
vMathematics, in general, is fundamentally the science of
self-evident things. — FELIX KLEIN v

2.1  Introduction
In Chapter 1, we have studied that the inverse of a function
f, denoted by f –1, exists if f is one-one and onto. There are
many functions which are not one-one, onto or both and
hence we can not talk of their inverses. In Class XI, we
studied that trigonometric functions are not one-one and
onto over their natural domains and ranges and hence their
inverses do not exist. In this chapter, we shall study about
the restrictions on domains and ranges of trigonometric
functions which ensure the existence of their inverses and
observe their behaviour through graphical representations.
Besides, some elementary properties will also be discussed.

The inverse trigonometric functions play an important
role in calculus for they serve to define many integrals.
The concepts of inverse trigonometric functions is also used in science and engineering.

2.2  Basic Concepts
In Class XI, we have studied trigonometric functions, which are defined as follows:

sine function, i.e., sine : R ® [– 1, 1]
cosine function, i.e., cos : R ® [– 1, 1]

tangent function, i.e., tan : R – { x : x = (2n + 1) 2
p

, n	Î Z} ® R

cotangent function, i.e., cot : R – { x : x = np, n Î Z} ® R

secant function, i.e., sec : R – { x : x = (2n + 1) 
2
p

, n	Î Z} ® R – (– 1, 1)

cosecant function, i.e., cosec : R – { x : x = np,  n	Î Z} ® R – (– 1, 1)
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We have also learnt in Chapter 1 that if f : X®Y such that f (x) = y is one-one and
onto, then we can define a unique function g : Y ®X such that g (y) = x, where x Î X
and y = f (x), y Î Y. Here, the domain of g = range of f and the range of g =  domain
of f. The function g is called the inverse of f and is denoted by f –1. Further, g is also
one-one and onto and inverse of g is f. Thus, g –1 = (f –1)–1 = f. We also have

(f –1 o f ) (x) = f –1 (f (x)) = f –1(y) = x
and (f o f –1) (y) = f (f –1(y))  = f (x) = y

Since the domain of sine function is the set of all real numbers and range is the

closed interval [–1, 1]. If we restrict its domain to ,
2 2

-p pé ù
ê úë û

, then it becomes one-one

and onto with range [– 1, 1]. Actually, sine function restricted to any of the intervals

3 –,
2 2

- p pé ù
ê úë û

, ,
2 2

-p pé ù
ê úë û

, 3,
2 2
p pé ù

ê úë û
etc., is one-one and its range is [–1, 1]. We can,

therefore, define the inverse of sine function in each of these intervals. We denote the
inverse of sine function by sin–1 (arc sine function). Thus, sin–1 is a function whose

domain is [– 1, 1] and range could be any of the intervals 3 ,
2 2

- p -pé ù
ê úë û

, ,
2 2

-p pé ù
ê úë û

 or

3,
2 2
p pé ù

ê úë û
, and so on. Corresponding to each such interval, we get a branch of the

function sin–1. The branch with range ,
2 2

-p pé ù
ê úë û

 is called the principal value branch,

whereas other intervals as range give different branches of sin–1. When we refer
to the function sin–1, we take it as the function whose domain is [–1, 1] and range is

,
2 2

-p pé ù
ê úë û

. We write  sin –1 : [–1, 1] ® ,
2 2

-p pé ù
ê úë û

From the definition of the inverse functions, it follows that sin (sin –1 x) = x

if  – 1 £ x £ 1 and sin–1 (sin x) = x if 2 2
x

p p
- £ £ . In other words, if y = sin–1 x, then

sin y = x.

Remarks
(i) We know from Chapter 1, that if y = f (x) is an invertible function, then  x = f –1 (y).

Thus, the graph of sin–1 function can be obtained from the graph of original
function  by interchanging x and y axes, i.e., if (a, b) is a point on the graph of
sine function, then (b, a) becomes the corresponding point on the graph of inverse
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of sine function. Thus, the graph of the function y = sin–1 x can be obtained from
the graph of y = sin x by interchanging x and y axes. The graphs of y = sin x and
y = sin–1 x are as given in Fig 2.1 (i), (ii), (iii). The dark portion of the graph of
y = sin–1 x represent the principal value branch.

(ii) It can be shown that the graph of an inverse function can be obtained from the
corresponding graph of original function as a mirror image (i.e., reflection) along
the line y = x. This can be visualised by looking the graphs of y = sin x and
y = sin–1 x as given in the same axes (Fig 2.1 (iii)).

Like sine function, the cosine function is a function whose domain is the set of all
real numbers and range is the set [–1, 1]. If we restrict the domain of cosine function
to [0, p], then it becomes one-one and onto with range [–1, 1]. Actually,  cosine function

Fig 2.1 (ii) Fig 2.1 (iii)

Fig 2.1 (i)
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restricted to any of the intervals [– p, 0], [0, p], [p, 2p] etc., is bijective with range as
[–1, 1]. We can, therefore, define the inverse of cosine function in each of these
intervals. We denote the inverse of the cosine function by cos –1 (arc cosine function).
Thus, cos–1 is a function whose domain is [–1, 1] and range
could be any of the intervals [–p, 0], [0, p], [p, 2p] etc.
Corresponding to each such interval, we get a branch of the
function cos–1. The branch with range [0, p] is called the principal
value branch of the function cos–1. We write

cos–1 : [–1, 1] ® [0, p].
The graph of the function given by y = cos–1 x can be drawn

in the same way as discussed about the graph of y = sin–1 x. The
graphs of y = cos x and y = cos–1 x are given in Fig 2.2 (i) and (ii).

Fig 2.2 (ii)

Let us now discuss cosec –1x and sec–1x as follows:

Since, cosec x = 
1

sin x
, the domain of the cosec function is the set {x : x Î R and

x ¹ np, n Î Z} and the range is the set {y : y Î R, y ³ 1 or y £ –1} i.e., the set
R – (–1, 1). It means that y = cosec x assumes all real values except –1 < y < 1 and is
not defined for integral multiple of p. If we restrict the domain of cosec function to

,
2 2
p pé ù-ê úë û

– {0}, then it is one to one and onto with its range as the set R – (– 1, 1). Actually, ,

cosec function restricted to any of the intervals 
3 , { }
2 2

- p -pé ù - -pê úë û
, ,

2 2
-p pé ù

ê úë û
 – {0},

3, { }
2 2
p pé ù - pê úë û

 etc., is bijective and its range is the set of all real numbers R – (–1, 1).

Fig 2.2 (i)
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Thus cosec–1 can be defined as a function whose domain is R – (–1, 1) and range could

be any of the intervals , {0}
2 2

-p pé ù -ê úë û
,

3 , { }
2 2

- p -pé ù - -pê úë û
, 

3, { }
2 2
p pé ù - pê úë û

etc. The

function corresponding to the range , {0}
2 2

-p pé ù -ê úë û
is called the principal value branch

of cosec–1. We thus have principal branch as

cosec–1  : R – (–1, 1) ®	 , {0}
2 2

-p pé ù -ê úë û
The graphs of y = cosec x and y = cosec–1 x are given in Fig 2.3 (i), (ii).

Also, since sec x = 
1

cos x
, the domain of y = sec x is the set R – {x : x = (2n + 1) 

2
p

,

n Î Z} and range is the set R – (–1, 1). It means that sec (secant function) assumes

all real values except –1 < y < 1 and is not defined for odd multiples of 2
p

. If we

restrict the domain of  secant function to [0, p] – { 
2
p

}, then it is one-one and onto with

Fig 2.3 (i) Fig 2.3 (ii)
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its range as the set R – (–1, 1). Actually, secant function  restricted to any of the

intervals [–p, 0] – { 2
-p

}, [0, ] –
2
pì üp í ý

î þ
, [p, 2p] – { 3

2
p } etc., is bijective and its range

is R – {–1, 1}. Thus sec–1 can be defined as a function whose domain is R– (–1, 1) and

range could be any of the intervals [– p, 0] – { 2
-p

}, [0, p] – { 2
p

}, [p, 2p] – {
3
2
p

} etc.

Corresponding to each of these intervals, we get different branches of the function sec–1.

The branch with range [0, p] – { 2
p

} is called the principal value branch of the

function sec–1. We thus have

sec–1 : R – (–1,1) ® [0, p] – { 2
p

}

The graphs of the functions y = sec x and y = sec-1 x are given in Fig 2.4 (i), (ii).

Finally, we now discuss tan –1 and cot–1

We know that the domain of the tan function (tangent function) is the set

{x : x Î R and x ¹ (2n +1) 
2
p

, n Î Z} and the range is R. It means that tan function

is not defined for odd multiples of  
2
p

. If we restrict the domain of tangent function to

Fig 2.4 (i) Fig 2.4 (ii)
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,
2 2

-p pæ ö
ç ÷
è ø

, then it is one-one and onto with its range as R. Actually, tangent function

restricted to any of the intervals 
3 ,
2 2

- p -pæ ö
ç ÷
è ø

, ,
2 2

-p pæ ö
ç ÷
è ø

, 
3,

2 2
p pæ ö

ç ÷
è ø

 etc., is bijective

and its range is R. Thus tan–1 can be defined as a function whose domain is R and

range could be any of the intervals 
3 ,
2 2

- p -pæ ö
ç ÷
è ø

, ,
2 2

-p pæ ö
ç ÷
è ø

, 
3,

2 2
p pæ ö

ç ÷
è ø

 and so on. These

intervals give different branches of the function tan–1. The branch with range ,
2 2

-p pæ ö
ç ÷
è ø

is called the principal value branch of the function tan–1.
We thus have

tan–1 : R ® ,
2 2

-p pæ ö
ç ÷
è ø

The graphs of the function  y = tan x and y = tan–1x are given in Fig 2.5 (i), (ii).

Fig 2.5 (i) Fig  2.5 (ii)

We know that domain of the cot function (cotangent function) is the set
{x : x Î R and x ¹ np, n Î Z} and range is R. It means that cotangent function is not
defined for integral multiples of p. If we restrict the domain of cotangent function to
(0, p), then it is bijective with and its range as R. In fact, cotangent function restricted
to any of the intervals (–p, 0), (0, p), (p, 2p) etc., is bijective and its range is R. Thus
cot –1 can be defined as a function whose domain is the R and range as any of the
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intervals (–p, 0), (0, p), (p, 2p) etc. These intervals give different branches of the
function cot –1. The function with range (0, p) is called the principal value branch of
the function cot –1. We thus have

cot–1 : R ® (0, p)
The graphs of y = cot x and y = cot–1x are given in Fig 2.6 (i), (ii).

Fig 2.6 (i) Fig 2.6 (ii)
The following table gives the inverse trigonometric function (principal value

branches) along with their domains and ranges.

sin–1 : [–1, 1] ® ,
2 2
p pé ù-ê úë û

cos–1 : [–1, 1] ® [0, p]

cosec–1 : R – (–1,1) ® ,
2 2
p pé ù-ê úë û

– {0}

sec–1 : R – (–1, 1) ® [0, p] – { }
2
p

tan–1 : R ® ,
2 2

-p pæ ö
ç ÷
è ø

cot–1 : R ® (0, p)
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ANote

1. sin–1x should not be confused with (sin x)–1. In fact (sin x)–1 = 
1

sin x
 and

similarly for other trigonometric functions.
2. Whenever no branch of an inverse trigonometric functions is mentioned, we

mean the principal value branch of that function.
3. The value of an inverse trigonometric functions which lies in the range of

principal branch is called the principal value of that inverse trigonometric
functions.

We now consider some examples:

Example 1 Find the principal value of sin –1
1
2

æ ö
ç ÷
è ø

.

Solution Let sin –1
1
2

æ ö
ç ÷
è ø

= y. Then, sin y = 
1
2

.

We know that the range of the principal value branch of sin –1 is ,
2 2

-p pæ ö
ç ÷
è ø

 and

sin
4
pæ ö

ç ÷
è ø

= 
1
2 . Therefore, principal value of sin–1

1
2

æ ö
ç ÷
è ø

 is 
4
p

Example 2 Find the principal value of cot –1 1
3

-æ ö
ç ÷
è ø

Solution Let cot –1 
1
3

-æ ö
ç ÷
è ø

 = y. Then,

1cot cot
33

y
- pæ ö= = - ç ÷

è ø
 = cot

3
pæ öp -ç ÷

è ø
 = 

2cot
3
pæ ö

ç ÷
è ø

We know that the range of principal value branch of cot –1 is (0, p) and

cot 
2
3
pæ ö

ç ÷
è ø

= 
1
3

-
. Hence, principal value of cot –1

1
3

-æ ö
ç ÷
è ø

 is 
2
3
p

EXERCISE 2.1
Find the principal values of the following:

1. sin–1
1
2

æ ö-ç ÷
è ø

2. cos–1
3

2
æ ö
ç ÷ç ÷
è ø

3. cosec–1 (2)

4. tan–1 ( 3)- 5. cos–1
1
2

æ ö-ç ÷
è ø

6. tan–1 (–1)
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7. sec–1
2
3

æ ö
ç ÷
è ø

8. cot–1 ( 3) 9. cos–1
1
2

æ ö-ç ÷
è ø

10. cosec–1 ( 2- )
Find the values of  the following:

11. tan–1(1) + cos–1
1
2

æ ö-ç ÷è ø + sin–1
1
2

æ ö-ç ÷è ø
12. cos–1

1
2

æ ö
ç ÷è ø + 2 sin–1

1
2

æ ö
ç ÷è ø

13. If sin–1 x = y, then

(A) 0 £ y £	p (B) 2 2
y

p p
- £ £

(C) 0 <  y < p (D)
2 2

y
p p

- < <

14. tan–1 13sec 2-- -  is equal to

(A) p (B)
3
p

- (C)
3
p

(D) 2
3
p

2.3  Properties of Inverse Trigonometric Functions
In this section, we shall prove some important properties of inverse trigonometric
functions. It may be mentioned here that these results are valid within the principal
value branches of the corresponding inverse trigonometric functions and wherever
they are defined. Some results may not be valid for all values of the domains of inverse
trigonometric functions. In fact, they will be valid only for some values of x for which
inverse trigonometric functions are defined. We will not go into the details of these
values of x in the domain as this discussion goes beyond the scope of this text book.

Let us recall that if y = sin–1x, then x = sin y and if x = sin y, then y = sin–1x. This is
equivalent to

sin (sin–1 x) = x, x Î [– 1, 1] and sin–1 (sin x) = x, x Î	 ,
2 2
p pé ù-ê úë û

Same is true for other five inverse trigonometric functions as well. We now prove
some properties of inverse trigonometric functions.

1. (i) sin–1
1
x = cosec–1 x, x ³ 1 or x £ – 1

(ii) cos–1
1
x

 = sec–1x, x ³ 1 or x £ – 1
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(iii) tan–1
1
x = cot–1 x, x > 0

To prove the first result, we put cosec–1 x = y, i.e., x = cosec y

Therefore
1
x

 = sin y

Hence sin –1
1
x

= y

or sin–1
1
x

 = cosec–1 x

Similarly, we can prove the other parts.
2. (i) sin–1 (–x) = – sin–1 x, x Î [– 1, 1]

(ii) tan–1 (–x) = – tan–1 x, x Î R
(iii) cosec–1 (–x) = – cosec–1 x, | x | ³ 1

Let sin –1 (–x) = y, i.e., –x = sin y so that x = – sin y, i.e., x = sin (–y).
Hence sin –1 x = – y = – sin–1 (–x)
Therefore sin–1 (–x) = – sin–1x

Similarly, we can prove the other parts.
3. (i) cos–1 (–x) = p – cos–1 x, x Î [– 1, 1]

(ii) sec–1 (–x) = p – sec–1 x, | x | ³ 1
(iii) cot–1 (–x) = p – cot–1 x, x Î R

Let cos –1 (–x) = y i.e., – x = cos y so that x = – cos y = cos (p – y)
Therefore cos–1 x = p – y = p – cos–1 (–x)
Hence cos –1 (–x) = p – cos–1 x

Similarly, we can prove the other parts.

4. (i) sin–1 x + cos–1 x =
2
p

, x Î [– 1, 1]

(ii) tan–1 x + cot–1 x = 
2
p

, x Î R

(iii) cosec–1 x + sec–1 x = 
2
p

, | x | ³ 1

Let sin –1 x = y. Then x = sin y = cos 2
y

pæ ö-ç ÷
è ø

Therefore cos–1 x =  
2

y
p

-  =  –1sin
2

x
p

-
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Hence sin –1 x + cos–1 x = 
2
p

Similarly, we can prove the other parts.

5. (i) tan–1x + tan–1 y = tan–1

1
x + y
– xy

, xy < 1

(ii) tan–1x – tan–1 y = tan–1

1
x – y
+ xy

, xy > – 1

Let tan –1 x = q and tan–1 y = f. Then x = tan q, y = tan f

Now
tan tantan( )

1 tan tan 1
x y

xy
q+ f +

q+f = =
- q f -

This gives q + f = tan–1
1
x y

xy
+

-

Hence tan –1 x + tan–1 y = tan–1
1
x y

xy
+

-

In the above result, if we replace y by – y, we get the second result and by replacing
y by x, we get the third result as given below.

6. (i) 2tan–1 x = sin–1
2

2
1 +

x
x

, | x | £ 1

(ii) 2tan–1 x = cos–1
2

2
1 –
1 +

x
x

, x ³ 0

(iii) 2 tan–1 x = tan–1 
2

2
1 –

x
x

, – 1 < x < 1

Let tan –1 x = y, then x = tan y. Now

sin–1
2

2
1

x
x+

= sin–1 2
2 tan

1 tan
y

y+

= sin–1 (sin 2y) = 2y = 2tan–1 x
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Also cos –1
2

2
1
1

x
x

-
+

 = cos–1

2

2
1 tan
1 tan

y
y

-
+  = cos–1 (cos 2y) = 2y = 2tan–1 x

(iii) Can be worked out similarly.
We now consider some examples.

Example 3 Show that

(i) sin–1 22 1x x-  = 2 sin–1 x, 
1 1
2 2

x- £ £

(ii) sin–1 22 1x x-  = 2 cos–1 x, 
1 1
2

x£ £

Solution
(i) Let x = sin q. Then sin–1 x = q. We have

sin–1 22 1x x-  = sin–1 22sin 1 sinq - q

= sin–1 (2sinq cosq) = sin–1 (sin2q) = 2q

= 2 sin–1 x

(ii) Take x = cos q, then proceeding as above, we get, sin–1 22 1x x- = 2 cos–1 x

Example 4 Show that tan –1 –1 –11 2 3tan tan
2 11 4

+ =

Solution By property 5 (i), we have

L.H.S. = –1 –11 2tan tan
2 11

+ –1 1

1 2
152 11tan tan1 2 201

2 11

-
+

= =
- ´

 = 1 3tan
4

- = R.H.S.

Example 5 Express 1 costan
1 sin

x
x

- æ ö
ç ÷è ø-

, 3
2 2
p p- < <x  in the simplest form.

Solution We write

2 2

1 –1

2 2

cos sincos 2 2tan tan
1 sin cos sin 2sin cos

2 2 2 2

x x
x

x x x xx
-

é ù-ê úæ ö = ê úç ÷-è ø ê ú+ -
ë û
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= –1

2

cos sin cos sin
2 2 2 2tan

cos sin
2 2

x x x x

x x

é ùæ öæ ö+ -ç ÷ç ÷ê úè øè øê ú
æ öê ú-ç ÷ê úè øë û

= –1
cos sin

2 2tan
cos sin

2 2

x x

x x

é ù+ê ú
ê ú
ê ú-
ë û

–1
1 tan

2tan
1 tan

2

x

x

é ù+ê ú
= ê ú

ê ú-
ë û

= –1tan tan
42 42

x xé ùp pæ ö+ = +ç ÷ê úè øë û
Alternatively,

–1 –1 –1

2sin sin
cos 2 2tan tan tan

21 sin 1 cos 1 cos
2 2

x
x

x
xx x

é ù é ùp p -æ ö æ ö-ç ÷ ç ÷ê ú ê úæ ö è ø è øê ú ê ú= =ç ÷ p p -- æ ö æ öê ú ê úè ø - - -ç ÷ ç ÷ê ú ê úè ø è øë û ë û

=
–1

2

2 22sin cos
44tan

22sin
4

x x

x

é ùp - p -æ ö æ ö
ç ÷ ç ÷ê úè ø è øê ú

p -æ öê ú
ç ÷ê úè øë û

= –1 2tan cot
4

xé ùp -æ ö
ç ÷ê úè øë û

–1 2tan tan
2 4

xé ùp p -æ ö= -ç ÷ê úè øë û

= –1tan tan
42

xé ùpæ ö+ç ÷ê úè øë û 42
xp

= +

Example 6 Write –1
2

1cot
1x

æ ö
ç ÷

-è ø
,  x  > 1 in the simplest form.

Solution Let x = sec q, then 2 1x - = 2sec 1 tanq - = q
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Therefore, –1
2

1cot
1x -

= cot–1 (cot q) = q = sec–1 x, which is the simplest form.

Example 7 Prove that tan –1 x + –1
2

2tan
1

x
x-

= tan–1

3

2
3
1 3

x x
x

æ ö-
ç ÷

-è ø
, 1||

3
x <

Solution Let x = tan q. Then q = tan–1 x. We have

R.H.S. = 
33

–1 –1
2 2

33tan tantan tan
1 31 3tan

x x
x

æ ö æ ö- q- q
=ç ÷ ç ÷

- - qè ø è ø

= tan–1 (tan3 q) = 3 q = 3tan –1 x = tan–1 x + 2 tan–1 x

= tan–1 x + tan–1
2

2
1

x
x-

  = L.H.S. (Why?)

Example 8 Find the value of  cos (sec –1 x + cosec–1 x), | x | ³ 1

Solution We have cos (sec –1 x + cosec–1 x) = cos 
2
pæ ö

ç ÷
è ø

= 0

EXERCISE 2.2
Prove the following:

1. 3sin –1 x = sin–1 (3 x – 4 x3 ), 
1 1– ,
2 2

x é ùÎ ê úë û

2. 3cos –1 x = cos–1 (4 x 3 – 3 x), 1 , 1
2

x é ùÎ ê úë û

3. tan–1 1 12 71tan tan
11 242

- -+ =

4. 1 1 11 1 312 tan tan tan
2 717

- - -+ =

Write the following functions in the simplest form:

5.
2

1 1 1tan x
x

- + - , x ¹ 0 6.
1

2

1tan
1x

-

-
, | x | > 1

7. 1 1 costan
1 cos

x
x

- æ ö-
ç ÷ç ÷+è ø

, 0 <  x < p 8. 1 cos sintan
cos sin

x x
x x

- æ ö-
ç ÷+è ø

, 0 < x< p
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9. 1
2 2

tan x

a x
-

-
, | x | < a

10.
2 3

1
32

3tan
3

a x x
a ax

- æ ö-
ç ÷

-è ø
, a > 0; 33

-
< <

a a
x

Find the values of each of the following:

11. –1 –1 1tan 2cos 2sin
2

é ùæ ö
ç ÷ê úè øë û

12. cot (tan–1a + cot–1a)

13.
2

–1 –1
2 2

1 2 1tan sin cos
2 1 1

x y
x y

é ù-
+ê ú+ +ë û

, | x | < 1, y > 0 and xy < 1

14. If  sin –1 –11sin cos 1
5

xæ ö+ =ç ÷
è ø

, then find the value of x

15. If –1 –11 1tan tan
2 2 4

x x
x x

- + p
+ =

- +
, then find the value of x

Find the values of each of the expressions in Exercises 16 to 18.

16. –1 2sin sin
3
pæ ö

ç ÷
è ø

17. –1 3tan tan
4
pæ ö

ç ÷
è ø

18. –1 –133tan sin cot
52

æ ö+ç ÷
è ø

19. 1 7cos cos is equal to
6

- pæ ö
ç ÷
è ø

(A)
7
6
p

(B)
5
6
p

(C) 3
p

(D) 6
p

20. 1 1sin sin ( )
32

-pæ ö- -ç ÷
è ø

 is equal to

(A)
1
2

(B)
1
3

(C)
1
4

(D) 1

21. 1 1tan 3cot ( 3)- -- -  is equal to

(A) p (B) 2
p

- (C) 0(D) 2 3
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Miscellaneous Examples

Example 9 Find the value of 1 3sin (sin )
5

- p

Solution We know that 1sin (sin )x x- = . Therefore, 1 33sin (sin )
55

- p p
=

But
3 ,
52 2
p p pé ùÏ -ê úë û

, which is the principal branch of sin–1 x

However
332sin ( ) sin( ) sin
555
p p p

= p - =  and 
2 ,
52 2
p p pé ùÎ -ê úë û

Therefore 1 132 2sin (sin ) sin (sin )
555

- -p p p
= =

Example 10 Show that 1 1 13884sin sin cos
51785

- - -- =

Solution Let 1 3sin
5

x- =  and  1 8sin
17

y- =

Therefore 3sin
5

x =  and 8sin
17

y =

Now 2 94cos 1 sin 1
255

x x= - = - = (Why?)

and 2 6415cos 1 sin 1
28917

y y= - = - =

We have cos ( x–y) = cos x cos y + sin x sin y

=
4153884
51751785

´ + ´ =

Therefore 1 84cos
85

x y - æ ö- = ç ÷è ø

Hence 1 1 13884sin sin cos
51785

- - -- =
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Example 11 Show that 1 1 112 463sin cos tan
13516

- - -+ + = p

Solution Let 1 1 112 463sin , cos , tan
13516

x y z- - -= = =

Then 12 463sin , cos , tan
13516

x y z= = =

Therefore
5312 3cos , sin , tan and tan

13554
x y x y= = = =

We have
tan tantan( )

1 tan tan
x y

x y
x y

+
+ =

-

12 3
6354

12 3 161
54

+
= = -

- ´

Hence tan( ) tanx y z+ = -

i.e., tan (x + y) = tan (–z) or tan (x + y) = tan (p – z)

Therefore x + y = – z  or  x + y = p – z

Since x, y and z are positive, x + y ¹	– z  (Why?)

Hence x + y + z = p	 or –1 –1 –112 463sin cos tan
13516

+ + =p

Example 12 Simplify –1 cos sintan
cos sin

a x b x
b x a x

é ù-
ê ú+ë û

, if 
a
b

 tan x > –1

Solution We have,

–1 cos sintan
cos sin

a x b x
b x a x

é ù-
ê ú+ë û

 = –1

cos sin
costan cos sin
cos

a x b x
b x

b x a x
b x

-é ù
ê ú
ê ú+ê ú
ë û

 = –1
tan

tan
1 tan

a x
b

a x
b

é ù-ê ú
ê ú
ê ú+
ë û

= –1 –1tan tan (tan )a
x

b
- = –1tan a

x
b

-
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Example 13 Solve tan –1 2x + tan–1 3 x = 4
p

Solution We have tan –1 2x + tan–1 3 x = 4
p

or
–1 2 3tan

1 2 3
x x

x x
æ ö+
ç ÷- ´è ø

 =
4
p

i.e. –1
2

5tan
1 6

x
x

æ ö
ç ÷-è ø

 =
4
p

Therefore 2
5

1 6
x
x-

 = tan 1
4
p

=

or 6 x2 + 5 x – 1 = 0 i.e., (6 x – 1) (x + 1) = 0

which gives x =
1
6  or x = – 1.

Since x = – 1 does not satisfy the equation, as the L.H.S. of the equation becomes

negative, 
1
6

x =  is the only solution of the given equation.

Miscellaneous Exercise on Chapter 2
Find the value of the following:

1. –1 13cos cos
6
pæ ö

ç ÷
è ø

2. –1 7tan tan
6
pæ ö

ç ÷
è ø

Prove that

3. –1 –13242sin tan
57

= 4. –1 –1 –18377sin sin tan
17536

+ =

5. –1 –1 –1412 33cos cos cos
51365

+ = 6. –1 –1 –112 356cos sin sin
13565

+ =

7. –1 –1 –16353tan sin cos
16135

= +

8. –1 1 1 11 1 1 1tan tan tan tan
57384

- - - p
+ + + =
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Prove that

9. –1 –11 1tan cos
2 1

x
x

x
-æ ö= ç ÷è ø+

, x Î [0, 1]

10. –1 1 sin 1 sincot
21 sin 1 sin

x x x
x x

æ ö+ + -
=ç ÷ç ÷+ - -è ø

, 0,
4

x
pæ öÎç ÷

è ø

11. –1 –11 1 1tan cos
421 1

x x
x

x x

æ ö+ - - p
= -ç ÷ç ÷+ + -è ø

, 
1 1
2

x- £ £  [Hint: Put x = cos 2q]

12. 1 1991 92 2sin sin
84343

- -p
- =

Solve the following equations:

13. 2tan–1 (cos x) = tan–1 (2 cosec x) 14. –1 –11 1tan tan ,( 0)
1 2

x
x x

x
-

= >
+

15. sin (tan–1 x), | x | < 1 is equal to

(A)
21

x

x-
(B) 2

1

1 x-
(C)

2

1

1 x+
(D) 21

x

x+

16. sin–1 (1 – x) – 2 sin–1 x = 2
p

, then x is equal to

(A) 0, 
1
2

(B) 1, 
1
2

(C) 0(D)
1
2

17.
1 1tan tanx x y

y x y
- - -æ ö -ç ÷ +è ø

 is equal to

(A)
2
p

(B)
3
p

(C)
4
p

(D)
3
4

- p
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Summary

® The domains and ranges (principal value branches) of inverse trigonometric
functions are given in the following table:

Functions Domain Range
(Principal Value Branches)

y = sin–1 x [–1, 1] ,
2 2

-p pé ù
ê úë û

y = cos–1 x [–1, 1]  [0, p]

y = cosec–1 x R – (–1,1) ,
2 2

-p pé ù
ê úë û

– {0}

y = sec–1 x R – (–1, 1) [0, p] – { }
2
p

y = tan–1 x R ,
2 2
p pæ ö-ç ÷

è ø

y = cot–1 x R (0, p)

® sin–1x should not be confused with (sin x)–1. In fact (sin x)–1 = 
1

sin x
 and

similarly for other trigonometric functions.
® The value of an inverse trigonometric functions which lies in its principal

value branch is called the principal value of that inverse trigonometric
functions.

For suitable values of domain, we have
® y = sin–1 x Þ x = sin y ® x = sin y  Þ y = sin–1 x

® sin (sin–1 x) = x ® sin–1 (sin x) = x

® sin–1
1
x = cosec–1 x ® cos–1 (–x) = p – cos–1 x

® cos–1
1
x  = sec–1x ® cot–1 (–x) = p – cot–1 x

® tan–1
1
x

= cot–1 x ® sec–1 (–x) = p – sec–1 x
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® sin–1 (–x) = – sin–1 x ® tan–1 (–x) = – tan–1 x

® tan–1 x + cot–1 x = 
2
p

® cosec–1 (–x) = – cosec–1 x

® sin–1 x + cos–1 x = 2
p

® cosec–1 x + sec–1 x = 2
p

® tan–1x + tan–1y = tan–1
1
x y

xy
+

- ® 2tan–1x  =  tan–1
2

21

x

x-

® tan–1x – tan–1y = tan–1
1
x y

xy
-

+

® 2tan–1 x = sin–1
2

2
1

x
x+

= cos–1
2

2
1
1

x
x

-
+

Historical Note
The study of trigonometry was first started in India. The ancient Indian

Mathematicians, Aryabhatta (476A.D.), Brahmagupta (598 A.D.), Bhaskara I
(600 A.D.) and Bhaskara II (1114 A.D.) got important results of trigonometry. All
this knowledge went from India to Arabia and then from there to Europe. The
Greeks had also started the study of trigonometry but their approach was so
clumsy that when the Indian approach became known, it was immediately adopted
throughout the world.

In India, the predecessor of the modern trigonometric functions, known as
the sine of an angle, and the introduction of the sine function represents one of
the main contribution of the siddhantas (Sanskrit astronomical works) to
mathematics.

Bhaskara I (about 600 A.D.) gave formulae to find the values of sine functions
for angles more than 90°. A sixteenth century Malayalam work Yuktibhasa
contains a proof for the expansion of sin (A + B). Exact expression for sines or
cosines of 18°, 36°, 54°, 72°, etc., were given by Bhaskara II.

The symbols sin–1 x, cos–1 x, etc., for arc sin x, arc cos x, etc., were suggested
by the astronomer Sir John F. W. Hersehel (1813) The name of Thales
(about 600 B.C.) is invariably associated with height and distance problems. He
is credited with the determination of the height of a great pyramid in Egypt by
measuring shadows of the pyramid and an auxiliary staff (or gnomon) of known
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height, and comparing the ratios:

H
S

h
s

=  = tan (sun ’ s altitude)

Thales is also said to have calculated the distance of a ship at sea through
the proportionality of sides of similar triangles. Problems on height and distance
using the similarity property are also found in ancient Indian works.

—v—


