Chapter 2

INVERSE TRIGONOMETRIC
FUNCTIONS

s> Mathematics, in general, is fundamentally the science of
self-evident things. — FELIX KLEIN +»

2.1 Introduction

In Chapter 1, we have studied that the inverse of a function
£, denoted by f~!, exists if fis one-one and onto. There are
many functions which are not one-one, onto or both and
hence we can not talk of their inverses. In Class XI, we
studied that trigonometric functions are not one-one and
onto over their natural domains and ranges and hence their
inverses do not exist. In this chapter, we shall study about
the restrictions on domains and ranges of trigonometric
functions which ensure the existence of their inverses and
observe their behaviour through graphical representations.
Besides, some elementary properties will also be discussed.

The inverse trigonometric functions play an important Arya Bhatta
. . (476-550 A.D.)
role in calculus for they serve to define many integrals.
The concepts of inverse trigonometric functions is also used in science and engineering.

2.2 Basic Concepts
In Class X1, we have studied trigonometric functions, which are defined as follows:
sine function, i.e., sine: R— [ 1, 1]
cosine function, i.e.,cos: R—>[-1, 1]
b
tangent function, i.e., tan: R—{x:x=(2n + 1) R ne Z} > R

cotangent function, i.e.,cot: R—{x:x=nnm,n e Z} > R

T
secant function, i.e., sec: R—{x:x=(2n +1) 5 neZy >R-(-1,1)

cosecant function, i.e., cosec : R— {x:x=nn, nle Z} > R—-(-1,1)
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e have also learnt in Chapter 1 thatif f: X— such that f(x) =y is one-one and
onto, then we can define a uniue function g: —X such that g(y)=x, wherex € X
and y = f(x), y € . ere, the domain of g =range of f'and the range of g= domain
of f. The function g is called the inverse of fand is denoted by f~'. urther, g is also
one-one and onto and inverse of g is f. Thus, g7'= (') =f. e also have

Frof =" ="(=x
and (FofHM=r"0) =fx) =y

ince the domain of sine function is the set of all real numbers and range is the

closed interval [-1, 1]. If we restrict its domain to {_TR, g} , then it becomes one-one

and onto with range [— 1, 1]. ctually, sine function restricted to any of the intervals

{_—n i},[_—n E}, {g, 771} etc., is one-one and its range is [-1, 1]. € can,
therefore, define the inverse of sine function in each of these intervals. ¢ denote the
inverse of sine function by sin™' (arc sine function). Thus, sin™' is a function whose
. . - T -W
domain is [- 1, 1] and range could be any of the intervals {T, 7} , {—, —} or

{3’771} , and so on. Corresponding to each such interval, we get a branch of the

2

T T
function sin!. The branch with range {7’5 is called the principal value branch,

whereas other intervals as range give different branches of sin”'. hen we refer
to the function sin™', we take it as the function whose domain is [-1, 1] and range is

-T T -T T
{7’5} ewrite sin ':[-1,1] > {7’5}
rom the definition of the inverse functions, it follows that sin (sin ' x) = x

T n
if —1<x<1andsin’ (sinx)=uxif —ESX < bX In other words, if y = sin™! x, then
sin y = x.
Remarks
(i) eknow from Chapter 1, thatif y=f(x)is an invertible function, then x =/ ().
Thus, the graph of sin™' function can be obtained from the graph of original

function by interchanging x and y axes, i.e., if (a, b) is a point on the graph of
sine function, then (b, a) becomes the corresponding point on the graph of inverse
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of sine function. Thus, the graph of the function y = sin™! x can be obtained from
the graph of y = sin x by interchanging x and y axes. The graphs of y = sin x and
y=sin" x are as given in ig 2.1 (i), (ii), (iii). The dark portion of the graph of
y =sin™ x represent the principal value branch.

(i) It can be shown that the graph of an inverse function can be obtained from the
corresponding graph of original function as a mirror image (i.e., reflection) along
the line y = x. This can be visualised by looking the graphs of y = sin x and

y=sin' x as given in the same axes (ig 2.1 (iii)).

Y
S b % 3
2 2 7 :
X€— = : = . —>X
i o ~mN\_i 7|0 ® TN\ _“2n 5nm
-1 2 T
Y’
y=sinx
Fig 2.1 (i)
& ///,
3
P
2 TN 2 T T s
g _ﬁ\__x \L,// 2n

y=sin'x y=sinxand y=sin" x
Fig 2.1 (ii) Fig 2.1 (i)

ike sine function, the cosine function is a function whose domain is the set of all

real numbers and range is the set [—1, 1]. If we restrict the domain of cosine function
to[, ], thenitbecomes one-one and onto with range [—1, 1]. ctually, cosine function
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restricted to any of the intervals [-mt, ], [, =], [&, 27] etc., is biective with range as
[-1, 1]. e can, therefore, define the inverse of cosine function in each of these
intervals. e denote the inverse of the cosine function by cos ' (arc cosine function).
Thus, cos™ is a function whose domain is [-1, 1] and range
could be any of the intervals [-w, ], [, =], [&®, 27@] etc.
Corresponding to each such interval, we get a branch of the
function cos™. The branch withrange [, 7] is called the principal
value branch of the function cos™. e write

cos':[-1,1] > [, m.

The graph of the function given by y = cos™ x can be drawn

in the same way as discussed about the graph of y =sin™' x. The y 1 -
graphs of y = cos x and y = cos™ x are given in ig 2.2 (i) and (ii). R 10 .
T
T2
‘1} e R

-1 2 ST
2
b :
y=cosx y=cos x
Fig 2.2 (i) Fig 2.2 (ii)

et us now discuss cosec ~'x and sec'x as follows:

1
ince, cosec x = ———, the domain of the cosec function is the set {x : x € Rand
X

sin
x # nm, n € Z} and the range is the set {y : y € R,y > 1 or y < -1} i.e., the set
R — (-1, 1). It means that y = cosec x assumes all real values except—1 y 1 andis
not defined for integral multiple of =. If we restrict the domain of cosec function to

T T
[_E ’5} —{}, then it is one to one and onto with itsrange as the set R—(— 1, 1).ctually, ,

) ) ) - T -T -T T
cosec function restricted to any of the intervals EEEEE {-n}, S5 {1,

TN
{an} —{n} etc., is biective and its range is the set of all real numbers R — (-1, 1).
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Thus cosec™ can be defined as a function whose domain is R— (-1, 1) and range could

-T T - T —T T T
. — |- —— |—{n =
be any of the intervals [ > 2} {} ,[ ) } {-n}, {2, 5 } {n} etc. The

function corresponding to the range {%,g} —{} iscalled the principal value branch

of cosec™. e thus have principal branch as

—T T
cosec’ : R— (-1, 1) 9[[75}—{}

The graphs of y = cosec x and y = cosec™ x are given in ig 2. (i), (ii).

Tl

-----l:hl:----
~
»
~

Y r
v y=rcosec 'x

- e ms s smal s e
=

y=cosecx
Fig 2.3 (i) Fig 2.3 (ii)

T
Iso, since sec x= , the domain of y=sec xisthe set R— {x: x=(2n+ 1) 5 ,

0sx
n € Z} and range is the set R — (-1, 1). It means that sec (secant function) assumes

T
all real values except —1 » 1 and is not defined for odd multiples of 5 If we

T
restrict the domain of secant functionto [, m]— { B },thenitis one-one and onto with
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its range as the set R — (-1, 1). ctually, secant function restricted to any of the

-T
intervals [-m, ] — {7 LL k- g ,[m, 2] — {771 } etc., is biective and its range

is R—{-1, 1}. Thus sec™ can be defined as a function whose domain is R— (-1, 1) and

-7 T T
range could be any of the intervals [- 7, ] — {7 L - {E b [m, 2m] - {7 } etc.

Corresponding to each of these intervals, we get different branches of the function sec™.

T
The branch with range [, =] — {5} is called the principal value branch of the

function sec™'. e thus have

sec’ :R—(-1,1) > [, ©n]- {g}

The graphs of the functions y = sec x and y = sec”! x are given in ig 2. (i), (ii).

|
[ E]
[ =]

N

[
v
b

y=5ecx

Fig 2.4 (i)

inally, we now discuss tan ' and cot™

y:

sec 'x

Fig 2.4 (ii)

¢ know that the domain of the tan function (tangent function) is the set

T
{x:x e Rand x # (2n +1) PR Z} and the range is R. It means that tan function

T
is not defined for odd multiples of 5 If we restrict the domain of tangent function to
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-T T - o .
(7,5 J , then it is one-one and onto with its range as R. ctually, tangent function

22 )22 )\ 272
and its range is R. Thus tan™' can be defined as a function whose domain is R and

. . - T -7 -T T T T o
restricted to any of the intervals (—,—J , ( J, ( J etc., 1s biective

) - -n -T T T T
range could be any of the intervals (T’?J , (75} , (5’7} and so on. These
. . . . . _TE TE
intervals give different branches of the function tan™. The branch with range (7 ) J
is called the principal value branch of the function tan™'.

e thus have
- T
tan”' : R — (_ _J

272
The graphs of the function y =tan x and y = tan"'x are given in ig 2. (i), (ii).

Y’
y=tanx y=tan x
Fig 2.5 (i) Fig 2.5 (ii)

e know that domain of the cot function (cotangent function) is the set
{x:x € Rand x # nm, n € Z} and range is R. It means that cotangent function is not
defined for integral multiples of &. If we restrict the domain of cotangent function to
(, m),then itis biective with and its range as R. In fact, cotangent function restricted
to any of the intervals (=, ), (, 7), (7, 27) etc., is biective and its range is R. Thus
cot™ can be defined as a function whose domain is the R and range as any of the
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intervals (-m, ), (, =), (w, 27) etc. These intervals give different branches of the
function cot™'. The function with range (, ) is called the principal value branch of
the function cot™'. e thus have

cot' :R—>(, m)

The graphs of y = cot x and y = cot™'x are given in ig 2. (i), (ii).

y=cotx y=cot'x
Fig 2.6 (i) Fig 2.6 (ii)
The following table gives the inverse trigonometric function (principal value
branches) along with their domains and ranges.

sin’! : -1, 1] — —E,E
’ L 2 2|
cos™! : [-1,1] — [, «]
S
1. _(_ —,— | =
cosec : R-(-1,1) - 1722 {}
T
sec! : R-(1,1) — [, n]- {E}
-T T
tan! : R - oS
- Z3
cot! : R - ( m
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1. sin"'x should not be confused with (sinx). In fact (sin x)!=

; and

- . . . sin x
similarly for other trigonometric functions.

2. henever no branch of an inverse trigonometric functions is mentioned, we
mean the principal value branch of that function.

. The value of an inverse trigonometric functions which lies in the range of
principal branch is called the principal value of that inverse trigonometric
functions.

e now consider some examples:

1
. e T
Example 1 ind the principal value of sin ( B J .

1 1
Solution et sin ! (ﬁ} =y. Then, siny = ﬁ

o2

-n
e know that the range of the principal value branch of sin ' is 5

J and

1 1
sin [EJ = E Therefore, principal value of sin™ (ﬁ} is z

-1
Example 2 ind the principal value of cot (Tj

Solution et cot (Tj = y. Then,

coty=_Tl=—cot[Ej = cot(n—z) = cot(ﬁ)

e know that the range of principal value branch of cot ' is (, m) and
2n -1 -l

-1 2
cot [_J: T - ence, principal value of cot ™ [\/_ J s

| EXERCISE 2.1|

ind the principal values of the following:

1 J
1. sin” [—EJ 2. cos™! [7] 3. cosec! (2)

4. tan™ (—\/)_ 5. cos™! [_%J 6. tan™ (-1)
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7. sec’! (%J 8. cot! (V) 9. cos (—EJ
10. cosec! (—/2)

ind the values of the following:

e (=3 (22 3
-1 —1 —_— -1 N -1 — i1 —
11. tan’'(1) + cos ( > + sin > 12. cos > + 2 sin >

13. Ifsin™ x=y, then

0 <y<m ®) —5<y<)
© v e

14. tan™ \/gee 7'2(— ) 1s eual to

0 = ®) -= © = o =

2.3 Properties of Inverse Trigonometric Functions

In this section, we shall prove some important properties of inverse trigonometric
functions. It may be mentioned here that these results are valid within the principal
value branches of the corresponding inverse trigonometric functions and wherever
they are defined. ome results may not be valid for all values of the domains of inverse
trigonometric functions. In fact, they will be valid only for some values of x for which
inverse trigonometric functions are defined. e will not go into the details of these
values of x in the domain as this discussion goes beyond the scope of this text book.

etusrecall thatif y=sinx, then x =siny and if x = sin y, then y = sin"'x. This is
euivalent to

TN
sin (sin”' x) =x,x € [- 1, 1] and sin™" (sin x) = x, x e[[—z, E}
ame is true for other five inverse trigonometric functions as well. e now prove
some properties of inverse trigonometric functions.

1
1. (i) sin? —=cosec'x, x>1orx<-1
x

1
(ii) cos' — =sec'x,x>1lorx<-1
x
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1
(iii) tan™! o cot' x, x>0

To prove the first result, we put cosec™ x =y, i.e., x = cosec y

Therefore i =siny
1
ence sin ' —=y
X
1
or sin™! i cosec™! x
imilarly, we can prove the other parts.
2. (i) sin? (%)= —-sin'x,x € [-1,1]
(i) tan™? (x)=—tan' x, x € R
(iii) cosec” (—=x) = — cosec' x, |x| > 1
etsin ~'(—x)=y,i.e.,—x = sin y so that x = —sin y, i.e., x = sin (-).
ence sin 'x=—y=—sin" (=)
Therefore sin! (—x) = —sin”'x

imilarly, we can prove the other parts.
3. () cos'(=x)=mw—cos'x,x € [-1, 1]
(i) sec! (x) =7 —sec'x, [x|>1
(iii) cot’ (x) = —cot'x, x € R
etcos ! (—x)=yi.e., —x=cosysothat x =—cos y=cos (n —y)
Therefore cos'x=m—y=m—cos’ (—x)

ence cos ' (=x)=m—cos' x
imilarly, we can prove the other parts.

T
4. (i) sin' x+cos'x=—,x e [-1,1]

(i) tan'x +tcot'x= —,x e R

2
T
2

T
(iii) cosec'x + sec'x = 5 x| > 1

T
et sin ' x =y. Then x = sin y = cos (——yj

T
Therefore coslx= ——y= 5—sm x
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(SR

ence sin 'x+cos!'x=

imilarly, we can prove the other parts.

+
5. (i) tan'x + tan' y = tan! z, xy <1
1-xy
(i) tan'x —tan' y = tan™' o) ,xp>—1
1+ xy

‘' x=0andtan' y = ¢. Then x =tan 0, y = tan ¢

o fan(0+¢) = tanO+tand _x+y
I-tanBtan¢ 1-xy

et tan

X+y
. . — ] —
This gives 0+ ¢ =tan —x
X+y
ence tan ' x + tan' y = tan™’' 1
—Xy
In the above result, if we replace y by — y, we get the second result and by replacing

y by x, we get the third result as given below.

6. (i) 2tan™' x = sin”' 1+’;2 x| <1
(i) 2tan™ x = cos™! ,x20
1+x?
2
(i) 2 tan-!x = tan! X 1<x<1
- X

ettan ' x =y, then x = tan y. ow
2x 2tan y

=sin! Trtan’y

=sin™ (sin 2y) =2y =2tan' x

11
Sin
1+ x?
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1—x?2 1—tan’ y
Iso cos 1+ 2 = cos™ m =cos™ (cos 2y) =2y =2tan' x

(ii1) Can be worked out similarly.

¢ now consider some examples.

Example 3 how that

. . . 1 < < 1

(i) sin’ (2x 1_x2) =2sin"x, 5 SX= >
1

i) sin! (2xy1-27) =2 cos!x, 5 <¥<I

Solution

(i) et x=sin 0. Then sin™ x = 0. e have

sin”! (2x~/1 —x? ) = sin”! (ZSinG 1—sin? 6)
= sin™' (2sin6 cosO) = sin™' (sin26) = 26
=2sin'x
(i) Take x = cos 0, then proceeding as above, we get, sin™ (2 1= x2 )= 2costx

1 12 _
Example 4 how that tan 5+tan lﬁ=‘£an —

Solution By property (i), we have

1 2
7+7
tan*ll+tanfl£ =tan*l%=tan 4l fan o
2 12 2
2 11

COoS X —
Example 5 xpress tan~' (—j , T < x<E in the simplest form.
l-sinx 2 2

Solution e write

2 X .2 X
COS X cos E—sm 5
tan_l( - J = tan"'

2 X .2 X X X
cos E+sm ——2sin—cos—
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= tan

= tan

= tan

Alternatively,

= tan

= tan

= tan

Example 6 rite  cot (

—

—_

-1

-1

X X X .X
COS—+SIn— (| COS——SIn—
( 2 2}( 2 2}

X . X2
COS— —SIn—
( 2 2J

X . X X
cosE+sm— 1+tan—
= tan ! 2

X . X X
COS——Sin— 1—-tan—
2 2 2

J x 1 in the simplest form.

Solution et x = sec 0, then \/xz —1= \/sec2 0—-1=tan®
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_ 1 o .
Therefore, cot ™' \/2— = cot™ (cot 0) = 0 =sec™ x, which is the simplest form.
x° =1

1 2x X—X 1
1
Example 7 rove that tan ' x + tan 2" tan™! [ J, X <—

- X 1- x2 \/_

Solution et x = tan 0. Then 0 = tan! x. e have

= tan ™! fan—x t Iltan*l —9— 0
N 1-1x’tgn - %0

=tan’ (tan )= O=tan 'x=tan'x +2tan' x

=tan"' x + tan 2 = ... (hy)
1 _ x2 cee

Example 8 ind the value of cos (sec ~' x + cosec™ x), x| > 1

T
Solution e have cos (sec ' x + cosec™ x) = cos [—J=

2
| EXERCISE 2.2 |
rove the following:

1. sin 'x=sin"( x— x) xe{—l, l}

’ 22

1
2. cos 'x=cos!'(x - x), xe{g, l}
3 tan*1£+tan_li=tan_l—
’ 11 22

1 1 1
4. 2tan'—+tan' —=tan' —
2 1

rite the following functions in the simplest form:

/ 2 o 1
5. tan_l$,x¢ 6. tn 210 1

| [1—cosx _1[ cosx—sinx
7. tan , X T 8. tan | ——— |, X T
1+ cosx COS X+SsInx
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10 tan_l m _—a <x< i
’ a— ax )’ “ A A
ind the values of each of the following:

11. tan™' {2 cos(2sin‘léﬂ 12. cot (tan"'a + cot™'a)

2},x I, y and xy 1

1 _
14. If sin (sm '=+cos lJCJ=1,‘Lhen find the value of x

1 x—1 ax+l =
——+tan =—, then find the value of x
x—=2 x+2

15. If tan™

ind the values of each of the expressions in xercises 1 to 1.

. . 2m
16. sml(sm—J 17. tanl(tan—nJ

18. tan(sinl 5+ cot ! —J

_ m.
19. cos 1(cos—)lseualto

|3

0 — ® —  (© = 0
20. sin(g—sinl(—l)] is eual to

0 5 ®-  ©- 0
21. tan"'Jeot ( ')/ iseualto

0 = ® 5 ©0 2
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Miscellaneous Examples

.1,. T
Example 9 ind the value of sin '(sin—)

. q,. X b
Solution e know that sin’l(sin x) = x . Therefore, sin l(sm—) =—

But %t %{—E,E} , which is the principal branch of sin™! x
owever sin (2_71) =sin(n __n) —sin—" and % s {_E’E}
Therefore sin”'(sin 2—ﬁ) = szm’l (sin _n) -

Example 10 how that sin”! 1 sin”'—=cos™' —

Solution et sin'—=x and sin~' 1— =y

Therefore sinx=— and siny=—

1
ow cosx=+1—sin’x = /1_2_2_ (hy)
) 1
and cosy =4/l —sin’ y = {1—;:—

¢ have cos ( x—y)=cos x cos y+ sin x sin y
=—X—+—X—=—o
11

Therefore x—y=cos” [—j

ence sin”'——sin'— =cos ' —
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.12 _ _
Example 11 how that sin lﬁ+ cos'—+tan' —=n
. . 12 4 .
Solution et  sin ﬁ:x’ cos —=y,tan —=z
. 12
Then smxzﬁ, cosy=—, tanz=—
12 .
Therefore cosle—, siny=—, tanx=— and tan y = —
12
7+7
tanx+tany _
e have tan(x+y)=——"— = 2 = 7
I-tanxtany _'2 1
ence tan(x+ y)=—tanz
ie., tan (x + y) = tan (—z) or tan (x + y) = tan (1 — z2)
Therefore Xty=—zorx+ty=m—z
ince X, y and z are positive, x + y 2=  (hy)
_ .12 1 0
ence x+y +z=mnlor sin H+COS —+tan —=m
B le 12 imolify  tan”" acosx—bsinx " a . .
xample 12 impli —— |, if —tanx -
P PHLY bcosx+asinx b
Solution e have,
acosx—bsinx a_
1| acosx—bsin 5 anx
tan ™! w _ tan'|——bcosx | _ il b
bcosx+asinx bcosx+asinx a
—_——— 1+—tanx
bcosx b

a _ L a
tan lZ—tan "(tanx) = tan' = —x
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i
Example 13 olve tan ' 2x + tan™!' x= —
i
Solution e have tan ' 2x +tan! x= —
af 2x+ x o
tan!| —/—— = N
or [1—2xx xJ
ie. tanl[ a 2J -z
1- x
X i
Therefore 5 = tan— =1
1- x
or XX+ x—1=ie,( x—-1)(x+1)=
1
which gives x=—orx=-1.

ince x =-—1 does not satisfy the euation, as the ... of the euation becomes

1
negative, X=— is the only solution of the given euation.

Miscellaneous Exercise on Chapter 2

ind the value of the following:

1. cos™! (cosl—nJ 2. tanl[tan—nJ

rove that
. a2 _ . . _
3. 2sml—=tanl— 4. sml—+sml—=tanl—
-1 12 -1 _ -1 -1 12 . -1 IS |
5. COS —+C0S — =C0S — 6. Ccos 1—+sm —=8n —
7. tan' ﬁ =sin"'—+cos ' —
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rove that
_ 1 l(l—x]
9. tan'\x =—cos'| —= 1
Vx 2 v ¥ bl
10. cot™! \/1+s1nx+\/1—s1nx =£’xe(, E]
J1+sinx —+/1—sinx | 2
g Vl+x—~I-x | ©m 1 1
11. tan | ——F=—=|=———cos x, ——=<
Nl+x++41-x ) 2 2
1. 2 G a2

olve the following euations:

13. 2tan™ (cos x) =tan™ (2 cosec x) 14.

15. sin (tan'x), x 1iseual to

X

0 > (©

1
(B
1-x2 ) 1-x Ji+x?

T
16. sin'(1—-x)—2sin'x= E , then x is eual to
— B 1l C
0. 5 B Ly  (©0
1 x qXxX=y
17. ftan 1(—J—tan — is eual to
Y Xty
T T
0 B) — © -

2

x <1 [int: ut

1 l_x_ _
tan ——=—tan
1+x 2

x =cos 20]

! "x,(x>)

X

O e

N | =

0 —
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Summary

@ The domains and ranges (principal value branches) of inverse trigonometric

functions are given in the following table:

Functions Domain Range
(Principal Value Branches)
) =l
y=sin'x -1, 1] 22
y=-cos'x -1, 1] [, m
—
= cosec! x R-(-1,1 —,— |-
y 1.1 B
T
y=sec! x R-(-1,1) [, m]- {5}
i T
y=tan"' x R )
y=cot!x R ( m
@ sin'x should not be confused with (sinx)!. In fact (sin x)! = Sinx and

similarly for other trigonometric functions.

@ The value of an inverse trigonometric functions which lies in its principal
value branch is called the principal value of that inverse trigonometric

functions.

or suitable values of domain, we have

¢ y=sin'x=>x=siny

@ sin(sin' x)=x

1

® sin! —= cosec'x
X

1

® cos! — =sec'x
X

¢ tan' —=cot!x
X

x=siny = y=sin'x

sin” (sinx) =x

cos'(=x)=m—cos'x

cot! (—x) =m —cot'x

sec! (—x) =m—sec'x
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@ sin' (—x)= —sin'x ¢ tan' (—x)=—tan'x
T
@ tan'x+cotlx= 3 @ cosec! (—x) =— cosec! x
. T T
@ sin'x+cos!x= 3 @ cosec'x tseclx = B
x+y 2x
¢ tan'x + tan''y = tan’! ¢ 2tan'x = tan’' D)
1—xy l—x
X-y
¢ tan'x — tan'y = tan’!
1+ xy
) 2x 1-x°
& 2tan! x = sin’! = cos™

1+ x° 1+ x°

Historical Note

The study of trigonometry was first started in India. The ancient Indian
Mathematicians, ryabhatta (..), Brahmagupta ( ..), Bhaskara I
(..) and Bhaskara Il (111 ..) got important results of trigonometry. 11
this knowledge went from India to rabia and then from there to urope. The
reeks had also started the study of trigonometry but their approach was so
clumsy that when the Indian approach became known, it was immediately adopted
throughout the world.

In India, the predecessor of the modern trigonometric functions, known as
the sine of an angle, and the introduction of the sine function represents one of
the main contribution of the siddhantas (anskrit astronomical works) to
mathematics.

Bhaskara I (about ..) gave formulae to find the values of sine functions
for angles more than . sixteenth century Malayalam work Yuktibhasa
contains a proof for the expansion of sin ( + B). xact expression for sines or
cosines of 1, , , 2, etc., were given by Bhaskara II.

The symbols sin"! x, cos™! x, etc., for arc sin x, arc cos x, etc., were suggested
by the astronomer ir ohn .. ersehel (11) The name of Thales
(about B.C.) is invariably associated with height and distance problems. e
is credited with the determination of the height of a great pyramid in gypt by
measuring shadows of the pyramid and an auxiliary staff (or gnomon) of known
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height, and comparing the ratios:

— = — =tan (sun s altitude)
s

Thales is also said to have calculated the distance of a ship at sea through
the proportionality of sides of similar triangles. roblems on height and distance
using the similarity property are also found in ancient Indian works.
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