 यागट्टठडी घल सा भालेख (graph) चै।

से टिमपण्यठ Δx, मुष्तन नै उां भमीं घल $F(x)$ त्र ही लठाउता ठिम्नांत्र सां मघिठ (approximately Constant) है मवस्टे गं भडे

उॅस वीउा विभा वग्त्त

$$
\Delta W=F(x) \Delta x
$$

$$
\begin{equation*}
W \cong \xlongequal[x_{i}]{x_{f}} F(x) \Delta x \tag{6.6}
\end{equation*}
$$

टिँ̈े मंवेउ ' Σ ' टा भवष ने जठाढलू, सचें वि ' x_{i} ' हमड्ड ही भर्ठविव मषिठी भुे ' x_{f} हमड्ड ही भंडिभ ममिडी नै।

 ने नैउठठ 6.3(b) दिँच दवठ से गेठां से षेउतठल से मभाठ త్ల चै।

甘ैउत 6.3 (b)

 स्थभाठा वहठ वीउा षेउठठल, घल $\mathrm{F}(\mathrm{x})$ स्रभाठ वीडे ठाप्टे वग्तस से ठीव घठम्पर नै।

हिम लट्टी वीउा विभा वगतन

$$
\begin{equation*}
=\int_{x_{i}}^{x_{y}} F(x) \mathrm{d} x \tag{6.7}
\end{equation*}
$$

सिप्ये 'lim' हा भवष चै ‘जनाठल्ल ही मीभा’ सहैं वि

 घম हे टिर्मानिड मभवल्तर (definite integral of force over displacement) हे ग्रथ टॅँ टिभवड वठ मवसे गं। (भरुलता 3.1 रेधे)

हिलागठत 6.5 वप्टी पिमउठी स्रठटगी मउुा ट्ले
 टी ह़ठी ऊॅव 100 N एा घक्ल लठाण्छिंटी नै। हिम ऊं
 घू ठेधी गुथ टिँच ひॅट वे 50 N च सांत्रा नै। मंट्रव
 पिमउठी स्रभाठ मंट्डव डे लॅनिभा घट्ल भंड उठाइ
 घटा্ज। लॅदें घलां हुभाग 20 m ऊॅव वीउे गापे

ฮॅल : fॅउत 6.4 हैँ लठाग्टे वाप्टे घल हा वाए़ यूटर्ठम्तिउ वोउा विभा नै।

 निडा विभ्भा जै निमता यठिभा्ट (magnitude) चै
$|f|=50 \mathrm{~N}$
मिन गाउी सा दिँच वठटा ने भडे लॉठो घल F से

 रीउा विभा नै।

पिमउती ह्रभात वीडा निभा रा्तन
$W_{F} \rightarrow$ (भर्गप्टउ $\mathrm{ABCD}+$ मभर्लघ्य CEID) चा घेउतढल

$$
\begin{aligned}
W_{F} & =100 \times 10+\frac{1}{2}(100+50) \times 10 \\
& =1000+750 \\
& =1750 \mathrm{~J}
\end{aligned}
$$

ठगाइ घल स्रभाठ वीउा विभा वग्तत्स $W_{f} \rightarrow$ भाप्टिउ AGHI सा षेउठठल

$$
\begin{aligned}
W_{f} & =(-50) \times 20 \\
& =-1000 \mathrm{~J}
\end{aligned}
$$

6.6 यािटतडी घल लप्टी वएवक-छित्ता यूभेज (The work-energy theorem for a variable force)
 मिय वठर से हपी वग्त भंते गाउत्क Өिवस्ता सीभं

 वाउसत छिवसा यांग्टठउत ही रठ चे -

$$
\begin{aligned}
\frac{\mathrm{d} K}{\mathrm{~d} t} & =\frac{\mathrm{d}}{\mathrm{~d} t}\left(\frac{1}{2} m v^{2}\right) \\
& =\frac{m \mathrm{~d} v}{\mathrm{~d} t} \cdot v \\
& =F v
\end{aligned}
$$

$$
=0 x<0.1 \mathrm{~m} \text { भुडे } x>2.01 \mathrm{~m}
$$

$$
=F \frac{\mathrm{~d} x}{\mathrm{~d} t}
$$

पिम लप्टी

$$
\mathrm{d} K=F \mathrm{~d} x
$$

भर्ठंडिर माषिडी $\left(x_{i}\right)$ उं भंजिन मसिडी $\left(x_{f}\right)$, उॅव मभवल (integrating) वठठ 亏े

$$
\int_{K_{i}}^{K_{f}} \mathrm{~d} K=\int_{x_{i}}^{x_{f}} F \mathrm{~d} x
$$

$$
\begin{equation*}
\text { तां } K_{f}-K_{i}=\int_{x_{i}}^{x_{f}} F \mathrm{~d} x \tag{6.8a}
\end{equation*}
$$

मभीवठर (6.7), ऊं यूप्थउ ग̃ंसा Јै

$$
\begin{equation*}
K_{f}-K_{i}=W \tag{6.8b}
\end{equation*}
$$

पिम उतां यविदतडी पल से लम्पी वा्तन हितना यूभेज मिय ग़्री चै।

सर्नं वि वातन-हितना यूभेज वप्टी यूरण्त से यूमतां
 ठिजभ सी पठठ गुप हैँच गाडीवी मुछरा सा मभग्टेम

 हितका यूभेज विमे मां भंजताल से लप्ती मिप मभवलत

चिउनी मर्डणि डे $v_{i}=2 \mathrm{~ms}^{-1}$ सी चाल ठाल चॅल्टे

 घल $\left(F_{r}\right)$ प्रिम षेउत हैँच x हे छिलट भर्णान्डी नै,

$$
0.1<x<2.01 \mathrm{~m}
$$

$0 \quad x<0.1 \mathrm{~m}$ भडे $x<2.01 \mathrm{~m}$

 चल v_{f} ही वाहरा वठ।

Јॅल्ड : मभीवठर (6.8a) 亏ं

$$
\begin{aligned}
& K_{f}=K_{i}+\int_{0.1}^{2.01} \frac{(-k)}{x} \mathrm{~d} x \\
& =\frac{1}{2} m w_{i}^{2}-k \ln (x)_{0.1}^{2.01} \\
& =\frac{1}{2} m w_{i}^{2}-k \ln (2.01 / 0.1) \\
& =2-0.5 \ln (20.1) \\
& =2-1.5=0.5 \mathrm{~J} \\
& v_{f}=\sqrt{2 K_{f} / m}=1 \mathrm{~ms}^{-1}
\end{aligned}
$$

यिभात्र fिद्ध वि \ln भयाव (base) e डे विमे मिषिभा सा पूरितउर लu्हाटाटव (Natural logarithm) चै, ठा
 $\mathrm{X}=2.303 \log _{10} \mathrm{X}$]

6.7 मर्षाडित बिठत्रा सी यग्तरा (The concept of potential energy)

 चै भुे भमझग्ठडा्टां (Dislocation) गुसीभां गठ निगतां त्रे उत्मम ठेधाट्यां (fault lines) किण सांट्टा बै। पठडी सी
 गठ। छिगठां टी मर्षिउत छिगत्ता घगु हॉय गुटी नै। सचें
 (earthquake) भा तांट्रा जै। विमे ही रिंइ ही मर्दिउत

 $\ll R_{E}$) पिम लप्टी भमीं पठडी टी मर्उठ डे g से भग्ठ टॅछ याठट्डउत ही छैथेषिभा वठ मर्टे गं।

[^0]

$$
V(h)=m g h
$$

ने h र्ठ पविट्टडी लिभा सांत्रा ने उां पिठ मतलउा
 से मा्थेष $V(h)$ से विटाउभव भद्रवलत से घरम्वत नै।

$$
F=\frac{-\mathrm{dV}(h)}{\mathrm{d} h}=-m g
$$

 उां पिम दॅपटी गप्टी छग्ल ठाल गेठां भाछिंटी नै। पठडी
 मंघ्यंय ह्रभाठ तिभट पूवग वीउी सांट्टी नै।

$$
v^{2}=2 g h
$$

 मरहा गै-

$$
\frac{1}{2} m v^{2}=m g h
$$

 सांटा जै भडे ने घग्गी वग्वरां से Јॅट ताट डे भा्यटे

$$
F(x)=-\frac{\mathrm{d} V}{\mathrm{~d} x}
$$

$$
\int_{x_{i}}^{x_{f}} F(x) \mathrm{d} x=-\int_{V_{i}}^{V_{f}} \mathrm{~d} V=V_{i}-V_{f}
$$

 घल स्रभात वीउा विभा वग्तन रिंइ ही मित. भर्वर्विव

रीउ मी। ने m प्रैन हा बप्टी fिंइ h छिष्प्टी से हीवटे

 हाल्क उल्ल से भाप्व (bottom) डे पिम ही चाल, हाल्क उल से वंट डे हिठउठ रीडे पिठां $\sqrt{2 g h}$ ग̃सी नै। पिम

 द्राल (non-conservative) घ प्ल ग़ंटा चै।

वग्न सां वाउत्न छिठसा टी उवुं मर्षिउस छिठता

 force) से लपी, मर्मिउतन हिवक्ता हैँच परिट्टउत ΔV,
 चै।

$$
\begin{equation*}
\Delta V=-F(x) \Delta x \tag{6.9}
\end{equation*}
$$

 जैउगिरी हैँ मुर्वॅषिभट से भवॅउद्युठठ मियांड हॅल

6.8 जंर्डाठवी छिठक्रा सा मुरॉठिभिट (The conservation of mechanical energy)

मतलउा लपी, भमीं पिम मॅॅउद्चश्वत fियांड सा पूॅव टिभी गाउी से लप्टी हठतट वठ गठे गं। मेठ लहि वि

 F टे लप्टी

$$
\wedge K=F(x) \Delta x
$$

$$
\begin{equation*}
-\Delta V=F(x) \Delta x \tag{6.9}
\end{equation*}
$$

हिपन्वउ मभीवठत ऊं प्टिन मिवेड fिलता ने वि

$$
\begin{align*}
& \Delta K+\Delta V=0 \\
& \Delta(K+V)=0 \tag{6.10}
\end{align*}
$$

टिम स्रा भवप्र चै वि विमे fिंइ ही ताउत्त भउे

$$
\begin{equation*}
K_{i}+V\left(x_{i}\right)=K_{f}+V\left(x_{i}\right) \tag{6.11}
\end{equation*}
$$

 (conservative force) टी छिचिउउा मथॅमट गृटी नै।

 $\mathrm{V}(x)$ उं प्र्यउ वठ मवसे वं। fिंत दिभी fदभrयीवठठ (three dimensional generalization) से लप्टी मरित्न भट्ललत्त टियो (vector derivative) ही टवऊं वतरी पैंदी तै से टिम प्रमउव से टिद्हेठरा षेउठ ऊं प्रग्ग नै।

 तिभठ मिर्षय ₹ं मयॅमट चै :

$$
W=K_{f}-K_{i}=V\left(x_{i}\right)-V\left(x_{f}\right)
$$

- डीमठी पाठउग्मा से भठूमाठ, पिम घल स्भभग्ग
 सिग सिव हाठ ढित मभीवठर (6.11) ऊं मॅॅमूट चै, विछिंवि $x_{i}=x_{f}$ चै।

 डे हिध्व ववंगो । सिउत 6.5, H हिष्मम्टी ही विमे चॅटात्र

गोंड टी हॅध-दॅध छिचम्टी, तींतं (ड्छाभी उल्ल), h भुे

 E_{H} गठ।

$$
\begin{align*}
E_{H} & =m g H \tag{6.11a}\\
E_{h} & =m g h+\frac{1}{2} m v_{h}^{2} \tag{6.11b}\\
E_{O} & =(1 / 2) m v_{f}^{2} \tag{6.11c}
\end{align*}
$$

भमित घल, fिंत टिभ-टिठउठ घल $F(x)$ (spatially dependent force) हा टिथे टिम़ेम़ छिटागठर नै। पिम

$$
\begin{aligned}
& E_{H}=E_{0} \\
& \text { तां } \quad m g H=\frac{1}{2} m v_{f}^{2} \\
& v_{f}=\sqrt{2 g H}
\end{aligned}
$$

 हिँछ किगाटे चैपे रिंच से टेठा से लप्टी पूप्यउ रीउा विाभा मी। पिम ऊं पिलाल्डा

$$
E_{H}=E_{h}
$$

से प्टिन मंवेड रगटा नै वि

$$
\begin{equation*}
v_{\mathrm{h}}^{2}=2 g(H-h) \tag{6.11~d}
\end{equation*}
$$

पिठ ठउीसा, फ़्रूप ठउीवी सा पूँव साटिभायढाटिभा तडीता नै।

 हैंग्ता टिँच उघट्टील च नांटी नै भुे ड्रभी उल डे प्रठत

 ग्लवी छठी ठाम्ल लटावभा चसिभा नै। पिमसे तिभठउन घिंट्य A डे षिउती हेठा v_{0} टिम उवुं लवार्गिभा नांट्रा ने वि टित षन्ते टाभ उल हैँ भठर उॅवठ भाबग्ठ से पूष्षेयव ॅॅप (semi circular trajectory) గ్ర पिम उतुं उैभ वठता बै वि छठी
 निउठ 6.6 टूँच टिभर्गष्टिा विभा जै। तिमत ठग्मीभां लटी द्रिभ्भव (expression) यूप्यउ वंत (a) v_{0} :
 B भुे C के गाउत छिग्नाह्टां टा भर्रयन्ड $\left(K_{B} /\right.$
 यूविठडी डे टियटी वठ।

ひৈउठ 6.6

पिम लूपी घिश्टि A डे

$$
\begin{equation*}
E=\frac{1}{2} m v_{O}^{2} \tag{6.12}
\end{equation*}
$$

$$
T_{A}-m g=\frac{m v_{0}^{2}}{L}
$$

[किछिटर से ताडी से स्=मते किजन भर्मान]

 fिश्य C जे इती सा उताद्र $T_{C}=01$

$$
\begin{equation*}
E=\frac{1}{2} m v_{c}^{2}+2 m g L \tag{6.13}
\end{equation*}
$$

 मभीवठर (6.13) भंजे (6.14) ऊं यूपउ गूटा नै।

$$
E=\frac{5}{2} m g L
$$

$\frac{5}{2} m g L=\frac{m}{2} v_{0}^{2}$
सं', $v_{0}=\sqrt{5 g L}$
(b) मभीवठर (6.14) ऊं पित मॅॅन्नट चै वि

$$
v_{C}=\sqrt{g L}
$$

पिम लपी घिश्ट B іे छिठत्वा नै।

$$
E=\frac{1}{2} m v_{B}^{2}+m g L
$$

$$
\begin{aligned}
& \frac{1}{2} m v_{B}^{2}+m g L=\frac{1}{2} m v_{0}^{2} \\
& =\frac{5}{2} m g L \\
& \therefore v_{B}=\sqrt{3 g L}
\end{aligned}
$$

$$
\frac{K_{B}}{K_{C}}=\frac{\frac{1}{2} m v_{B}^{2}}{\frac{1}{2} m v_{C}^{2}}=\frac{3}{1}
$$

 यूस्षेय ही उवुं यूप्षेयी गाडी ठीव छिम उतुं टवमग्टेठार सिदें

6.9 विमे वमाट्टी सी मर्षिड्डित् छिठन्ना（The potential

 energy of a spring）

 मिठग विमे ट्टिड बंप ठाल स्ताइभा जै। मर्थविता गलवा जै

 भट्मषा टाल्ली मषिडी ऊं ट्रमषप्थठ x से मिया भत्रुण्डी
 पठाउभव（positive）fिँउठ（6．7b）तां विटाउभव （Negative）fॅउठ（ 6.7 c ）चे मवसा नै। मर्थरिता से लपी
 भउे गाटिउव ब़थ टिँच टिम उतुं टिभवउ वीउा ता मरसा テै।
（a）

（b）

 उां मर्यठिठा घल्ल F_{S} दी सी़ीन गै।

（c）रथी⿳亠二口丿 भयविंग लटी $x<0$ भडे $\mathrm{F}_{\mathrm{S}}>0$
（d） F_{s} भुडे x हे दै

$$
\begin{gathered}
\mathrm{W}_{s}=\frac{-k x_{m}^{2}}{2} \\
\mathrm{~F}_{s}=-k x
\end{gathered}
$$

 भाउतव Nm^{-1} चै। के k ता भात घवु क्तिभान्ता नै，उं

भंठ लछै वि भमीं गठटवे के पागठ दॅल, तिदें वि

 घल स्रभाठ रीउा विभा वग्वस

$$
\begin{align*}
W_{s} & =\int_{0}^{x_{m}} F_{s} \mathrm{~d} x=-\int_{0}^{x_{m}} k x \mathrm{~d} x \\
& =-\frac{k x_{m}^{2}}{2} \tag{6.15}
\end{align*}
$$

 गाटे डिज्ञात से षेउठढल ऊं ही प्थत वठ मवसे गं।
 वग्तस पहाउभव नै।

$$
\begin{equation*}
W=+\frac{k x_{m}^{2}}{2} \tag{6.16}
\end{equation*}
$$

 $W_{s}=-k x_{c}^{2} / 2$ वागत्त वठता चै तसें वि घागठी घल F , $+k x_{c}^{2} / 2$ वाठक रठहा नै।
 द्मिसण्ठ x_{f} उॅव दिमसण्धउ रीउा सांट्रा नै उां मर्थिठा घल स्रभाठ रीउा विभा वग्वस

$$
\begin{equation*}
W_{\mathrm{s}}=-\int_{x_{i}}^{x_{f}} k x \mathrm{~d} x=\frac{k x_{i}^{2}}{2}-\frac{k x_{f}^{2}}{2} \tag{6.17}
\end{equation*}
$$

 टर्गिय x_{i} मापिडी उॅर भम्ठिट निॅडा विभा गैद्टे उं

$$
\begin{equation*}
W_{s}=\int_{x_{i}}^{x_{i}} k x \mathrm{~d} x=\frac{k x_{i}^{2}}{2}-\frac{k x_{i}^{2}}{2}=0 \tag{6.18}
\end{equation*}
$$

 हैटागठर लपी, मभीवठर (6.17)। टिम एप्टी मर्थविता घल प्टिव मुरॅधिभ テै।

सरें गाटवा मंड़लिड महमघा (equilibrium) टॅॅ

टी मर्षाउत्त हिठत्रा $\mathrm{V}(x)$ त्रे भमीं क्तीठ मंठसे गं। विमे
 यउा लॉठाहा नै वि

$$
\begin{equation*}
V(x)=\frac{1}{2} k x^{2} \tag{6.19}
\end{equation*}
$$

प्टिम 이 मुट्रिपण्ड्टव टेठीढा्टी रीउा सा मवसा जै

 पिमटी मग्ठी जंडािर छिगत्नए, भाथटी भवत्नी ठाल छुटी वाटी विमे ही ममिडी x उै गेठ लिषे गु टैछ सैडी साग्टेगी,

$$
\frac{1}{2} k x_{m}^{2}=\frac{1}{2} k x^{2}+\frac{1}{2} m v^{2}
$$

$$
\frac{1}{2} m v_{m}^{2}=\frac{1}{2} k x_{m}^{2}
$$

$$
\text { तां } \quad v_{m}=\sqrt{\frac{k}{m}} x_{m}
$$

पिभग्ठ टिछ कि k / m टीभां दिभां $\left[\mathrm{T}^{-2}\right]$ चैभडे पिड

 घटा वे तित्रथट रोउा निभा जै।

 जंडािव हितन्ना $\mathrm{E}=\mathrm{K}+\mathrm{V}$ ग्मेम्नां ममिठ ठरीग्टी चै।

 से मर्थािंगां ता ढठेभ उडुा वे उलतीभां उप्टीभां वागं टीभां टॅववं टा भयिभेत वग्े उठ। मंत लछ

 छाल ठाल चॅलसे गेपे, सिउत्सी ढठेभ डे चहुग्टे गापे मर्थतिता ठाल टॅवत वतली ने निमस्रा मर्थविता मापित भंव $6.25 \times 10^{3} \mathrm{~N} \mathrm{~m}^{-1}$ नै। मर्यकिता सा भयिकउस ठपोइत री गेटेगा ?

ฮॅल्त : वग्व टी वाउस हितन्न भयिवउस तयीइत डे
 テँ सांट्टी चै। ठाउीमील वाठ ही ठाउस छित्ता -

$$
\begin{aligned}
K & =\frac{1}{2} m v^{2} \\
& =\frac{1}{2} \times 10^{3} \times 5 \times 5 \\
K & =1.25 \times 10^{4} \mathrm{~J}
\end{aligned}
$$

पिपेषे वग्व ही चल $18 \mathrm{~km} \mathrm{~h}^{-1}$ 이 प्रिमटे SI भाठ 5 $\mathrm{m} \mathrm{s}^{-1}$ टिँ परिट्रर्णउड वठ सिॅउा विभा नै। | सिँघे हिण यिभात उॅषट जठा डै कि $36 \mathrm{~km} \mathrm{~h}^{-1}=10 \mathrm{~m} \mathrm{~s}^{-1}$] जर्डािव
 जे मर्थीिंग ही मर्षिउत हिठत्रा (V), गाडीमील वाठ ही

$$
\begin{aligned}
V & =\frac{1}{2} k x_{m}^{2} \\
& =1.25 \times 10^{4} \mathrm{~J}
\end{aligned}
$$

Јॅम वठठ डे भमीं थूप्य वउटे गं

$$
x_{m}=2.00 \mathrm{~m}
$$

 चै भडे मइब सा गठाइ तराठरजता नै।

भमीं मुवॅसिभि ठणगट टाले घलां डे वु टिॅटी वठ्टे गेटे पिम भर्ठडगा सा मभप्थठ वठटे गं-
 मुछठा रठीं नै। पिम छिटागठत हैँ भमीं ऊथीइत हा पाठवलत वठ मवसे गं पठ छिम मभें भீउठग्ल हा पठिवल ठणीं वठ मवसे किम टिँच पिण रपोइत Јैष्टिभ चै।
प्टिम लप्टी मभें टी मुछठा यूप्यउ वठत लपी पिम
 टी लेड्ड नै।

(iii) मर्मिउत्स हित्ना सा नीवंत भायटी भत्नी ठाल
 वत मिभा सांत्रा वै। नर्थविता पू से लप्टी $x=0$, डे भमीं $V=0$ लेंटे गं, भवपाउ घितां दैषे
 गाठुउाभव्वम्नट घल $m g$ हे लप्टी भमीं पठडी टी मर्डात डे $\mathrm{V}=0$ लिभा मी । भताले या टिॅस भमों सेष्वांतो वि गाठुउभावगम्नट से मतट-टिभाथव

 छैमे ठिजभ टी यएल्लता वठठी छग्गोटी चै।
 डा भग्ठ 0.5 से वे वभाटी से भायवउस तथीइत टा परिवलू वठ।

 किसें वि नैउत 6.9 टिँच सिधर्गष्टिभा विभा जै।

ศैँडठ 6.9 विमे वर्ठ डे एॅठाभा घल ।
टिघे भानीं जंडािव छिवन्ना मुर्वपिभट से मियांड ही घां डे वग्वस Өिठता यूभेज ही टठउं वठटे गंगाउत छैठत्रा दूँ यािट्टठउत चै।

$$
\Delta K=K_{f}-K_{i}=0-\frac{1}{2} m v^{2}
$$

$$
W=-\frac{1}{2} k x_{m}^{2}-\mu m g x_{m}
$$

 गं।

$$
\frac{1}{2} m v^{2}=\frac{1}{2} k x_{m}^{2}+\mu m g x_{m}
$$

टिँघे $\mu \pi \Pi$ g $=0.5 \times 10^{3} \times 10=5 \times 10^{3} \mathrm{~N}(g=10.0$

 यूप्थउ गुटी चै－

$$
\begin{aligned}
& k x_{m}^{2}+2 \mu m g x_{m}-m v^{2}=0 \\
& x_{m}=\frac{-\mu m g+\left[\mu^{2} m^{2} g^{2}+m k v^{2}\right]^{1 / 2}}{k}
\end{aligned}
$$

 हिँछ उठर डे भमीं यूप्य वठटे गंー

$$
x_{m}=1.35 \mathrm{~m}
$$

以ॅट नै।

$$
\left(F_{c^{+}}+F_{n c}\right) \Delta x=\Delta K
$$

यठ

$$
F_{c} \Delta x=-\Delta V
$$

टिम लपी $\quad \Delta(K+V)=F_{n c} \Delta x$

$$
\Delta E=F_{n c} \Delta x
$$

 ठिभठ ప్ల से लैंटी चै।

$$
E_{f}-E_{i}=W_{n c}
$$

 （Various forms of energy ：The law of conservation of energy）

यिबले नैवमतर नॅँच भामीं जांडरिव छिठत्ब ही

6．10．1 उप（Heat）

 उगिट टाल्ला घल ठगीं नै। यठ वग्त，गठाइ घल ठाल

 चैंटिभा x_{0} ग्डती सॅल वे त्रूव सांस्ता तै x_{0} हे तारित तताउ

 भमीं वगंठो वि गाटवे ही गाउत छिग्ना，हा गठाइ घत्र

 भडे गाटवे 이 मघाठांर्उतिउ चं विभा नै सा ताटवे भडे
 भमीं भापटीभां उप्षेलीभां 유 भण्थम टिँच नैठ ठाल गठाइ वे उत्र चैसा वतसे गं। भमीं प्राभर हैँ सेधांतो वि

 रीडी का मवही नै fि 1 kg या्टी $10^{\circ} \mathrm{C}$ ठंबा बट डे 42000 J छिठस भुवउ वठरा नै।

6．10．2 गमर्ग्टिट्व छिठका（Chemical Energy）

 वीडी स＂ें टित यउा लवार्गिभा वि भॅता कृष विदें घर्वस्भा

 वीउी ठापी ठमर्ग्टिट्व मर्डां डे ठठाइी सांटी चै उां हिण पिर छभरीली सहाल्ला से गुर हैँच घलट लॅगाटी नै। सざं

तमर्गपटिट हितना，तमर्गिटि वितिभा हिॅस वियम
 चैटा गुंटी बै। टिव ममित वमर्शिट्टर जनिाव ही हिगत्ता

टिद्ममा चै। ने भाडवर्वरां (reactants) टी वृल्ल हिग्ना,
 गेसा चै भवपांड वितिभा उर्थातिर्मी (exothermic) ग़ंटी चै। से पिम से छिमट गुसा चै उां उत्र हिग्का मिधिउ चट्टेती भरमप्ड वितिभा उपमूधी (endothermic) वेटेगी।
 ठाल $3 \times 10^{7} \mathrm{~J}$ हिवसा भुवउ गुंटी नै।

 (Polymeric) लडी भर्गय दूँच घंतु fिंसे गठ। वमा,

6.10.3 घित्नलप्टी हिठन्रा (Electrical Energy)

 चग्वां टे भावठम्नट-यूडउभावगम्नट मिघ्षयी किजनां भडे

 テै।

6.10.4 భ्ञ सof Mass and Energy)

 घटल मवटी नै थठ पटागष तां भा्टा ठा डे थैटा वीउा का मवडा चै भडे ठा गी ठमट। भ्भयत, भलपवट (Albert Einstein) भाप्टीठमटीत (1879-1955) रे पूटर्विउ रीउ
 तिभरालिषड मभीवठत ट्रभाठ मंर्घयिड गुँ्टे गठ—

$$
\begin{equation*}
E=m c^{2} \tag{6.20}
\end{equation*}
$$

हठగट	Өिठनए (Ј)
घिठा घेंगा टॅँु टिबस्टो Өिग्ता	10^{68}
	10^{55}
	10^{52}
	10^{44}
	10^{34}
	10^{29}
	5×10^{24}
	10^{22}
	3×10^{20}
	10^{20}
लिम्नवटी घित्त>ो	10^{15}
1000 kg वँले टे टगित नं पैटा Өिठत्रा	3×10^{10}
	10^{9}
	3×10^{7}
	10^{7}
	0.5
	10^{-3}
	10^{-7}
	10^{-10}
	10^{-13}
	10^{-18}
	10^{-20}

 $3 \times 10^{8} \mathrm{~m} \mathrm{~s}^{-1}$ से घ घगप्वर नै। प्टिम लप्टी मिठढ पूँव
 वठ हेट ट्राल्ली नै।

$$
\begin{aligned}
& E=1 \times\left(3 \times 10^{8}\right)^{2} \mathrm{~J} \\
& E=9 \times 10^{16} \mathrm{~J}
\end{aligned}
$$

सित पूँव घगु दूहे थैभग्रे डे घित्नली पैस्रा वठत
 उॅल ฮै।

6.10.5 ठर्गबरी Eिठता (Nuclear Energy)

 (मभीवठर (6.20)) मैघ्येय ही भर्डिद्धिवडी जै, قैपे हैमते
 हिठ्ना टी टिभारिभा ही छिथनवड मभीवगत डे गो

 यलांट (Nuclear power plant) स्थभाग घित्नलपी छितना

 चै।

Qिटागतर 6.10 मागटी 6.1 ऊं 6.3 ऊॅव सा यठीघट

 गद्रा से पिर मट्ड ही गाउस हिग्का $\left(10^{-21} \mathrm{~J}\right)$ पिलैवट्रांत हलट दूॅध (c) विमे प्रालता महुॅध हा चक्ञार्ठा भाग्ग (विस्ल कैल्लठी टॅँच)
 कात्रठी छिठता चै-

$$
\frac{10^{-20}}{1.6 \times 10^{-19} \mathrm{~J} / \mathrm{eV}} \simeq 0.06 \mathrm{eV}
$$

पिभात निध्ठ $0.1 \mathrm{eV}=100 \mathrm{meV}(100$ fिली पिलैबट्रां दल्लट)
(b) ग्रा से भट्ह टी गाउत छिव्ना नै-

$$
\frac{10^{-21} \mathrm{~J}}{1.6 \times 10^{-19} \mathrm{~J} / \mathrm{eV}} \simeq 0.0062 \mathrm{eV}
$$

पिठ 6.2 meV से घठग्वत ने।
 ภै-

$$
\frac{10^{7} \mathrm{~J}}{4.2 \times 10^{3} \mathrm{~J} / \mathrm{kcal}} \approx 2400 \mathrm{kcal}
$$

 ब्रसेषे टॅल पिभा्ठ सिद्धिंटे गं। घिठ उत्तर सी भाउठ

 सलटी कुॅा भठ सग्टेगा। 1 छैसर वैलठी भाभ वठरे 1 विल्य ॠल ती गो चै।

ple of Conservation of Energy)

भमीं हिव सेसिभा जै वि विमे ही मिमटा ही वूल

 मग्ठे ठुथां टा पिभग्ठ वॅषट डे भमीं टिच यूपउ वठटे गं

 मिमटभ ही वॅल छिग्ता पटिट्रर्णउउ ठगीं गेसी। छिग्ता

 ठ वी कम्।

 हिठक्षा सा द्या उटा बागीटा बै।

 मग्गणटे ठडीं भा्टी नै। मुर्वॅचिभट ही पागठा भुे दॅצ-

6.11 म्नडी（POWER）

 मिंड डे विंता रांत्त वीउा विभा घर्लाव पिच तालता ही सुगु ने वि पिन वर्गत विम टठ डे रीउा विभा चै। भमीं

 उॅव चइटा गी ठगीं घर्लार उेती ठाल चइत्रा है। टिम लप्टी म्नरडी（Power）त्र छिम मभें टठ ठाल राठठर्गमिड वठसे गां निम ठाल वाठत्स रीउा निभा सां छिठन्ना मघग्रांडविड गप्टी। विमे घल टो भँमउ मूडी छिम घल्ल

$$
P_{a v}=\frac{W}{t}
$$

 मूडी से मीभांड मार से गुर टिँध पािक्रामिड वतसे गं

$$
\begin{equation*}
P=\frac{\mathrm{d} W}{\mathrm{~d} t} \tag{6.21}
\end{equation*}
$$

 गेठ लिषे भठ्रमग टिभवड वठ मवसे गं－

$$
\begin{align*}
P & =\mathbf{F} \cdot \frac{\mathrm{d} \boldsymbol{r}}{\mathrm{~d} t} \\
& =\mathbf{F} \cdot \mathbf{v} \tag{6.22}
\end{align*}
$$

दिपे v उउवाल्मी देठा（instantaneous velocity）合 सर्ं वि प्रल्ल \mathbf{F} बे।

 सेभम हाट से ठां उे मूडी सा भाउठव हांट（W）すॅषिभा टिभा जै।
 power）चै।

1 யॅन मबडी（hp）$=746 \mathrm{~W}$
हिण भाउतर भॅन ही राव，भटठमग्टीवष्ल भार्गि हो
 टर्गउभा सांटा वै।

सरें भमीं प्वित्तलप्टी छियवठठां；किलें－प्वित्तमप्टी पूप्त，

 घथउ रठहा वै।

भुपाउ 100 हाट $\times 10$ 氏ंटा

$$
\text { = } 1000 \text { ट्ग्ट थंटा }
$$

$$
=1 \text { विॅलॅट्ट-ûटा (kWh) }
$$

$$
=10^{3}(\mathrm{~W}) \times 3600(\mathrm{~s})
$$

$$
=3.6 \times 10^{6} \mathrm{~J}
$$

घित्तमपी हिवत्ता टी षथउ से लप्टी फ్ᅢूल，भगउतर kWh

 हिठता सा भाउतव नै ठा वि म्नवडी सा।
 （मि．ढट＋जाउतीभां ला） 1800 kg चै，Вॅच टॅल $2 \mathrm{~ms}^{-1}$ ही ममिठ चाल ठाल ठाठीमील जै। 4000 N टा उताइ घल टिम टी गाडी टा दितेय रठटा नै
 मूरडी हा भावलत हाट्ट भठे ய्ञ मरडी हिँच वँ।

Јॅल्ल ：लि．ढट डे गेठां दॅल గ్ గ్ लॅगट हाल्ला घल्ल
$F=m g+F f=(1800 \times 10)+4000=22000 \mathrm{~N}$
 म्रवडी ही भएँठडी वीडी ताली छग्गोटी बै।

टिम लप्टी $P=\mathbf{F} . \mathbf{v}=22000 \times 2=44000 \mathrm{~W}=$ 59 hp

6.12 टॅवरं（Collisions）

 टा भयिभैठ वठते गं। ठाल गो ठाल भमीं भनिगीभां

 टाल्ले टठउग्ठे（phenomenon），निम 융＇टॅवठ बटा＇
 निटें－पिसिभ्भठड，भावघल कां बैठभ भर्गि हैँ टॅवठ

निँडन. 6.10 विमे टरग'्రिटा

 टेठां भडे वटां टिछ किम्निष मिघंय वै।

6.12.1 लच्चवहा्ठ भडे ठोठ-लचवहाठ टॅवठ (Elastic and Inelastic Collision)

मग्ठीभां टॅवां दूँच मिमटभ बा वूप्ठ ठेषी मंटेठा (total linear momentum) तिम्मिति (constant) गरिंटा

 रीडा सा मरहा चै। सरें चे रिंच टॅवठ वठटे गठ उां टवठणिट से मभें Δt टूँस छिगठां के लॅता तिग भmमी भाग्टेती प्रक्ल (mutual impulsive force), हिगठां से
 త̃ं गठ।

भवसाउ :-

$$
\begin{aligned}
& \Delta \mathbf{p}_{1}=\mathbf{F}_{12} \Delta t \\
& \Delta \mathbf{p}_{2}=\mathbf{F}_{21} \Delta t
\end{aligned}
$$

 ऊॅताभा घल चे। किछिटत से ताउी टिजन से डीमते ठिजन

$$
\Delta \mathbf{p}_{1}+\Delta \mathbf{p}_{2}=\mathbf{0}
$$

द्ला 'मरििंता' पितां विमे छितना ग्टी से भाजटी भुल

 टॅवठ (elastic collision) विण सांट्टा नै । हैमते यग्मे ने

 टॅवत (completely inelastic collision) रीिश्रे गठ ।

 (inelastic collision) विण सांट्रा नै।

6.12.2 पूँव दिमी टॅवठ (Collisions in One Dimension)

 टॅवठ (completely inelastic collision) सा पूर दिस्भ हिँ भायिभेत वठरे गं। चैउठ 6.10 ऊैं,

$$
\begin{align*}
& \theta_{1}=\theta_{2}=0 \\
& m_{1} v_{1 i}=\left(m_{1}+m_{2}\right) v_{f} \quad \text { (मिट्रा मुपॅरिभर) } \\
& v_{f}=\frac{m_{1}}{m_{1}+m_{2}} v_{1 i} \tag{6.23}
\end{align*}
$$

$$
\begin{aligned}
& \Delta K=\frac{1}{2} m_{1} v_{1 i}^{2}-\frac{1}{2}\left(m_{1}+m_{2}\right) v_{\zeta}^{2} \\
= & \frac{1}{2} m_{1} v_{1 i}^{2}-\frac{1}{2} \frac{m_{1}^{2}}{m_{1}+m_{2}} v_{1 i}^{2}
\end{aligned}
$$

[(6.23) मभीवठठ ही हठテं वठवे]

$$
\begin{aligned}
& =\frac{1}{2} m_{1} v_{1 i}^{2}\left[1-\frac{m_{1}}{m_{1}+m_{2}}\right] \\
& =\frac{1}{2} \frac{m_{1} m_{2}}{m_{1}+m_{2}} v_{1 i}^{2}
\end{aligned}
$$

से वि किटें मेणिभा मी पठग्उमव उग्मी नै।

 बतरे $\theta_{1}=\theta_{2}=0$ हैट डे, तेषी मंटेता भरे ताउत हिवत्ता टे म्रॉषिभट टी मभीवठर चै-

$$
\begin{align*}
& m_{1} v_{1 i}=m_{1} v_{1 f}+m_{2} v_{2 f} \tag{6.24}\\
& m_{1} v_{1 i}^{2}=m_{1} v_{1 . f}^{2}+m_{2} v_{2 f}^{2} \tag{6.25}
\end{align*}
$$

$$
m_{1} v_{1 i}\left(v_{2 f}-v_{1 i}\right)=m_{1} v_{1 f}\left(v_{2 f}-v_{1 f}\right)
$$

सं', $\quad v_{2, f}\left(v_{1 i}-v_{1, f}\right)=v_{1 i}^{2}-v_{1, f}^{2}$
$=\left(v_{1 i}-v_{1 . f}\right)\left(v_{1 i}+v_{1 . f}\right)$
पिम लपी, $\quad v_{2 f}-v_{1 i}+v_{1, f}$

$$
\begin{equation*}
v_{1, f}=\frac{\left(m_{1}-m_{2}\right)}{m_{1}+m_{2}} v_{1 i} \tag{6.27}
\end{equation*}
$$

भउे $v_{2, f}=\frac{2 m_{1} v_{1 i}}{m_{1}+m_{2}}$
पिम उतुं' 'भाठाभाउ उग्नीभां’ $\left(v_{1 \rho}, v_{2 f}\right)$ निभाभ्ड

टस़ा 1 : से సैदें प्रंत्त घटम्वठ गर, भवघग्ड $m_{1}=m_{2}$, उां

$$
\begin{aligned}
& v_{1 f}=0 \\
& v_{2!}=v_{1 i}
\end{aligned}
$$

 टेठा प्थाउ वठ लैंटा जै।
 घगु दूप गेदे, भुपाउ $m_{2} \gg m_{1}$, उां

$$
v_{1 f,} \simeq-v_{1 i}, v_{2 f}=0
$$

 छिलट टिम़ा टिँच च सांट्रा नै।

 मेंनिड वठ सिउा साटा छग्गीटा उांव ठर्गकरी
 मभमघणनिव (isotope) ${ }_{02}^{235} \mathrm{U}$ ठाप्ू विठिभा ही मैउाद्टर घणु निभिग्टा चं साद्टे। मिपय वठ वि

 वु ताटा नै, ठाल लषवर्ता टॅवत वतर दूँ भाधटी हयेठे वठरे गाउत छिग्ता ही ग्टी वर fिंडा नै। भािते यहग्ठप भाज वठरे उग्ठे यक्टी (heavy water) ($\mathrm{D}_{2} \mathrm{O}$) सां ठो्हाप्टीट, ने किछिट्रां्र टी गाडी గ్ గै भंट वठ fिंटे गठ, ‘भैटव’ (moderator) वण्छिंटे गठ।

$$
K_{1 i}=\frac{1}{2} m_{1} v_{1 i}^{2}
$$

संँ वि मभीवठर (6.27) ऊं टिम टी भंगिभ गाउत्त हिठता テै

$$
K_{1, f}=\frac{1}{2} m_{1} v_{1 f}^{2}=\frac{1}{2} m_{1}\left(\frac{m_{1}-m_{2}}{m_{1}+m_{2}}\right)^{2} v_{1 i}^{2}
$$

भंमिव गाउत्त हिठता टी ग्टी

$$
\int_{1}=\frac{K_{1 f}}{K_{1 i}}=\left(\frac{m_{1}-m_{2}}{m_{1}+m_{2}}\right)^{2}
$$

 हाप्या जै $K_{2 f} / K_{1 i}$

$$
\begin{gathered}
f_{2}=1-f_{1} \text { (लुवराठ टॅवठ) } \\
=\frac{4 m_{1} m_{2}}{\left(m m_{1}+m_{2}\right)^{2}}
\end{gathered}
$$

सित ठडीका मभीवतर (6.28) ऊं उठ वे ही मिय वीउा सा मरहा चै।

उिछिटीठीभभ सप्टो $m_{2}=2 m_{1}$ भठ्ड भमीं प्थत वउटे गं $f_{1}=1 / 9$. तर्टं वि $f_{2}=8 / 9$ जै। प्टिम लप्टी किणिट्टा टी
 चै।वगघर हपी $f_{1}=71.6 \%$ भडे $f_{2}=28.4 \%$ जै। ग्लांव,
 टिाटडी घगु फॅट गुंटी नै।
 मठल ठेधा से ठगल-ठाल वग्तन वग्टे गट उां भातनी टॅवठ 으 टिव टिभी टॅवठ तां मियी टॅवठ (head-on collision) ररिं्टे गठ। हँटे नॉले हठगो रिंइां से लप्टी

 टॅवठ च टिभी (two-dimensional) वगण्७िंटी नै।

6.12.3 $\begin{gathered}\text { से-fिभी टॅवठ (Collisions in Two Dimensions) }\end{gathered}$

 टॅवठ గ్이 पूटरम्निउ वठटा चै। पिम उतुं टी टॅवठ टिँच ठेधी
 चै प्रिम लप्टी पिठ डिंत चिक्रा्टां $\{x, y, z\}$ लप्टी fिंत मभीवठत

fॅॅय टॅवठ डे पॅॅव पूँचा

An experiment on head-on collision

 मघआअठा तालांव (coefficient of restitution) यउा वठ मवरे चे।

 गलरी तोंस लताउता 3 m छिसम्टी ऊॅव हैॅथत आांटी तै। भाविभाम से ठाल उमीं

 $x-y$ उत्र दिँछ नै। x-uटर भुे y-uटव से मभीवठर गे लिषे गठ-

$$
\begin{align*}
& m_{1} v_{1 i}=m_{1} v_{1 f} \cos \theta_{1}+m_{2} v_{2 f} \cos \theta_{2} \tag{6.29}\\
& 0=m_{1} v_{1 f} \sin \theta_{1}-m_{2} v_{2 f} \sin \theta_{2} \tag{6.30}
\end{align*}
$$

 चग्व भविभांड ठग्मीभां $\left\{v_{1 f}, v_{2 f}, \theta_{1}, \theta_{2}\right\}$ यूप्पउ गुसीभां गठ, सर्ं वि माइे बल मिठ.ढ से मभीवठरां गर । से $\theta_{1}=\theta_{2}$ $=0$, भमीं भुइ टिव द्रिभी टॅवठ से लप्टी मभीवठत (6.24) यूप्यु वठ लेंटे गं।

ग्ट ने टॅवठ ल甘रहाठ नै उां
$\frac{1}{2} m_{1} v^{2}{ }_{1 i}=\frac{1}{2} m_{1} v_{1, f}^{2}+\frac{1}{2} m_{2} v^{2}{ }_{2 . f}$
सिण मभीवठर (6.29) भुजे (6.30) ऊं टिला्ट्र टूव उठ मभीवठर fिंता चै। यठ भाषे ही माइे वल मग्ठीभां

 टिभाज्ड चेटी छागीटी नै। छिटागठर लप्टी, वेट θ_{1} टा

 $\left.m_{2}, v_{I f}, \theta_{1}\right\}$ से fिभार मूलूां ऊं भमीं मभीवठर (6.29)(6.31) ही हठउं वगवे $\left\{v_{1 f}, v_{2 f}, \theta_{2}\right\}$ हा कितयम्ठर वठ मवसे गं।

छिटागतर 6.13 मंठ लछ fि fैँउठ 6.10 हैँ

 दिध परिली ठोंस 'वज़' (cue, इंडा) वग्छेंटी चै

 गाउी मॅॅउद्थ

Јॅल्ड : विछिंवि प्रैस घटम्वर गठ पिम लप्टी मियेता मुरॅपिभाठ से ठिजन भठ्रम्ठ

$$
\mathbf{v}_{1, f}=\mathbf{v}_{1, f}+\mathbf{v}_{2, f}
$$

मभीवठर से ऐंरें पर्मिभां टा टृठा (squaring) वठठ

$$
\begin{align*}
\mathrm{J} \quad v^{v_{1 i}^{2}} & =\left(\mathbf{v}_{1 f}+\mathbf{v}_{2 f}\right) \cdot\left(\mathbf{v}_{1 f}+\mathbf{v}_{2 f}\right) \\
& =v_{1 . f}{ }^{2}+v_{2 f}^{2}+2 \mathbf{v}_{1 f} \cdot \mathbf{v}_{2 f} \\
& =\left\{v_{1 f}^{2}+v_{2, f}^{2}+2 v_{1 f} v_{2 f} \cos \left(\theta_{1}+37^{\circ}\right)\right\} \tag{6.32}
\end{align*}
$$

 यूप्यु वठटे गं $v_{1 i}{ }^{2}=v_{1, f}{ }^{2}+v_{2 f}{ }^{2}$

हिपतवड సतं मभीवतरां (6.32) भडे (6.33) सी उ़लता वठत डे

$$
\cos \left(\theta_{1}+37^{\circ}\right)=0
$$

पिम लप्टी $\theta_{1}+37^{\circ}=90^{\circ}$
सां,

$$
\theta_{1}=53^{\circ}
$$

 वठठठो।

 सेत हैँच ठीव भातित गी ग़ंस्ता नै।

 भलढ़ा वट विमे ठर्गवर हॅल भाछिंसा चस्टिभा विमे सिफ़ा

 टेठा, छिगठां से प्रित, भा्वाठ भडे माप्टीक़त भडे छिगठां

मग (SUMMARY)

 $K_{f}-\bar{K}_{i}=W_{\text {net }}$

 थागउर्म्मिउ वर मवहे गं-

$$
F(x)=-\frac{\mathrm{d} V(x)}{\mathrm{d} x}
$$

सं
 हिठत्रा मसित उनगैंदी नै।

$$
V(x)=\frac{1}{\Omega} k x^{2}
$$

$\hat{\mathrm{i}} \cdot \hat{\mathrm{i}}=\hat{\mathrm{j}} \cdot \hat{\mathrm{j}}=\hat{\mathbf{k}} \cdot \hat{\mathbf{k}}=1 \boldsymbol{\text { भ }}$ 今 $\hat{\mathrm{i}} \cdot \hat{\mathrm{j}}=\hat{\mathrm{j}} \cdot \hat{\mathbf{k}}=\hat{\mathrm{k}} \cdot \hat{\mathrm{i}}=0$

ड̄ंड़ गमनी	यूडीव	fer	нгЈव	f̌uct
वरठत्त	W	$\left[\mathrm{ML}^{2} \mathrm{~T}^{-2}\right.$]	J	$\mathrm{W}=\mathbf{F} . \mathbf{d}$
गाउतन छिगता	K	$\left[\mathrm{ML}^{2} \mathrm{~T}^{-2}\right.$]	J	$K=\frac{1}{2} m v^{2}$
	$V(x)$	$\left[\mathrm{ML}^{2} \mathrm{~T}^{-2}\right]$	J	$F(x)=-\frac{\mathrm{d} V(x)}{\mathrm{d} x}$
	E	$\left[\mathrm{ML}^{2} \mathrm{~T}^{-2}\right]$	J	$E=K+V$
	k	$\left[\mathrm{ML}^{-2}\right]$	$\mathrm{N} \mathrm{m}^{-1}$	$\begin{aligned} & F=-k x \\ & V(x)=\frac{1}{2} k x^{2} \end{aligned}$
मूरडी	P	$\left[\mathrm{ML}^{2} \mathrm{~T}^{-3}\right]$	W	$\begin{aligned} & \mathrm{P}=\mathbf{F} \mathbf{v} \\ & \mathrm{P}=\frac{\mathrm{dw}}{\mathrm{~d} t} \end{aligned}$

हिधग्रतजना हिमे (Points to ponder)

$$
\mathbf{F}_{12}+\mathbf{F}_{21}=0
$$

$$
W_{12}+W_{21} \neq 0
$$

भेथव, वटे-वटे टिग मॅष टी च मवसा चै।

भविभाग (EXERCISES)

 पताउभव गत सां विलाउभव -

(a) लठाप्टे ठाप्टे पल स्लभात 10 s टिँछ वीउा विभा रावस ।
(b) ठठाइ स्रभाग 10 s हैँ रीडा विभा रावस।

6.5 तिमरालिष्ध सा छै उत निस्
 यूज्ड वीडी वाप्री-वग्वेट नां द्राउाटतर ?

 テैं। विषिं?

6.6 मगी द्व वल्लน

 वै। भर्थविटर्ताउड तीविती चै।

(i)

(ii)
fૈ゙కठ. 6.13

 च ।

 मिया भरुथाड्डी चै।
(i) $t^{1 / 2}$
(ii) t
(iii) $t^{3 / 2}$
(iv) t^{2}

(i) $t^{1 / 2}$
(ii) t
(iii) $t^{3 / 2}$
(iv) t^{2}
 विभा जै ने प्टिम यूरग्ठ चै-

$$
\mathbf{F}=(-\hat{\mathbf{i}}+2 \hat{\mathbf{j}}+3 \hat{\mathbf{k}}) \mathrm{N}
$$

 $\left.1.67 \times 10^{-27} \mathrm{~kg}, 1 \mathrm{eV}=1.60 \times 10^{-19} \mathrm{~J}\right)$

 स्रभाग रीउा विभा वग्त विंतां गेद्देगा?

 ही टठऊं वीउी वापी ?

 संत्रा जै।

 ध़ार्ली गट से घाप्ट टठग्ली हो चाल री गेटेती ?

 யहडा $1.2 \mathrm{~kg} \mathrm{~m}^{-3}$ चै उां भैंटा च्ची घितल

 धेउठढल रुग्ल वरे।

हाय्य भाडिभाग्म（ADDITIONAL EXERCISES）

だउアठ． 6.16

चैँॅठ． 6.17

Fैँテठ. 6.18

 ठगीं टे मरटा (fच̈उठ 6.19)

नैउठ. 6.19

POWER CONSUMPTION IN WALKING

 म्हची दिध fॅॅडी गापी चै।

fिविभा-वराध	Hरडी (W)	
मेंटे मरें	75	
गैड़ी मैठ	200	
मप्टोवल उलיखिंटे	500	
चिल टी पइवर	1.2	

भउे भैटत टा चै।(fॅउठ 6.20 ऐेषे)
(ii) गहा युउउतय तिठाटा जै।

 लॅड पठडी डे नै भडे fिमटे छिलूट (vice-versa)

$$
\begin{equation*}
W_{s}=2 \pi m_{l} v_{0}^{2} \tag{6.34}
\end{equation*}
$$

 पिम लटी

$$
W_{\mathrm{s}}=180 \text { స్త్ } / \text { वटम }
$$

 चै। प्मि उवुं भ̣न्ठ रीउी मृबडी

[^0]: * g चा छिछम्टी से ठाल घटलळा भमीं याठ 8 टिँ टॅमांगो।

