DETERMINANTS

❖ All Mathematical truths are relative and conditional. — C.P. STEINMETZ ❖

4.1 Introduction

In the previous chapter, we have studied about matrices and algebra of matrices. We have also learnt that a system of algebraic equations can be expressed in the form of matrices. This means, a system of linear equations like

$$a_1 x + b_1 y = c_1$$

$$a_2 x + b_2 y = c_2$$
can be represented as
$$\begin{bmatrix} a_1 & b_1 \\ a_2 & b_2 \end{bmatrix} \begin{bmatrix} x \\ y \end{bmatrix} = \begin{bmatrix} c_1 \\ c_2 \end{bmatrix}$$
. Now, this system of equations has a unique solution or not, is

determined by the number $a_1 b_2 - a_2 b_1$. (Recall that if $a_1 b_1 b_1 b_2 \cdots b_n b_n b_1 \cdots b_n b_n$).

P.S. Laplace (1749-1827)

 $\frac{a_1}{a_2} \neq \frac{b_1}{b_2}$ or, $a_1 b_2 - a_2 b_1 \neq 0$, then the system of linear equations has a unique solution). The number $a_1 b_2 - a_2 b_1$

which determines uniqueness of solution is associated with the matrix $A = \begin{bmatrix} a_1 & b_1 \\ a_2 & b_2 \end{bmatrix}$

and is called the determinant of A or det A. Determinants have wide applications in Engineering, Science, Economics, Social Science, etc.

In this chapter, we shall study determinants up to order three only with real entries. Also, we will study various properties of determinants, minors, cofactors and applications of determinants in finding the area of a triangle, adjoint and inverse of a square matrix, consistency and inconsistency of system of linear equations and solution of linear equations in two or three variables using inverse of a matrix.

4.2 Determinant

To every square matrix $A = [a_{ij}]$ of order n, we can associate a number (real or complex) called determinant of the square matrix A, where $a_{ij} = (i, j)^{th}$ element of A.

If
$$A = \begin{bmatrix} a & b \\ c & d \end{bmatrix}$$
, then determinant of A is written as $\Box A = \begin{bmatrix} a & b \\ c & d \end{bmatrix} = \det(A)$

Remarks

- (i) or matrix A, A is read as determinant of A and not modulus of A.
- (ii) □nly square matrices have determinants.

4.2.1 Determinant of a matrix of order one

 \Box et A = [a] be the matrix of order 1, then determinant of A is defined to be equal to a

4.2.2 Determinant of a matrix of order two

□et

$$A = \begin{bmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{bmatrix}$$
 be a matrix of order 2 \(\sigma 2\),

then the determinant of A is defined as

$$\det(\mathbf{A}) = \mathbf{A} = \begin{vmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{vmatrix} = a_{11}a_{22} - a_{21}a_{12}$$

Example 1 Evaluate
$$\begin{vmatrix} 2 & \Box \\ -1 & 2 \end{vmatrix}$$
.

Solution We have
$$\begin{vmatrix} 2 & \Box \\ -1 & 2 \end{vmatrix} = 2(2) - \Box(-1) = \Box + \Box = \Box$$

Example 2 Evaluate
$$\begin{vmatrix} x & x+1 \\ x-1 & x \end{vmatrix}$$

Solution We have

$$\begin{vmatrix} x & x+1 \\ x-1 & x \end{vmatrix} = x(x) - (x+1)(x-1) = x^2 - (x^2-1) = x^2 - x^2 + 1 = 1$$

4.2.3 Determinant of a matrix of order 3 × 3

Determinant of a matrix of order three can be determined by expressing it in terms of second order determinants. This is known as expansion of a determinant along a row (or a column). There are six ways of expanding a determinant of order

 \Box corresponding to each of three rows (R_1 , R_2 and R_2) and three columns (\Box_1 , \Box_2 and \Box_2) giving the same value as shown below.

□onsider the determinant of square matrix $A = [a_{ij}]_{\square\square\square}$

i.e.,
$$\Box A \Box = \begin{vmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{22} \\ a_{\Box} & a_{\Box} & a_{\Box} \end{vmatrix}$$

Expansion along first Row (R_1)

Step 1 Multiply first element a_{11} of R_1 by $(-1)^{(1+1)}$ [$(-1)^{\text{sum of suffixes in } a_{11}}$] and with the second order determinant obtained by deleting the elements of first row (R_1) and first column (\square_1) of \square A \square as a_{11} lies in R_1 and \square_1 ,

i.e.,
$$(-1)^{1+1} a_{11} \begin{vmatrix} a_{22} & a_{21} \\ a_{22} & a_{22} \end{vmatrix}$$

Step 2 Multiply 2nd element a_{12} of R_1 by $(-1)^{1+2}$ [$(-1)^{\text{sum of suffixes in } a_{12}}$] and the second order determinant obtained by deleting elements of first row (R_1) and 2nd column (C_2) of CA $Cas\ a_{12}$ lies in C_1 and C_2 ,

i.e.,
$$(-1)^{1+2} a_{12} \begin{vmatrix} a_{21} & a_{21} \\ a_{11} & a_{12} \end{vmatrix}$$

Step 3 Multiply third element $a_{1\square}$ of R_1 by $(-1)^{1+\square}[(-1)^{\text{sum of suffixes in }a_{1\square}}]$ and the second order determinant obtained by deleting elements of first row (R_1) and third column (\square_1) of \square as $a_{1\square}$ lies in R_1 and \square .

i.e.,
$$(-1)^{1+\Box} a_{1\Box} \begin{vmatrix} a_{21} & a_{22} \\ a_{\Box} & a_{\Box} \end{vmatrix}$$

Step 4 Now the expansion of determinant of A, that is, \Box A \Box written as sum of all three terms obtained in steps 1, 2 and \Box above is given by

$$\det \mathbf{A} = \mathbf{A} \boxminus (-1)^{1+1} \ a_{11} \begin{vmatrix} a_{22} & a_{2\square} \\ a_{\square} & a_{\square} \end{vmatrix} + (-1)^{1+2} \ a_{12} \begin{vmatrix} a_{21} & a_{2\square} \\ a_{\square} & a_{\square} \end{vmatrix}$$

$$+ \ (-1)^{1+1} a_{1\square} \begin{vmatrix} a_{21} & a_{22} \\ a_{\square} & a_{\square} \end{vmatrix}$$
or
$$\mathbf{A} \boxminus a_{11} \ (a_{22} \ a_{\square} - a_{\square} a_{22}) - a_{12} \ (a_{21} \ a_{\square} - a_{\square} a_{22})$$

$$+ \ a_{1\square} \ (a_{21} \ a_{\square} - a_{\square} a_{22})$$

$$= a_{11} \ a_{22} \ a_{\square} - a_{11} \ a_{12} \ a_{21} - a_{12} \ a_{21} \ a_{\square} + a_{12} \ a_{21} \ a_{21} + a_{12} \ a_{21} + a_{12} \ a_{21} + a_{22}$$
 ... (1)

Note We shall apply all four steps together.

Expansion along second row (R,)

Expanding along R2, we get

$$\begin{array}{c} \Box A \ \boxminus \ (-1)^{2+1} a_{21} \begin{vmatrix} a_{12} & a_{11} \\ a_{22} & a_{22} \end{vmatrix} + (-1)^{2+2} a_{22} \begin{vmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{vmatrix} \\
+ (-1)^{2+1} a_{21} \begin{vmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{vmatrix} \\
= -a_{21} (a_{12} a_{22} - a_{22} a_{12}) + a_{22} (a_{11} a_{22} - a_{22} a_{12}) \\
-a_{21} (a_{11} a_{22} - a_{22} a_{12}) \\
\Box A \ \boxminus \ -a_{21} a_{12} a_{22} + a_{21} a_{22} a_{12} + a_{22} a_{11} a_{22} - a_{22} a_{21} a_{12} - a_{22} a_{11} a_{22} \\
+a_{22} a_{21} a_{12} \\
= a_{11} a_{22} a_{22} - a_{11} a_{22} a_{22} - a_{12} a_{21} a_{21} + a_{12} a_{22} a_{21} + a_{12} a_{22} \\
-a_{12} a_{21} a_{22} & \dots (2)
\end{array}$$

Expansion along first Column (C1)

$$\square \mathbf{A} \sqsubseteq \begin{vmatrix} \mathbf{a}_{11} & a_{12} & a_{11} \\ \mathbf{a}_{21} & a_{22} & a_{21} \\ \mathbf{a}_{31} & a_{12} & a_{12} \end{vmatrix}$$

 \Box y expanding along \Box ₁, we get

$$\Box \mathbf{A} \equiv a_{11} (-1)^{1+1} \begin{vmatrix} a_{22} & a_{2\square} \\ a_{\square} & a_{\square} \end{vmatrix} + a_{21} (-1)^{2+1} \begin{vmatrix} a_{12} & a_{1\square} \\ a_{\square} & a_{\square} \end{vmatrix}
+ a_{\square} (-1)^{\square+1} \begin{vmatrix} a_{12} & a_{1\square} \\ a_{22} & a_{2\square} \end{vmatrix}
= a_{11} (a_{22} a_{\square} - a_{2\square} a_{\square}) - a_{21} (a_{12} a_{\square} - a_{1\square} a_{\square}) + a_{\square} (a_{12} a_{2\square} - a_{1\square} a_{22})$$

$$\begin{array}{c} \Box A \ \Box = \ a_{11} \ a_{22} \ a_{\Box} - a_{11} \ a_{2\Box} \ a_{\Box} - a_{21} \ a_{12} \ a_{\Box} + a_{21} \ a_{1\Box} \ a_{\Box} + a_{\Box} \ a_{12} \ a_{2\Box} \\ - \ a_{\Box} \ a_{1\Box} \ a_{22} \\ = \ a_{11} \ a_{22} \ a_{\Box} - a_{11} \ a_{2\Box} \ a_{\Box} - a_{12} \ a_{21} \ a_{\Box} + a_{12} \ a_{2\Box} \ a_{\Box} + a_{1\Box} \ a_{21} \ a_{\Box} \\ - \ a_{1\Box} \ a_{\Box} \ a_{22} & \dots \end{array}$$

 $-a_{1\square}a_{22}$... (\square) \square learly, values of \square \square in (1), (2) and (\square) are equal. It is left as an exercise to the reader to verify that the values of \square \square by expanding along R_{\square} , \square and \square are equal to the value of \square \square botained in (1), (2) or (\square).

□ence, expanding a determinant along any row or column gives same value.

Remarks

- (i) \Box or easier calculations, we shall expand the determinant along that row or column which contains maximum number of \Box eros.
- (ii) While expanding, instead of multiplying by $(-1)^{i+j}$, we can multiply by +1 or -1 according as (i+j) is even or odd.

In general, if $A = k \square$ where A and \square are square matrices of order n, then $\square A \square \neq k^n$ \square \square where $n = 1, 2, \square$

Example 3 Evaluate the determinant
$$\Delta = \begin{bmatrix} 1 & 2 & \Box \\ -1 & \Box & 0 \\ \Box & 1 & 0 \end{bmatrix}$$
.

Solution Note that in the third column, two entries are \Box ero. So expanding along third column (\Box) , we get

$$\Delta = \begin{vmatrix} -1 & \Box \\ \Box & 1 \end{vmatrix} - 0 \begin{vmatrix} 1 & 2 \\ \Box & 1 \end{vmatrix} + 0 \begin{vmatrix} 1 & 2 \\ -1 & \Box \end{vmatrix}$$
$$= \Box (-1 - 12) - 0 + 0 = - \Box 2$$

Example 4 Evaluate
$$\Delta = \begin{vmatrix} 0 & \sin \alpha & -\cos \alpha \\ -\sin \alpha & 0 & \sin \beta \\ \cos \alpha & -\sin \beta & 0 \end{vmatrix}$$
.

Solution Expanding along R₁, we get

$$\begin{split} \Delta &= \left. 0 \right| \begin{vmatrix} 0 & \sin \beta \\ -\sin \beta & 0 \end{vmatrix} - \sin \alpha \begin{vmatrix} -\sin \alpha & \sin \beta \\ \cos \alpha & 0 \end{vmatrix} - \cos \alpha \begin{vmatrix} -\sin \alpha & 0 \\ \cos \alpha & -\sin \beta \end{vmatrix} \\ &= 0 - \sin \alpha \left(0 - \sin \beta \cos \alpha \right) - \cos \alpha \left(\sin \alpha \sin \beta - 0 \right) \\ &= \sin \alpha \sin \beta \cos \alpha - \cos \alpha \sin \alpha \sin \beta = 0 \end{split}$$

Example 5 \Box ind values of x for which $\begin{vmatrix} \Box & x \\ x & 1 \end{vmatrix} = \begin{vmatrix} \Box & 2 \\ \Box & 1 \end{vmatrix}$.

Solution We have $\begin{vmatrix} \Box & x \\ x & 1 \end{vmatrix} = \begin{vmatrix} \Box & 2 \\ \Box & 1 \end{vmatrix}$ $\Box - x^2 = \Box - \Box$ i.e. $x^2 = \square$ $x = \pm 2\sqrt{2}$ \Box ence

EXERCISE 4.1

Evaluate the determinants in Exercises 1 and 2.

1.
$$\begin{vmatrix} 2 & \Box \\ -\Box & -1 \end{vmatrix}$$

2. (i)
$$\begin{vmatrix} \cos \theta & -\sin \theta \\ \sin \theta & \cos \theta \end{vmatrix}$$
 (ii) $\begin{vmatrix} x^2 - x + 1 & x - 1 \\ x + 1 & x + 1 \end{vmatrix}$

3. If
$$A = \begin{bmatrix} 1 & 2 \\ \Box & 2 \end{bmatrix}$$
, then show that $\Box 2A = \Box \Box A \Box$

4. If
$$A = \begin{bmatrix} 1 & 0 & 1 \\ 0 & 1 & 2 \\ 0 & 0 & C \end{bmatrix}$$
, then show that $\Box A = 2 \Box A \Box$

5. Evaluate the determinants

(i)
$$\begin{vmatrix} \Box & -1 & -2 \\ 0 & 0 & -1 \\ \Box & -\Box & 0 \end{vmatrix}$$
 (ii) $\begin{vmatrix} \Box & -\Box & \Box \\ 1 & 1 & -2 \\ 2 & \Box & 1 \end{vmatrix}$

(ii)
$$\begin{vmatrix} \Box & -\Box & \Box \\ 1 & 1 & -2 \\ 2 & \Box & 1 \end{vmatrix}$$

(D) 0

(iii)
$$\begin{vmatrix} 0 & 1 & 2 \\ -1 & 0 & -\Box \\ -2 & \Box & 0 \end{vmatrix}$$
 (iv) $\begin{vmatrix} 2 & -1 & -2 \\ 0 & 2 & -1 \\ \Box & -\Box & 0 \end{vmatrix}$

(iv)
$$\begin{vmatrix} 2 & -1 & -2 \\ 0 & 2 & -1 \\ \Box & -\Box & 0 \end{vmatrix}$$

6. If
$$A = \begin{bmatrix} 1 & 1 & -2 \\ 2 & 1 & -\Box \\ \Box & \Box & -\Box \end{bmatrix}$$
, find $\Box A \Box$

7. \Box ind values of x, if

(i)
$$\begin{vmatrix} 2 & \Box \\ \Box & 1 \end{vmatrix} = \begin{vmatrix} 2x & \Box \\ \Box & x \end{vmatrix}$$
 (ii) $\begin{vmatrix} 2 & \Box \\ \Box & \Box \end{vmatrix} = \begin{vmatrix} x & \Box \\ 2x & \Box \end{vmatrix}$

(ii)
$$\begin{vmatrix} 2 & \Box \\ \Box & \Box \end{vmatrix} = \begin{vmatrix} x & \Box \\ 2x & \Box \end{vmatrix}$$

8. If
$$\begin{vmatrix} x & 2 \\ 1 \Box & x \end{vmatrix} = \begin{vmatrix} \Box & 2 \\ 1 \Box & \Box \end{vmatrix}$$
, then x is equal to
(A) \Box (\Box) \Box (\Box) \Box

4.3 Properties of Determinants

In the previous section, we have learnt how to expand the determinants. In this section, we will study some properties of determinants which simplifies its evaluation by obtaining maximum number of Teros in a row or a column. These properties are true for determinants of any order. Dowever, we shall restrict ourselves upto determinants of order □only.

Property 1 The value of the determinant remains unchanged if its rows and columns are interchanged.

Verification
$$\Box$$
et \Box $\Delta = \begin{vmatrix} a_1 & a_2 & a_{\Box} \\ b_1 & b_2 & b_{\Box} \\ c_1 & c_2 & c_{\Box} \end{vmatrix}$

Expanding along first row, we get

$$\Delta = a_{1} \begin{vmatrix} b_{2} & b_{\Box} \\ c_{2} & c_{\Box} \end{vmatrix} - a_{2} \begin{vmatrix} b_{1} & b_{\Box} \\ c_{1} & c_{\Box} \end{vmatrix} + a_{\Box} \begin{vmatrix} b_{1} & b_{2} \\ c_{1} & c_{2} \end{vmatrix}$$
$$= a_{1} (b_{2} c_{\Box} - b_{\Box} c_{2}) - a_{2} (b_{1} c_{\Box} - b_{\Box} c_{1}) + a_{\Box} (b_{1} c_{2} - b_{2} c_{1})$$

 \Box y interchanging the rows and columns of Δ , we get the determinant

$$\Delta_{1} = \begin{vmatrix} a_{1} & b_{1} & c_{1} \\ a_{2} & b_{2} & c_{2} \\ a_{\square} & b_{\square} & c_{\square} \end{vmatrix}$$

Expanding Δ_1 along first column, we get

$$\Delta_{1} = a_{1} (b_{2} c_{\square} - c_{2} b_{\square}) - a_{2} (b_{1} c_{\square} - b_{\square} c_{1}) + a_{\square} (b_{1} c_{2} - b_{2} c_{1})$$

$$\square \text{ence} \quad \Delta = \Delta_{1}$$

Remark It follows from above property that if A is a square matrix, then det(A) = det(A'), where A' = transpose of A.

Note If $R_i = i$ th row and $\square_i = i$ th column, then for interchange of row and columns, we will symbolically write $\square_i \leftrightarrow R_i$

□et us verify the above property by example

Example 6
$$\square$$
erify \square roperty 1 for $\Delta = \begin{vmatrix} 2 & -\square & \square \\ \square & 0 & \square \\ 1 & \square & -\square \end{vmatrix}$

Solution Expanding the determinant along first row, we have

$$\Delta = 2 \begin{vmatrix} 0 & \Box \\ \Box & -\Box \end{vmatrix} - (-\Box) \begin{vmatrix} \Box & \Box \\ 1 & -\Box \end{vmatrix} + \Box \begin{vmatrix} \Box & 0 \\ 1 & \Box \end{vmatrix}$$

$$= 2 (0 - 20) + \Box (-\Box 2 - \Box) + \Box (\Box 0 - 0)$$

$$= -\Box 0 - 1 \Box + 1 \Box 0 = -2 \Box$$

□y interchanging rows and columns, we get

$$\Delta_{1} = \begin{vmatrix} 2 & \Box & 1 \\ -\Box & 0 & \Box \\ \Box & \Box & -\Box \end{vmatrix}$$
 (Expanding along first column)
$$= 2 \begin{vmatrix} 0 & \Box \\ \Box & -\Box \end{vmatrix} - (-\Box) \begin{vmatrix} \Box & 1 \\ \Box & -\Box \end{vmatrix} + \Box \begin{vmatrix} \Box & 1 \\ 0 & \Box \end{vmatrix}$$

$$= 2 (0 - 20) + \Box (-\Box 2 - \Box) + \Box (\Box 0 - 0)$$

$$= -\Box 0 - 1 \Box + 1 \Box 0 = -2 \Box$$

 $\Box learly \qquad \Delta = \Delta_1$

 \square ence, \square roperty 1 is verified.

Property 2 If any two rows (or columns) of a determinant are interchanged, then sign of determinant changes.

Verification
$$\Box$$
et $\Delta = \begin{vmatrix} a_1 & a_2 & a_{\Box} \\ b_1 & b_2 & b_{\Box} \\ c_1 & c_2 & c_{\Box} \end{vmatrix}$

Expanding along first row, we get

$$\Delta = a_1 \ (b_2 \ c_{\Box} - b_{\Box} \ c_2) - a_2 (b_1 \ c_{\Box} - b_{\Box} \ c_1) + a_{\Box} (b_1 \ c_2 - b_2 \ c_1)$$

Interchanging first and third rows, the new determinant obtained is given by

$$\Delta_{1} = \begin{vmatrix} c_{1} & c_{2} & c_{\square} \\ b_{1} & b_{2} & b_{\square} \\ a_{1} & a_{2} & a_{\square} \end{vmatrix}$$

Expanding along third row, we get

$$\Delta_{1} = a_{1} (c_{2} b_{\square} - b_{2} c_{\square}) - a_{2} (c_{1} b_{\square} - c_{\square} b_{1}) + a_{\square} (b_{2} c_{1} - b_{1} c_{2})$$

$$= - [a_{1} (b_{2} c_{\square} - b_{\square} c_{2}) - a_{2} (b_{1} c_{\square} - b_{\square} c_{1}) + a_{\square} (b_{1} c_{2} - b_{2} c_{1})]$$

$$A = A$$

Similarly, we can verify the result by interchanging any two columns.

Note We can denote the interchange of rows by $R_i \leftrightarrow R_j$ and interchange of columns by $\Box_i \leftrightarrow \Box_j$.

Example 7
$$\square$$
 erify \square roperty 2 for $\Delta = \begin{bmatrix} 2 & -\square & \square \\ \square & 0 & \square \\ 1 & \square & -\square \end{bmatrix}$.

Solution
$$\Delta = \begin{vmatrix} 2 & -\Box & \Box \\ \Box & 0 & \Box \\ 1 & \Box & -\Box \end{vmatrix} = -2\Box \text{(See Example }\Box \text{)}$$

Interchanging rows R_2 and $R_{_{\square}}i.e.,\,R_2\leftrightarrow R_{_{\square}}$, we have

$$\Delta_{1} = \begin{vmatrix} 2 & -\Box & \Box \\ 1 & \Box & -\Box \\ \Box & 0 & \Box \end{vmatrix}$$

Expanding the determinant Δ_1 along first row, we have

$$\Delta_{1} = 2 \begin{vmatrix} \Box & -\Box \\ 0 & \Box \end{vmatrix} - (-\Box) \begin{vmatrix} 1 & -\Box \\ \Box & \Box \end{vmatrix} + \Box \begin{vmatrix} 1 & \Box \\ \Box & 0 \end{vmatrix}$$

$$= 2 (20 - 0) + \Box (\Box + \Box 2) + \Box (0 - \Box 0)$$

$$= \Box 0 + 1 \Box \Box - 1 \Box 0 = 2 \Box$$

$$\Box learly \qquad \qquad \Delta_1 = - \ \Delta$$

□ence, □roperty 2 is verified.

Property 3 If any two rows (or columns) of a determinant are identical (all corresponding elements are same), then value of determinant is Lero.

Proof If we interchange the identical rows (or columns) of the determinant Δ , then Δ does not change. \square owever, by \square roperty 2, it follows that Δ has changed its sign

Therefore
$$\Delta = -\Delta$$

or $\Delta = 0$

□et us verify the above property by an example.

Example 8 Evaluate
$$\Delta = \begin{bmatrix} \Box & 2 & \Box \\ 2 & 2 & \Box \\ \Box & 2 & \Box \end{bmatrix}$$

Solution Expanding along first row, we get

$$\Delta = \Box(\Box - \Box) - 2 (\Box - \Box) + \Box(\Box - \Box)$$

= 0 - 2 (-\Bigci) + \Bigci(-2) = \Bigci - \Bigci = 0

 \Box ere R_1 and R_{\Box} are identical.

Property 4 If each element of a row (or a column) of a determinant is multiplied by a constant k, then its value gets multiplied by k.

Verification
$$\Box$$
et $\Delta = \begin{vmatrix} a_1 & b_1 & c_1 \\ a_2 & b_2 & c_2 \\ a_{\Box} & b_{\Box} & c_{\Box} \end{vmatrix}$

and Δ_1 be the determinant obtained by multiplying the elements of the first row by k. Then

$$\Delta_{\mathbf{l}} = \begin{vmatrix} k a_1 & k b_1 & k c_1 \\ a_2 & b_2 & c_2 \\ a_{\square} & b_{\square} & c_{\square} \end{vmatrix}$$

Expanding along first row, we get

$$\Delta_{1} = k \ a_{1} (b_{2} \ c_{\square} - b_{\square} \ c_{2}) - k \ b_{1} (a_{2} \ c_{\square} - c_{2} \ a_{\square}) + k \ c_{1} (a_{2} \ b_{\square} - b_{2} \ a_{\square})$$

$$= k \left[a_{1} (b_{2} \ c_{\square} - b_{\square} \ c_{2}) - b_{1} (a_{2} \ c_{\square} - c_{2} \ a_{\square}) + c_{1} (a_{2} \ b_{\square} - b_{2} \ a_{\square}) \right]$$

$$= k \Lambda$$

$$\begin{vmatrix} k a_1 & k b_1 & k c_1 \\ a_2 & b_2 & c_2 \\ a_{\square} & b_{\square} & c_{\square} \end{vmatrix} = k \begin{vmatrix} a_1 & b_1 & c_1 \\ a_2 & b_2 & c_2 \\ a_{\square} & b_{\square} & c_{\square} \end{vmatrix}$$

Remarks

- one column of a given determinant.
- (ii) If corresponding elements of any two rows (or columns) of a determinant are proportional (in the same ratio), then its value is ☐ero. ☐or example

$$\Delta = \begin{vmatrix} a_1 & a_2 & a_{\square} \\ b_1 & b_2 & b_{\square} \\ k a_1 & k a_2 & k a_{\square} \end{vmatrix} = 0 \text{ (rows R}_1 \text{ and R}_2 \text{ are proportional)}$$

Solution Note that
$$\begin{vmatrix} 102 & 1 & \Box \\ 1 & \Box & \Box \\ 1 & \Box & \Box \end{vmatrix} = \begin{vmatrix} \Box(1\Box) & \Box(\Box) & \Box(\Box) \\ 1 & \Box & \Box \\ 1 & \Box & \Box \end{vmatrix} = \begin{vmatrix} 1 & \Box & \Box \\ 1 & \Box & \Box \\ 1 & \Box & \Box \end{vmatrix} = 0$$

(\square sing \square roperties \square and \square)

Property 5 If some or all elements of a row or column of a determinant are expressed as sum of two (or more) terms, then the determinant can be expressed as sum of two (or more) determinants.

Verification
$$\square$$
 \square . $S. = \begin{vmatrix} a_1 + \lambda_1 & a_2 + \lambda_2 & a_{\square} + \lambda_{\square} \\ b_1 & b_2 & b_{\square} \\ c_1 & c_2 & c_{\square} \end{vmatrix}$

Expanding the determinants along the first row, we get

$$\Delta = (a_{1} + \lambda_{1}) (b_{2} c_{\square} - c_{2} b_{\square}) - (a_{2} + \lambda_{2}) (b_{1} c_{\square} - b_{\square} c_{1})$$

$$+ (a_{\square} + \lambda_{\square}) (b_{1} c_{2} - b_{2} c_{1})$$

$$= a_{1} (b_{2} c_{\square} - c_{2} b_{\square}) - a_{2} (b_{1} c_{\square} - b_{\square} c_{1}) + a_{\square} (b_{1} c_{2} - b_{2} c_{1})$$

$$+ \lambda_{1} (b_{2} c_{\square} - c_{2} b_{\square}) - \lambda_{2} (b_{1} c_{\square} - b_{\square} c_{1}) + \lambda_{\square} (b_{1} c_{2} - b_{2} c_{1})$$
(by rearranging terms)

$$= \begin{vmatrix} a_{1} & a_{2} & a_{\square} \\ b_{1} & b_{2} & b_{\square} \\ c_{1} & c_{2} & c_{\square} \end{vmatrix} + \begin{vmatrix} \lambda_{1} & \lambda_{2} & \lambda_{\square} \\ b_{1} & b_{2} & b_{\square} \\ c_{1} & c_{2} & c_{\square} \end{vmatrix} = R.\square.S.$$

Similarly, we may verify □roperty □for other rows or columns.

Example 10 Show that
$$\begin{vmatrix} a & b & c \\ a+2x & b+2y & c+2z \\ x & y & z \end{vmatrix} = 0$$

Solution We have
$$\begin{vmatrix} a & b & c \\ a+2x & b+2y & c+2z \\ x & y & z \end{vmatrix} = \begin{vmatrix} a & b & c \\ a & b & c \\ x & y & z \end{vmatrix} + \begin{vmatrix} a & b & c \\ 2x & 2y & 2z \\ x & y & z \end{vmatrix}$$

(by Croperty \square)

 $= 0+0=0$ (\square sing \square roperty \square and \square roperty \square)

Property 6 If, to each element of any row or column of a determinant, the equimultiples of corresponding elements of other row (or column) are added, then value of determinant remains the same, i.e., the value of determinant remain same if we apply the operation $R_i \to R_i + kR_i$ or $\square_i \to \square_i + k\square_i$.

Verification

$$\Delta = \begin{vmatrix} a_1 & a_2 & a_{\Box} \\ b_1 & b_2 & b_{\Box} \\ c_1 & c_2 & c_{\Box} \end{vmatrix} \text{ and } \Delta_1 = \begin{vmatrix} a_1 + k c_1 & a_2 + k c_2 & a_{\Box} + k c_{\Box} \\ b_1 & b_2 & b_{\Box} \\ c_1 & c_2 & c_{\Box} \end{vmatrix},$$

where Δ_1 is obtained by the operation $R_1 \rightarrow R_1 + kR_2$

 \Box ere, we have multiplied the elements of the third row (R_{\Box}) by a constant k and added them to the corresponding elements of the first row (R_{\Box}).

Symbolically, we write this operation as $R_1 \rightarrow R_1 + k R_{\Box}$

Now, again

$$\Delta_{1} = \begin{vmatrix} a_{1} & a_{2} & a_{\square} \\ b_{1} & b_{2} & b_{\square} \\ c_{1} & c_{2} & c_{\square} \end{vmatrix} + \begin{vmatrix} k c_{1} & k c_{2} & k c_{\square} \\ b_{1} & b_{2} & b_{\square} \\ c_{1} & c_{2} & c_{\square} \end{vmatrix}$$
 (Since R_{1} and R_{\square} are proportional)
$$\Delta = \Delta_{1}$$

Remarks

□ence

- (i) If Δ_1 is the determinant obtained by applying $R_i \to kR_i$ or $\Box_i \to k\Box_i$ to the determinant Δ , then $\Delta_1 = k\Delta$.
- (ii) If more than one operation like $R_i \rightarrow R_i + kR_j$ is done in one step, care should be taken to see that a row that is affected in one operation should not be used in another operation. A similar remark applies to column operations.

Example 11 Grove that
$$\begin{vmatrix} a & a+b & a+b+c \\ 2a & \Box a+2b & \Box a+\Box b+2c \\ \Box a & \Box a+\Box b & 10a+\Box b+\Box c \end{vmatrix} = a^{\Box}.$$

Solution Applying operations $R_2 \to R_2 - 2R_1$ and $R_{\square} \to R_{\square} - \square R_1$ to the given determinant Δ , we have

$$\Delta = \begin{vmatrix} a & a+b & a+b+c \\ 0 & a & 2a+b \\ 0 & \Box a & \Box a+\Box b \end{vmatrix}$$

Now applying $R_{_{\square}} \rightarrow R_{_{\square}} - \square R_{_{2}}$, we get

$$\Delta = \begin{vmatrix} a & a+b & a+b+c \\ 0 & a & 2a+b \\ 0 & 0 & a \end{vmatrix}$$

Expanding along \Box_1 , we obtain

$$\Delta = a \begin{vmatrix} a & 2a+b \\ 0 & a \end{vmatrix} + 0 + 0$$
$$= a (a^2 - 0) = a (a^2) = a^{-1}$$

Example 12 Without expanding, prove that

$$\Delta = \begin{vmatrix} x + y & y + z & z + x \\ z & x & y \\ 1 & 1 & 1 \end{vmatrix} = 0$$

Solution Applying $R_1 \rightarrow R_1 + R_2$ to Δ , we get

$$\Delta = \begin{vmatrix} x + y + z & x + y + z & x + y + z \\ z & x & y \\ 1 & 1 & 1 \end{vmatrix}$$

Since the elements of R_1 and R_2 are proportional, $\Delta \boxplus 0$.

Example 13 Evaluate

$$\Delta = \begin{vmatrix} 1 & a & bc \\ 1 & b & ca \\ 1 & c & ab \end{vmatrix}$$

Solution Applying $R_2 \to R_2 - R_1$ and $R_{\square} \to R_{\square} - R_1$, we get

$$\Delta = \begin{vmatrix} 1 & a & bc \\ 0 & b-a & c(a-b) \\ 0 & c-a & b(a-c) \end{vmatrix}$$

Taking factors (b-a) and (c-a) common from R_2 and R_2 respectively, we get

$$\Delta = (b-a)(c-a)\begin{vmatrix} 1 & a & bc \\ 0 & 1 & -c \\ 0 & 1 & -b \end{vmatrix}$$

$$= (b-a)(c-a)[(-b+c)] \text{ (Expanding along first column)}$$

$$= (a-b)(b-c)(c-a)$$

Example 14 Trove that $\begin{vmatrix} b+c & a & a \\ b & c+a & b \\ c & c & a+b \end{vmatrix} = \Box abc$

Solution
$$\Box$$
et $\Delta = \begin{vmatrix} b+c & a & a \\ b & c+a & b \\ c & c & a+b \end{vmatrix}$

Applying $R_1 \rightarrow R_1 - R_2 - R_1$ to Δ , we get

$$\Delta = \begin{vmatrix} 0 & -2c & -2b \\ b & c+a & b \\ c & c & a+b \end{vmatrix}$$

Expanding along R₁, we obtain

$$\Delta = 0 \begin{vmatrix} c+a & b \\ c & a+b \end{vmatrix} - (-2c) \begin{vmatrix} b & b \\ c & a+b \end{vmatrix} + (-2b) \begin{vmatrix} b & c+a \\ c & c \end{vmatrix}$$

$$= 2c(ab+b^2-bc) - 2b(bc-c^2-ac)$$

$$= 2abc + 2cb^2 - 2bc^2 - 2b^2c + 2bc^2 + 2abc$$

$$= \Box abc$$

Example 15 If x, y, z are different and $\Delta = \begin{vmatrix} x & x^2 & 1 + x^0 \\ y & y^2 & 1 + y^0 \\ z & z^2 & 1 + z^0 \end{vmatrix} = 0$, then

show that 1 + xyz = 0

Solution We have

$$\Delta = \begin{vmatrix} x & x^{2} & 1 + x \\ y & y^{2} & 1 + y \\ z & z^{2} & 1 + z \end{vmatrix}$$

$$= \begin{vmatrix} x & x^{2} & 1 \\ y & y^{2} & 1 \\ z & z^{2} & 1 \end{vmatrix} + \begin{vmatrix} x & x^{2} & x \\ y & y^{2} & y \\ z & z^{2} & z \end{vmatrix} \quad (\Box \text{sing } \Box \text{roperty } \Box)$$

$$= (-1)^{2} \begin{vmatrix} 1 & x & x^{2} \\ 1 & y & y^{2} \\ 1 & z & z^{2} \end{vmatrix} + xyz \begin{vmatrix} 1 & x & x^{2} \\ 1 & y & y^{2} \\ 1 & z & z^{2} \end{vmatrix} \quad (\Box \text{sing } \Box \leftrightarrow \Box_{2} \text{ and then } \Box_{1} \leftrightarrow \Box_{2})$$

$$= \begin{vmatrix} 1 & x & x^{2} \\ 1 & y & y^{2} \\ 1 & z & z^{2} \end{vmatrix} \quad (1 + xyz)$$

$$= \begin{vmatrix} 1 & x & x^{2} \\ 1 & y & y^{2} \\ 1 & z & z^{2} \end{vmatrix} \quad (1 + xyz)$$

$$= (1+xyz)\begin{vmatrix} 1 & x & x^2 \\ 0 & y-x & y^2-x^2 \\ 0 & z-x & z^2-x^2 \end{vmatrix}$$
 (\square sing $R_2 \rightarrow R_2 - R_1$ and $R_{\square} \rightarrow \square R_{\square} - R_1$)

Taking out common factor (y-x) from R, and (z-x) from R, we get

$$\Delta = (1+xyz) (y-x) (z-x) \begin{vmatrix} 1 & x & x^2 \\ 0 & 1 & y+x \\ 0 & 1 & z+x \end{vmatrix}$$

=
$$(1 + xyz) (y - x) (z - x) (z - y)$$
 (on expanding along \square_1)

Since $\Delta = 0$ and x, y, z are all different, i.e., $x - y \neq 0$, $y - z \neq 0$, $z - x \neq 0$, we get 1 + xyz = 0

Example 16 Show that

$$\begin{vmatrix} 1+a & 1 & 1 \\ 1 & 1+b & 1 \\ 1 & 1 & 1+c \end{vmatrix} = abc \left(1 + \frac{1}{a} + \frac{1}{b} + \frac{1}{c}\right) = abc + bc + ca + ab$$

Solution Taking out factors a,b,c common from R_1 , R_2 and R_2 , we get

$$\Box.\Box.S. = abc \begin{vmatrix} \frac{1}{a} + 1 & \frac{1}{a} & \frac{1}{a} \\ \frac{1}{b} & \frac{1}{b} + 1 & \frac{1}{b} \\ \frac{1}{c} & \frac{1}{c} & \frac{1}{c} + 1 \end{vmatrix}$$

Applying $R_1 \rightarrow R_1 + R_2 + R_{\Box}$, we have

$$\Delta = abc \begin{vmatrix} 1 + \frac{1}{a} + \frac{1}{b} + \frac{1}{c} & 1 + \frac{1}{a} + \frac{1}{b} + \frac{1}{c} & 1 + \frac{1}{a} + \frac{1}{b} + \frac{1}{c} \\ \frac{1}{b} & \frac{1}{b} + 1 & \frac{1}{b} \\ \frac{1}{c} & \frac{1}{c} & \frac{1}{c} + 1 \end{vmatrix}$$

$$= abc \left(1 + \frac{1}{a} + \frac{1}{b} + \frac{1}{c} \right) \begin{vmatrix} 1 & 1 & 1 \\ \frac{1}{b} & \frac{1}{b} + 1 & \frac{1}{b} \\ \frac{1}{c} & \frac{1}{c} & \frac{1}{c} + 1 \end{vmatrix}$$

Now applying $\square_2 \rightarrow \square_2 - \square_1$, $\square_1 \rightarrow \square_2 - \square_1$, we get

$$\Delta = abc \left(1 + \frac{1}{a} + \frac{1}{b} + \frac{1}{c} \right) \begin{vmatrix} 1 & 0 & 0 \\ \frac{1}{b} & 1 & 0 \\ \frac{1}{c} & 0 & 1 \end{vmatrix}$$

$$= abc \left(1 + \frac{1}{a} + \frac{1}{b} + \frac{1}{c} \right) \left[1(1 - 0) \right]$$

$$= abc \left(1 + \frac{1}{a} + \frac{1}{b} + \frac{1}{c} \right) = abc + bc + ca + ab = R. \square.S.$$

Note Note Alternately try by applying $\Box_1 \to \Box_1 - \Box_2$ and $\Box_2 \to \Box_2 - \Box_2$, then apply $\Box_1 \to \Box_1 - a \Box_2$.

EXERCISE 4.2

 $\Box sing$ the property of determinants and without expanding in Exercises 1 to \Box prove that \Box

1.
$$\begin{vmatrix} x & a & x+a \\ y & b & y+b \\ z & c & z+c \end{vmatrix} = 0$$

2.
$$\begin{vmatrix} a-b & b-c & c-a \\ b-c & c-a & a-b \\ c-a & a-b & b-c \end{vmatrix} = 0$$

4.
$$\begin{vmatrix} 1 & bc & a(b+c) \\ 1 & ca & b(c+a) \\ 1 & ab & c(a+b) \end{vmatrix} = 0$$

5.
$$\begin{vmatrix} b+c & q+r & y+z \\ c+a & r+p & z+x \\ a+b & p+q & x+y \end{vmatrix} = 2 \begin{vmatrix} a & p & x \\ b & q & y \\ c & r & z \end{vmatrix}$$

6.
$$\begin{vmatrix} 0 & a & -b \\ -a & 0 & -c \\ b & c & 0 \end{vmatrix} = 0$$

7.
$$\begin{vmatrix} -a^2 & ab & ac \\ ba & -b^2 & bc \\ ca & cb & -c^2 \end{vmatrix} = \Box a^2 b^2 c^2$$

 \Box y using properties of determinants, in Exercises \Box to $1\Box$, show that \Box

8. (i)
$$\begin{vmatrix} 1 & a & a^2 \\ 1 & b & b^2 \\ 1 & c & c^2 \end{vmatrix} = (a-b)(b-c)(c-a)$$

(ii)
$$\begin{vmatrix} 1 & 1 & 1 \\ a & b & c \\ a^{\Box} & b^{\Box} & c^{\Box} \end{vmatrix} = (a-b)(b-c)(c-a)(a+b+c)$$

9.
$$\begin{vmatrix} x & x^2 & yz \\ y & y^2 & zx \\ z & z^2 & xy \end{vmatrix} = (x - y) (y - z) (z - x) (xy + yz + zx)$$

10. (i)
$$\begin{vmatrix} x + \Box & 2x & 2x \\ 2x & x + \Box & 2x \\ 2x & 2x & x + \Box \end{vmatrix} = (\Box x + \Box)(\Box - x)^2$$

(ii)
$$\begin{vmatrix} y+k & y & y \\ y & y+k & y \\ y & y & y+k \end{vmatrix} = k^2 \left(\Box y+k \right)$$

11. (i)
$$\begin{vmatrix} a-b-c & 2a & 2a \\ 2b & b-c-a & 2b \\ 2c & 2c & c-a-b \end{vmatrix} = (a+b+c)^{\square}$$

(ii)
$$\begin{vmatrix} x+y+2z & x & y \\ z & y+z+2x & y \\ z & x & z+x+2y \end{vmatrix} = 2(x+y+z)^{\square}$$

12.
$$\begin{vmatrix} 1 & x & x^2 \\ x^2 & 1 & x \\ x & x^2 & 1 \end{vmatrix} = (1 - x^{\Box})^2$$

13.
$$\begin{vmatrix} 1+a^2-b^2 & 2ab & -2b \\ 2ab & 1-a^2+b^2 & 2a \\ 2b & -2a & 1-a^2-b^2 \end{vmatrix} = (1+a^2+b^2)^{\square}$$

14.
$$\begin{vmatrix} a^2 + 1 & ab & ac \\ ab & b^2 + 1 & bc \\ ca & cb & c^2 + 1 \end{vmatrix} = 1 + a^2 + b^2 + c^2$$

 \square hoose the correct answer in Exercises $1 \square$ and $1 \square$

- 15. \Box et A be a square matrix of order $\Box \Box \Box$, then \Box kA \Box s equal to
 - (A) $k\square$ A \square
- (\Box) $k^2 \square A \square$
- $(\Box) k^{\Box} A \Box$
- (D) $\Box k \Box A \Box$

- **16.** Which of the following is correct
 - (A) Determinant is a square matrix.
 - (Determinant is a number associated to a matrix.
 - (□) Determinant is a number associated to a square matrix.
 - (D) None of these

4.4 Area of a Triangle

In earlier classes, we have studied that the area of a triangle whose vertices are (x_1, y_1) , (x_2, y_2) and (x_2, y_3) , is given by the expression $\frac{1}{2}[x_1(y_2-y_3) + x_2(y_3-y_1) + x_3(y_3-y_2)]$. Now this expression can be written in the form of a determinant as

$$\Delta = \frac{1}{2} \begin{vmatrix} x_1 & y_1 & 1 \\ x_2 & y_2 & 1 \\ x_3 & y_3 & 1 \end{vmatrix} \dots (1)$$

Remarks

(i) Since area is a positive quantity, we always take the absolute value of the determinant in (1).

- (ii) If area is given, use both positive and negative values of the determinant for calculation.
- (iii) The area of the triangle formed by three collinear points is Tero.

Example 17 Gind the area of the triangle whose vertices are (\Box, \Box) , $(-\Box, 2)$ and $(\Box, 1)$.

Solution The area of triangle is given by

$$\Delta = \frac{1}{2} \begin{vmatrix} \Box & \Box & 1 \\ -\Box & 2 & 1 \\ \Box & 1 & 1 \end{vmatrix}$$

$$= \frac{1}{2} \left[\Box (2-1) - \Box (-\Box - \Box) + 1(-\Box - 10) \right]$$

$$= \frac{1}{2} \left(\Box + \Box 2 - 1 \Box \right) = \frac{\Box 1}{2}$$

Example 18 \Box ind the equation of the line joining $A(1, \Box)$ and \Box (0, 0) using determinants and find k if D(k, 0) is a point such that area of triangle $A \Box D$ is \Box sq units.

Solution \Box et \Box (x, y) be any point on $A\Box$. Then, area of triangle $A\Box$ is \Box ero (Why \Box). So

$$\frac{1}{2} \begin{vmatrix} 0 & 0 & 1 \\ 1 & \Box & 1 \\ x & y & 1 \end{vmatrix} = 0$$

This gives

$$\frac{1}{2}(y - \Box x) = 0 \text{ or } y = \Box x,$$

which is the equation of required line $A \square$.

Also, since the area of the triangle $A \square D$ is $\square sq$ units, we have

$$\frac{1}{2} \begin{vmatrix} 1 & \Box & 1 \\ 0 & 0 & 1 \\ k & 0 & 1 \end{vmatrix} = \Box \Box$$

This gives, $\frac{-\Box k}{2} = \pm \Box$, i.e., $k = \mp 2$.

EXERCISE 4.3

- 1. \Box ind area of the triangle with vertices at the point given in each of the following \Box
 - (i) $(1,0), (\square,0), (\square,\square)$
- (ii) $(2, \square, (1, 1), (10, \square)$
- (iii) $(-2, -\square), (\square, 2), (-1, -\square)$

2. Show that points

A (a, b + c), \square (b, c + a), \square (c, a + b) are collinear.

- 3. \Box ind values of k if area of triangle is \Box sq. units and vertices are
 - (i) $(k, 0), (\square, 0), (0, 2)$
- (ii) $(-2, 0), (0, \square, (0, k)$
- **4.** (i) \Box indequation of line joining (1, 2) and (\Box, \Box) using determinants.
 - (ii) \Box ind equation of line joining $(\Box, 1)$ and (\Box, \Box) using determinants.
- 5. If area of triangle is \square sq units with vertices $(2, -\square)$, (\square, \square) and (k, \square) . Then k is
 - (A) 12
- (\Box) -2
- $(\Box) -12, -2$
- (D) 12, -2

4.5 Minors and Cofactors

In this section, we will learn to write the expansion of a determinant in compact form using minors and cofactors.

Definition 1 Minor of an element a_{ij} of a determinant is the determinant obtained by deleting its *i*th row and *j*th column in which element a_{ij} lies. Minor of an element a_{ij} is

Remark Minor of an element of a determinant of order $n(n \ge 2)$ is a determinant of order n-1.

Example 19 \Box ind the minor of element \Box in the determinant $\Delta = \begin{bmatrix} 1 & 2 & \Box \\ \Box & \Box & \Box \\ \Box & \Box & \Box \end{bmatrix}$

Solution Since \Box lies in the second row and third column, its minor $M_{2\Box}$ is given by

$$M_{2\square} = \begin{vmatrix} 1 & 2 \\ \square & \square \end{vmatrix} = \square - 1 \square = - \square \text{(obtained by deleting } R_2 \text{ and } \square_\square \text{ in } \Delta \text{)}.$$

Definition 2 \square ofactor of an element a_{ij} , denoted by A_{ij} is defined by $A_{ij} = (-1)^{i+j} M_{ij}$, where M_{ij} is minor of a_{ij} .

Example 20 \Box ind minors and cofactors of all the elements of the determinant $\begin{bmatrix} 1 & -2 \\ \Box & \end{bmatrix}$

Solution Minor of the element a_{ij} is M_{ij}

 \Box ere $a_{11} = 1$. So $M_{11} = Minor of <math>a_{11} = \Box$

 M_{12} = Minor of the element a_{12} = \square

 $M_{21} = Minor of the element <math>a_{21} = -2$

 M_{22} = Minor of the element a_{22} = 1

Now, cofactor of a_{ij} is A_{ij} . So

$$A_{11} = (-1)^{1+1} M_{11} = (-1)^2 (\Box) = \Box$$

$$A_{12} = (-1)^{1+2} M_{12} = (-1)^{\square} (\square) = -\square$$

$$A_{21} = (-1)^{2+1} M_{21} = (-1)^{\square} (-2) = 2$$

$$A_{22} = (-1)^{2+2} M_{22} = (-1)^{\square} (1) = 1$$

Example 21 \Box ind minors and cofactors of the elements a_{11} , a_{21} in the determinant

$$\Delta = \begin{vmatrix} a_{11} & a_{12} & a_{1\square} \\ a_{21} & a_{22} & a_{2\square} \\ a_{\square} & a_{\square} & a_{\square} \end{vmatrix}$$

Solution □y definition of minors and cofactors, we have

Minor of
$$a_{11} = M_{11} = \begin{vmatrix} a_{22} & a_{2D} \\ a_{D2} & a_{DD} \end{vmatrix} = a_{22} a_{DD} - a_{2D} a_{DD}$$

$$\Box$$
 of actor of $a_{11} = A_{11} = (-1)^{1+1}$ $M_{11} = a_{22} \ a_{\Box} - a_{2\Box} a_{\Box}$

Minor of
$$a_{21} = M_{21} = \begin{vmatrix} a_{12} & a_{1\square} \\ a_{\square} & a_{\square} \end{vmatrix} = a_{12} a_{\square} - a_{1\square} a_{\square}$$

$$\Box \text{ofactor of } a_{21} = \mathbf{A}_{21} = (-1)^{2+1} \quad \mathbf{M}_{21} = (-1) \ (a_{12} \ a_{\Box} - \ a_{1\Box} \ a_{\Box}) = - \ a_{12} \ a_{\Box} + \ a_{1\Box} \ a_{\Box}$$

Remark Expanding the determinant Δ , in Example 21, along R_1 , we have

$$\Delta = (-1)^{1+1} a_{11} \begin{vmatrix} a_{22} & a_{2\square} \\ a_{\square2} & a_{\square} \end{vmatrix} + (-1)^{1+2} a_{12} \begin{vmatrix} a_{21} & a_{2\square} \\ a_{\square} & a_{\square} \end{vmatrix} + (-1)^{1+\square} a_{1\square} \begin{vmatrix} a_{21} & a_{22} \\ a_{\square} & a_{\square} \end{vmatrix}$$

=
$$a_{11} A_{11} + a_{12} A_{12} + a_{11} A_{12}$$
, where A_{ij} is cofactor of a_{ij}

= sum of product of elements of R₁ with their corresponding cofactors

Similarly, Δ can be calculated by other five ways of expansion that is along R_2 , R_1 , \square_1 , \square_2 and \square_{\square}

 \Box ence Δ = sum of the product of elements of any row (or column) with their corresponding cofactors.

Note If elements of a row (or column) are multiplied with cofactors of any other row (or column), then their sum is \(\text{ero.} \) \(\text{lor example}, \)

$$\Delta = a_{11} A_{21} + a_{12} A_{22} + a_{1\square} A_{2\square}$$

$$= a_{11} (-1)^{1+1} \begin{vmatrix} a_{12} & a_{1\square} \\ a_{\square} & a_{\square} \end{vmatrix} + a_{12} (-1)^{1+2} \begin{vmatrix} a_{11} & a_{1\square} \\ a_{\square} & a_{\square} \end{vmatrix} + a_{1\square} (-1)^{1+\square} \begin{vmatrix} a_{11} & a_{12} \\ a_{\square} & a_{\square} \end{vmatrix}$$

$$= \begin{vmatrix} a_{11} & a_{12} & a_{1\square} \\ a_{\square} & a_{\square} & a_{\square} \end{vmatrix} = 0 \text{ (since } R_1 \text{ and } R_2 \text{ are identical)}$$

Similarly, we can try for other rows and columns.

Example 22 [ind minors and cofactors of the elements of the determinant

$$\begin{vmatrix} 2 & -\Box & \Box \\ \Box & 0 & \Box \\ 1 & \Box & -\Box \end{vmatrix}$$
 and verify that $a_{11} A_{\Box} + a_{12} A_{\Box} + a_{11} A_{\Box} = 0$

Solution We have
$$M_{11} = \begin{vmatrix} 0 & \Box \\ \Box & -\Box \end{vmatrix} = 0$$
 $-20 = -20$ $\Box A_{11} = (-1)^{1+1} (-20) = -20$

$$\mathbf{M}_{12} = \begin{vmatrix} \Box & \Box \\ 1 & -\Box \end{vmatrix} = - \ \Box 2 - \Box = - \ \Box \Box \qquad \mathbf{A}_{12} = (-1)^{1+2} \left(- \ \Box \right) = \ \Box$$

$$\mathbf{M}_{\scriptscriptstyle{1\square}} = \begin{vmatrix} \square & 0 \\ 1 & \square \end{vmatrix} = \square \mathbf{0} - \mathbf{0} = \square \mathbf{0} \square \qquad \qquad \mathbf{A}_{\scriptscriptstyle{1\square}} = (-1)^{\scriptscriptstyle{1+\square}} (\square \mathbf{0}) = \square \mathbf{0}$$

$$\mathbf{M}_{21} = \begin{vmatrix} -\Box & \Box \\ \Box & -\Box \end{vmatrix} = 21 - 2\Box = - \Box \qquad \qquad \mathbf{A}_{21} = (-1)^{2+1} (-\Box) = \Box$$

$$\mathbf{M}_{22} = \begin{vmatrix} 2 & \Box \\ 1 & -\Box \end{vmatrix} = -1 \Box - \Box = -1 \Box \qquad \mathbf{A}_{22} = (-1)^{2+2} (-1 \Box) = -1 \Box$$

$$\mathbf{M}_{2\square} = \begin{vmatrix} 2 & -\square \\ 1 & \square \end{vmatrix} = 10 + \square = 1 \square \qquad \qquad \mathbf{A}_{2\square} = (-1)^{2+\square} (1\square) = -1 \square$$

$$\mathbf{M}_{\square} = \begin{vmatrix} -\Box & \Box \\ 0 & \Box \end{vmatrix} = -12 - 0 = -12 \Box \qquad \mathbf{A}_{\square} = (-1)^{\square + 1} (-12) = -12$$

$$M_{12} = \begin{vmatrix} 2 & \Box \\ \Box & \Box \end{vmatrix} = \Box - \Box 0 = -22 \Box \qquad A_{12} = (-1)^{\Box + 2} (-22) = 22$$
and
$$M_{\Box} = \begin{vmatrix} 2 & -\Box \\ \Box & 0 \end{vmatrix} = 0 + 1 \Box = 1 \Box \qquad A_{\Box} = (-1)^{\Box + \Box} (1 \Box) = 1 \Box$$
Now
$$a_{11} = 2, a_{12} = -\Box, a_{12} = \Box A_{\Box} = -12, A_{22} = 22, A_{\Box} = 1 \Box$$
So
$$a_{11} A_{\Box} + a_{12} A_{12} + a_{13} A_{\Box}$$

$$= 2 (-12) + (-\Box) (22) + \Box (1 \Box) = -2 \Box - \Box + \Box 0 = 0$$

EXERCISE 4.4

Write Minors and □ofactors of the elements of following determinants □

1. (i)
$$\begin{vmatrix} 2 & - \Box \\ 0 & \Box \end{vmatrix}$$
 (ii) $\begin{vmatrix} a & c \\ b & d \end{vmatrix}$

2. (i)
$$\begin{vmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{vmatrix}$$
 (ii) $\begin{vmatrix} 1 & 0 & \Box \\ \Box & \Box & -1 \\ 0 & 1 & 2 \end{vmatrix}$

3.
$$\Box$$
 sing \Box of actors of elements of second row, evaluate $\Delta = \begin{bmatrix} \Box & \Box & \Box \\ 2 & 0 & 1 \\ 1 & 2 & \Box \end{bmatrix}$.

4.
$$\Box$$
 sing \Box of actors of elements of third column, evaluate $\Delta = \begin{bmatrix} 1 & x & yz \\ 1 & y & zx \\ 1 & z & xy \end{bmatrix}$.

5. If
$$\Delta = \begin{vmatrix} a_{11} & a_{12} & a_{11} \\ a_{21} & a_{22} & a_{22} \\ a_{21} & a_{22} & a_{22} \end{vmatrix}$$
 and \mathbf{A}_{ij} is \square of actors of a_{ij} , then value of Δ is given by

(A)
$$a_{11} A_{\Box} + a_{12} A_{\Box} + a_{1\Box} A_{\Box}$$
 (\Box) $a_{11} A_{11} + a_{12} A_{21} + a_{1\Box} A_{\Box}$

(a)
$$a_{21}A_{11} + a_{22}A_{12} + a_{20}A_{10}$$
 (b) $a_{11}A_{11} + a_{21}A_{21} + a_{01}A_{01}$

4.6 Adjoint and Inverse of a Matrix

In the previous chapter, we have studied inverse of a matrix. In this section, we shall discuss the condition for existence of inverse of a matrix.

To find inverse of a matrix A, i.e., A^{-1} we shall first define adjoint of a matrix.

4.6.1 Adjoint of a matrix

Definition 3 The adjoint of a square matrix $A = [a_{ij}]_{n \, \square n}$ is defined as the transpose of the matrix $[A_{ij}]_{n \, \square n}$, where A_{ij} is the cofactor of the element a_{ij} . Adjoint of the matrix A is denoted by adj A.

□et

$$\mathbf{A} = \begin{bmatrix} a_{11} & a_{12} & a_{11} \\ a_{21} & a_{22} & a_{21} \\ a_{\Box} & a_{\Box} & a_{\Box} \end{bmatrix}$$

Then $adj A = Transpose of \begin{bmatrix} A_{11} & A_{12} & A_{11} \\ A_{21} & A_{22} & A_{21} \\ A_{11} & A_{12} & A_{11} \end{bmatrix} = \begin{bmatrix} A_{11} & A_{21} & A_{11} \\ A_{12} & A_{22} & A_{12} \\ A_{11} & A_{21} & A_{22} & A_{12} \end{bmatrix}$

Example 23 \Box ind adj A for A = $\begin{bmatrix} 2 & \Box \\ 1 & \Box \end{bmatrix}$

Solution We have $A_{11} = \Box A_{12} = -1$, $A_{21} = -\Box A_{22} = 2$

□ence

$$adj \ \mathbf{A} = \begin{bmatrix} \mathbf{A}_{11} & \mathbf{A}_{21} \\ \mathbf{A}_{12} & \mathbf{A}_{22} \end{bmatrix} = \begin{bmatrix} \Box & -\Box \\ -1 & 2 \end{bmatrix}$$

Remark □ or a square matrix of order 2, given by

$$\mathbf{A} = \begin{bmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{bmatrix}$$

The adj A can also be obtained by interchanging a_{11} and a_{22} and by changing signs of a_{12} and a_{21} , i.e.,

$$adj A = \begin{bmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{bmatrix} = \begin{bmatrix} a_{22} & -a_{12} \\ -a_{21} & a_{11} \end{bmatrix}$$

Change sign Interchange

We state the following theorem without proof.

Theorem 1 If A be any given square matrix of order n, then

$$A(adj A) = (adj A) A = |A|I$$

where I is the identity matrix of order n

Verification

□et

$$\mathbf{A} = \begin{bmatrix} a_{11} & a_{12} & a_{1\square} \\ a_{21} & a_{22} & a_{2\square} \\ a_{\square} & a_{\square} & a_{\square} \end{bmatrix}, \text{ then } adj \ \mathbf{A} = \begin{bmatrix} \mathbf{A}_{11} & \mathbf{A}_{21} & \mathbf{A}_{\square} \\ \mathbf{A}_{12} & \mathbf{A}_{22} & \mathbf{A}_{\square} \\ \mathbf{A}_{1\square} & \mathbf{A}_{2\square} & \mathbf{A}_{\square} \end{bmatrix}$$

Since sum of product of elements of a row (or a column) with corresponding cofactors is equal to A and otherwise ero, we have

$$A (adj A) = \begin{bmatrix} |A| & 0 & 0 \\ 0 & |A| & 0 \\ 0 & 0 & |A| \end{bmatrix} = |A| \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix} = |A| I$$

Similarly, we can show (adj A) A = |A| I

$$\Box \text{ence A } (adj \text{ A}) = (adj \text{ A}) \text{ A} = |A| \text{ I}$$

Definition 4 A square matrix A is said to be singular if |A| = 0.

 $\Box \text{or example, the determinant of matrix A} = \begin{bmatrix} 1 & 2 \\ \Box & \Box \end{bmatrix} \text{ is } \Box \text{ero}$

□ence A is a singular matrix.

Definition 5 A square matrix A is said to be non singular if $|A| \neq 0$

□et

$$A = \begin{bmatrix} 1 & 2 \\ \Box & \Box \end{bmatrix}$$
. Then $|A| = \begin{bmatrix} 1 & 2 \\ \Box & \Box \end{bmatrix} = \Box - \Box = -2 \neq 0$.

□ence A is a nonsingular matrix

We state the following theorems without proof.

Theorem 2 If A and \square are nonsingular matrices of the same order, then $A\square$ and $\square A$ are also nonsingular matrices of the same order.

Theorem 3 The determinant of the product of matrices is equal to product of their respective determinants, that is, $|A\Box| = |A| |\Box|$, where A and \Box are square matrices of the same order

Remark We know that $(adj \ A) \ A = |A| \ I = \begin{bmatrix} |A| & 0 & 0 \\ 0 & |A| & 0 \\ 0 & 0 & |A| \end{bmatrix}$

Writing determinants of matrices on both sides, we have

$$\begin{vmatrix} (adj \mathbf{A}) \mathbf{A} \end{vmatrix} = \begin{vmatrix} |\mathbf{A}| & 0 & 0 \\ 0 & |\mathbf{A}| & 0 \\ 0 & 0 & |\mathbf{A}| \end{vmatrix}$$

i.e. $(adj A) \square A \Vdash \square A \square (1)$

i.e.
$$(adj A) = A =$$

In general, if A is a square matrix of order n, then $\Box adj(A) \sqsubseteq \Box A \Box^{-1}$.

Theorem 4 A square matrix A is invertible if and only if A is nonsingular matrix.

Proof \Box et A be invertible matrix of order *n* and I be the identity matrix of order *n*.

Then, there exists a square matrix \square of order n such that $A \square = \square A = I$

Now
$$A \square = I$$
. So $|A \square| = |I|$ or $|A| |\square| = 1$ (since $|I| = 1$, $|A \square| = |A| |\square|$)

This gives $|A| \neq 0$. \Box ence A is nonsingular.

□ onversely, let A be nonsingular. Then $|A| \neq 0$

Now
$$A (adj A) = (adj A) A = |A| I$$
 (Theorem 1)

or
$$A \left(\frac{1}{\Box A} adj A \right) = \left(\frac{1}{\Box A} adj A \right) A = I$$

or
$$A \square = \square A = I$$
, where $\square = \frac{1}{\square A} adj A$

Thus A is invertible and
$$A^{-1} = \frac{1}{\Box A} adj A$$

Example 24 If
$$A = \begin{bmatrix} 1 & \Box & \Box \\ 1 & \Box & \Box \\ 1 & \Box & \Box \end{bmatrix}$$
, then verify that $A \ adj \ A = \Box A \Box A$ Also find A^{-1} .

Solution We have
$$|A| = 1(1 \square - \square) - \square(\square - \square) + \square(\square - \square) = 1 \neq 0$$

Now
$$A_{11} = \Box$$
, $A_{12} = -1$, $A_{10} = -1$, $A_{21} = -\Box$, $A_{22} = 1$, $A_{20} = 0$, $A_{\Box} = -\Box$, $A_{\Box} = 0$, $A_{\Box} = 1$

Therefore
$$adj A = \begin{bmatrix} \Box & -\Box & -\Box \\ -1 & 1 & 0 \\ -1 & 0 & 1 \end{bmatrix}$$

Now
$$A (adj A) = \begin{bmatrix} 1 & \Box & \Box \\ 1 & \Box & \Box \\ 1 & \Box & \Box \end{bmatrix} \begin{bmatrix} \Box & -\Box & -\Box \\ -1 & 1 & 0 \\ -1 & 0 & 1 \end{bmatrix}$$

$$= \begin{bmatrix} ---------+-+0 & --+0+0 \\ -------+-+0 & --+0+0 \\ --------+0+0 & --+0+0 \end{bmatrix}$$

$$\begin{bmatrix} 1 & 0 & 0 \end{bmatrix} \begin{bmatrix} 1 & 0 & 0 \end{bmatrix}$$

$$= \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix} = (1) \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix} = |A| . I$$

Also
$$A^{-1} = \frac{1}{|A|} a dj A = \frac{1}{1} \begin{bmatrix} \Box & -\Box & -\Box \\ -1 & 1 & 0 \\ -1 & 0 & 1 \end{bmatrix} = \begin{bmatrix} \Box & -\Box & -\Box \\ -1 & 1 & 0 \\ -1 & 0 & 1 \end{bmatrix}$$

Example 25 If
$$A = \begin{bmatrix} 2 & \Box \\ 1 & -\Box \end{bmatrix}$$
 and $\Box = \begin{bmatrix} 1 & -2 \\ -1 & \Box \end{bmatrix}$, then verify that $(A \Box)^{-1} = \Box^{-1}A^{-1}$.

Solution We have
$$A \Box = \begin{bmatrix} 2 & \Box \\ 1 & -\Box \end{bmatrix} \begin{bmatrix} 1 & -2 \\ -1 & \Box \end{bmatrix} = \begin{bmatrix} -1 & \Box \\ \Box & -1 \Box \end{bmatrix}$$

Since,
$$|A\square| = -11 \neq 0$$
, $(A\square)^{-1}$ exists and is given by

$$(\mathbf{A} \square)^{-1} = \frac{1}{|\mathbf{A} \square|} adj (\mathbf{A} \square) = -\frac{1}{11} \begin{bmatrix} -1 \square & -\square \\ -\square & -1 \end{bmatrix} = \frac{1}{11} \begin{bmatrix} 1 \square & \square \\ \square & 1 \end{bmatrix}$$

□urther, $|A| = -11 \neq 0$ and $|\Box| = 1 \neq 0$. Therefore, A^{-1} and \Box^{-1} both exist and are given by

$$A^{-1} = -\frac{1}{11} \begin{bmatrix} - \Box & -\Box \\ -1 & 2 \end{bmatrix}, \Box^{-1} = \begin{bmatrix} \Box & 2 \\ 1 & 1 \end{bmatrix}$$

Therefore
$$\Box^{-1} A^{-1} = -\frac{1}{11} \begin{bmatrix} \Box & 2 \\ 1 & 1 \end{bmatrix} \begin{bmatrix} -\Box & -\Box \\ -1 & 2 \end{bmatrix} = -\frac{1}{11} \begin{bmatrix} -1\Box & -\Box \\ -\Box & -1 \end{bmatrix} = \frac{1}{11} \begin{bmatrix} 1\Box & \Box \\ \Box & 1 \end{bmatrix}$$

$$\square ence (A\square)^{-1} = \square^{-1} A^{-1}$$

Example 26 Show that the matrix $A = \begin{bmatrix} 2 & \Box \\ 1 & 2 \end{bmatrix}$ satisfies the equation $A^2 - \Box A + I = \Box$, where I is $2 \square 2$ identity matrix and \square is $2 \square 2$ Lero matrix. \square sing this equation, find A^{-1} .

Solution We have
$$A^2 = A \cdot A = \begin{bmatrix} 2 & \Box \\ 1 & 2 \end{bmatrix} \begin{bmatrix} 2 & \Box \\ 1 & 2 \end{bmatrix} = \begin{bmatrix} \Box & 12 \\ \Box & \Box \end{bmatrix}$$

$$\Box ence \qquad \qquad A^2 - \Box A + I = \begin{bmatrix} \Box & 12 \\ \Box & \Box \end{bmatrix} - \begin{bmatrix} \Box & 12 \\ \Box & \Box \end{bmatrix} + \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} = \begin{bmatrix} 0 & 0 \\ 0 & 0 \end{bmatrix} = \Box$$

Now
$$A^2 - \Box A + I = \Box$$

Therefore $A A - \Box A = -I$

or
$$A A (A^{-1}) - \Box A A^{-1} = -I A^{-1}$$
 (\Box ost multiplying by A^{-1} because $\Box A \not\equiv 0$)

or
$$A(AA^{-1}) - \Box = -A^{-1}$$

or
$$AI - \Box = -A^{-1}$$

or
$$A^{-1} = \Box - A = \begin{bmatrix} \Box & 0 \\ 0 & \Box \end{bmatrix} - \begin{bmatrix} 2 & \Box \\ 1 & 2 \end{bmatrix} = \begin{bmatrix} 2 & -\Box \\ -1 & 2 \end{bmatrix}$$

$$\Box \text{ence} \qquad \qquad \mathbf{A}^{-1} = \begin{bmatrix} 2 & -\Box \\ -1 & 2 \end{bmatrix}$$

EXERCISE 4.5

ind adjoint of each of the matrices in Exercises 1 and 2.

1.
$$\begin{bmatrix} 1 & 2 \\ \Box & \Box \end{bmatrix}$$

1.
$$\begin{bmatrix} 1 & 2 \\ \Box & \Box \end{bmatrix}$$
 2. $\begin{bmatrix} 1 & -1 & 2 \\ 2 & \Box & \Box \\ -2 & 0 & 1 \end{bmatrix}$

 \Box erify A (adj A) = (adj A) A = \Box A \Box I in Exercises \Box and \Box

3.
$$\begin{bmatrix} 2 & \Box \\ -\Box & -\Box \end{bmatrix}$$
 4. $\begin{bmatrix} 1 & -1 & 2 \\ \Box & 0 & -2 \\ 1 & 0 & \Box \end{bmatrix}$

□ ind the inverse of each of the matrices (if it exists) given in Exercises □ to 11.

- 5. $\begin{bmatrix} 2 & -2 \\ \Box & \Box \end{bmatrix}$ 6. $\begin{bmatrix} -1 & \Box \\ -\Box & 2 \end{bmatrix}$ 7. $\begin{bmatrix} 1 & 2 & \Box \\ 0 & 2 & \Box \\ 0 & 0 & \Box \end{bmatrix}$
- 8. $\begin{bmatrix} 1 & 0 & 0 \\ \Box & \Box & 0 \\ \Box & 2 & -1 \end{bmatrix}$ 9. $\begin{bmatrix} 2 & 1 & \Box \\ \Box & -1 & 0 \\ -\Box & 2 & 1 \end{bmatrix}$ 10. $\begin{bmatrix} 1 & -1 & 2 \\ 0 & 2 & -\Box \\ \Box & -2 & \Box \end{bmatrix}$
- 11. $\begin{bmatrix} 1 & 0 & 0 \\ 0 & \cos \alpha & \sin \alpha \\ 0 & \sin \alpha & -\cos \alpha \end{bmatrix}$
- 12. \Box et $A = \begin{bmatrix} \Box & \Box \\ 2 & \Box \end{bmatrix}$ and $\Box = \begin{bmatrix} \Box & \Box \\ \Box & \Box \end{bmatrix}$. \Box erify that $(A \Box)^{-1} = \Box^{-1} A^{-1}$.
- 13. If $A = \begin{bmatrix} \Box & 1 \\ -1 & 2 \end{bmatrix}$, show that $A^2 \Box A + \Box I = \Box$. \Box ence find A^{-1} .
- **14.** Or the matrix $A = \begin{bmatrix} \Box & 2 \\ 1 & 1 \end{bmatrix}$, find the numbers a and b such that $A^2 + aA + bI = \Box$.
- **15.** For the matrix $A = \begin{bmatrix} 1 & 1 & 1 \\ 1 & 2 & -1 \\ 2 & -1 & 1 \end{bmatrix}$

Show that $A - A^2 + A + 11 I = A$. Dence, find A^{-1} .

16. If $A = \begin{bmatrix} 2 & -1 & 1 \\ -1 & 2 & -1 \\ 1 & -1 & 2 \end{bmatrix}$

 \Box erify that $A^{\Box} - \Box A^2 + \Box A - \Box = \Box$ and hence find A^{-1}

- 17. \Box et A be a nonsingular square matrix of order $\Box\Box\Box$ Then \Box adj A \Box is equal to (D) □ 🖪 🗆
 - (\Box) A \Box (A) A () A =
- 18. If A is an invertible matrix of order 2, then det (A⁻¹) is equal to
 - (A) det (A)
- $(\Box) \ \frac{1}{\det(A)} \qquad (\Box) \ 1$
- (D) 0

4.7 Applications of Determinants and Matrices

In this section, we shall discuss application of determinants and matrices for solving the system of linear equations in two or three variables and for checking the consistency of the system of linear equations.

Consistent system A system of equations is said to be *consistent* if its solution (one or more) exists.

Inconsistent system A system of equations is said to be *inconsistent* if its solution does not exist.

Note In this chapter, we restrict ourselves to the system of linear equations having unique solutions only.

4.7.1 Solution of system of linear equations using inverse of a matrix

Det us express the system of linear equations as matrix equations and solve them using inverse of the coefficient matrix.

□onsider the system of equations

$$a_1 x + b_1 y + c_1 z = d_1$$

$$a_2 x + b_2 y + c_2 z = d_2$$

$$a_1 x + b_1 y + c_2 z = d_2$$

$$a_2 x + b_2 y + c_2 z = d_2$$

$$A = \begin{bmatrix} a_1 & b_1 & c_1 \\ a_2 & b_2 & c_2 \\ a_2 & b_3 & c_3 \end{bmatrix}, \quad \Box = \begin{bmatrix} x \\ y \\ z \end{bmatrix} \text{ and } \Box = \begin{bmatrix} d_1 \\ d_2 \\ d_3 \end{bmatrix}$$

Then, the system of equations can be written as, $A \square = \square$, i.e.,

$$\begin{bmatrix} a_1 & b_1 & c_1 \\ a_2 & b_2 & c_2 \\ a_{\square} & b_{\square} & c_{\square} \end{bmatrix} \begin{bmatrix} x \\ y \\ z \end{bmatrix} = \begin{bmatrix} d_1 \\ d_2 \\ d_{\square} \end{bmatrix}$$

Case I If A is a nonsingular matrix, then its inverse exists. Now

This matrix equation provides unique solution for the given system of equations as inverse of a matrix is unique. This method of solving system of equations is known as Matrix Method.

Case II If A is a singular matrix, then $\Box A \Box = 0$.

In this case, we calculate $(adj A) \square$.

If $(adj \ A) \ \Box \neq \Box$, $(\Box \ being \ \Box ero \ matrix)$, then solution does not exist and the system of equations is called inconsistent.

If $(adj A) \Box = \Box$, then system may be either consistent or inconsistent according as the system have either infinitely many solutions or no solution.

Example 27 Solve the system of equations

$$2x + \Box y = 1$$
$$\Box x + 2y = \Box$$

Solution The system of equations can be written in the form $A \square = \square$, where

$$\mathbf{A} = \begin{bmatrix} 2 & \square \\ \square & 2 \end{bmatrix}, \square = \begin{bmatrix} x \\ y \end{bmatrix} \text{ and } \square = \begin{bmatrix} 1 \\ \square \end{bmatrix}$$

Now, $|A| = -11 \neq 0$, \Box ence, A is nonsingular matrix and so has a unique solution.

Note that
$$A^{-1} = -\frac{1}{11} \begin{bmatrix} 2 & -1 \\ -1 & 2 \end{bmatrix}$$
Therefore
$$\Box = A^{-1} \Box = -\frac{1}{11} \begin{bmatrix} 2 & -1 \\ -1 & 2 \end{bmatrix} \begin{bmatrix} 1 \\ 1 \end{bmatrix}$$
i.e.
$$\begin{bmatrix} x \\ y \end{bmatrix} = -\frac{1}{11} \begin{bmatrix} -1 \\ 1 \end{bmatrix} = \begin{bmatrix} 0 \\ -1 \end{bmatrix}$$

Example 28 Solve the following system of equations by matrix method.

$$\begin{bmatrix}
 x - 2y + \Box z = \Box \\
 2x + y - z = 1
 \end{bmatrix}$$

$$\begin{bmatrix}
 x - \Box y + 2z = \Box
 \end{bmatrix}$$

Solution The system of equations can be written in the form $A \square = \square$, where

$$\mathbf{A} = \begin{bmatrix} \Box & -2 & \Box \\ 2 & 1 & -1 \\ \Box & -\Box & 2 \end{bmatrix}, \ \Box = \begin{bmatrix} x \\ y \\ z \end{bmatrix} \text{ and } \Box = \begin{bmatrix} \Box \\ 1 \\ \Box \end{bmatrix}$$

We see that

□ence

$$|A| = \Box(2 - \Box) + 2(\Box + \Box) + \Box(-\Box - \Box) = -1 \Box \neq 0$$

□ence, A is nonsingular and so its inverse exists. Now

Therefore

i.e.
$$\begin{bmatrix} x \\ y \\ z \end{bmatrix} = -\frac{1}{1} \begin{bmatrix} -1 \\ -\Box \end{bmatrix} = \begin{bmatrix} 1 \\ 2 \\ -\Box \end{bmatrix}$$

Example 29 The sum of three numbers is \Box If we multiply third number by \Box and add second number to it, we get 11. \Box y adding first and third numbers, we get double of the second number. Represent it algebraically and find the numbers using matrix method.

Solution \Box et first, second and third numbers be denoted by x, y and z, respectively. Then, according to given conditions, we have

$$x + y + z = \square$$

$$y + \square z = 11$$

$$x + z = 2y \text{ or } x - 2y + z = 0$$

This system can be written as A $\square = \square$, where

$$A = \begin{bmatrix} 1 & 1 & 1 \\ 0 & 1 & \Gamma \\ 1 & -2 & 1 \end{bmatrix}, \ \Box = \begin{bmatrix} x \\ y \\ z \end{bmatrix} \text{ and } \Box = \begin{bmatrix} \Gamma \\ 11 \\ 0 \end{bmatrix}$$

 \Box ere $|A| = 1(1 + \Box) - (0 - \Box) + (0 - 1) = \Box \neq 0$. Now we find *adj* A

$$A_{11} = 1 (1 + \Box) = \Box$$
 $A_{12} = -(0 - \Box) = \Box$
 $A_{10} = -1$
 $A_{21} = -(1 + 2) = -\Box$
 $A_{22} = 0$,
 $A_{20} = -(-2 - 1) = \Box$
 $A_{20} = -(-2 - 1) = \Box$
 $A_{21} = -(-2 - 1) = \Box$

□ence

$$adj A = \begin{bmatrix} \Box & -\Box & 2 \\ \Box & 0 & -\Box \\ -1 & \Box & 1 \end{bmatrix}$$

Thus

$$\mathbf{A}^{-1} = \frac{1}{|\mathbf{A}|} \ adj \ (\mathbf{A}) = \frac{1}{\square} \begin{bmatrix} \square & -\square & 2 \\ \square & 0 & -\square \\ -1 & \square & 1 \end{bmatrix}$$

Since

$$\Box = A^{-1} \Box$$

$$\Box = \frac{1}{\Box} \begin{bmatrix} \Box & -\Box & 2 \\ \Box & 0 & -\Box \\ -1 & \Box & 1 \end{bmatrix} \begin{bmatrix} \Box \\ 11 \\ 0 \end{bmatrix}$$

or

$$\begin{bmatrix} x \\ y \\ z \end{bmatrix} = \frac{1}{\Box} \begin{bmatrix} \Box 2 - \Box + 0 \\ 1 \Box + 0 + 0 \\ -\Box + \Box + 0 \end{bmatrix} = \frac{1}{\Box} \begin{bmatrix} \Box \\ 1 \Box \\ 2 \Box \end{bmatrix} = \begin{bmatrix} 1 \\ 2 \\ \Box \end{bmatrix}$$

Thus

$$x = 1, y = 2, z = \square$$

EXERCISE 4.6

Examine the consistency of the system of equations in Exercises 1 to \Box

1.
$$x + 2y = 2$$

2.
$$2x - y = \Box$$

3.
$$x + \Box y = \Box$$

$$2x + \Box y = \Box$$

$$x + y = \square$$

$$2x + \Box y = \Box$$

4.
$$x + y + z = 1$$

 $2x + \Box y + 2z = 2$

5.
$$\Box x - y - 2z = 2$$

 $2y - z = -1$

$$6. \quad \Box x - y + \Box z = \Box$$

$$2x + \Box y + 2z = 2$$
$$ax + ay + 2az = \Box$$

$$2x + \Box y + \Box z = 2$$
$$\Box x - 2y + \Box z = -1$$

Solve system of linear equations, using matrix method, in Exercises \Box to $1\Box$

7.
$$\Box x + 2y = \Box$$

8.
$$2x - y = -2$$

9.
$$\Box x - \Box y = \Box$$

$$\Box x + \Box y = \Box$$

$$\Box x + \Box y = \Box$$

$$\Box x - \Box y = \Box$$

10.
$$\Box x + 2y = \Box$$

11.
$$2x + y + z = 1$$
 12. $x - y + z = \Box$

2.
$$x - y + z = \Box$$

$$\Box x + 2y = \Box$$

$$x - 2y - z = \frac{\square}{2}$$

$$2x + y - \Box z = 0$$
$$x + y + z = 2$$

$$\Box y - \Box z = \Box$$

$$\Box y - \Box z = \Box$$

13.
$$2x + \Box y + \Box z = \Box$$

$$2x + \Box y + \Box z = \Box$$
 14. $x - y + 2z = \Box$ $x - 2y + z = -\Box$ $\Box x + \Box y - \Box z = -\Box$

$$\Box x - y - 2z = \Box$$

$$2x - y + \Box z = 12$$

15. If
$$A = \begin{bmatrix} 2 & -\Box & \Box \\ \Box & 2 & -\Box \\ 1 & 1 & -2 \end{bmatrix}$$
, find A^{-1} . \Box sing A^{-1} solve the system of equations

$$2x - \Box y + \Box z = 11$$
$$\Box x + 2y - \Box z = - \Box$$
$$x + y - 2z = - \Box$$

16. The cost of \Box kg onion, \Box kg wheat and 2 kg rice is Rs \Box 0. The cost of 2 kg onion, \Box kg wheat and \Box kg rice is Rs \Box 0. The cost of \Box kg onion 2 kg wheat and \Box kg rice is Rs \Box 0. \Box 1nd cost of each item per kg by matrix method.

Miscellaneous Examples

Example 30 If a, b, c are positive and unequal, show that value of the determinant

$$\Delta = \begin{vmatrix} a & b & c \\ b & c & a \\ c & a & b \end{vmatrix}$$
 is negative.

Solution Applying $\Box_1 \to \Box_1 + \Box_2 + \Box_0$ to the given determinant, we get

$$\Delta = \begin{vmatrix} a+b+c & b & c \\ a+b+c & c & a \\ a+b+c & a & b \end{vmatrix} = (a+b+c) \begin{vmatrix} 1 & b & c \\ 1 & c & a \\ 1 & a & b \end{vmatrix}$$

$$= (a+b+c) \begin{vmatrix} 1 & b & c \\ 0 & c-b & a-c \\ 0 & a-b & b-c \end{vmatrix}$$
 (Applying $R_2 \rightarrow R_2 - R_1$, and $R_1 \rightarrow R_1 - R_1$)

=
$$(a + b + c) [(c - b) (b - c) - (a - c) (a - b)]$$
 (Expanding along \Box_1)
= $(a + b + c)(-a^2 - b^2 - c^2 + ab + bc + ca)$

$$= \frac{-1}{2} (a + b + c) (2a^2 + 2b^2 + 2c^2 - 2ab - 2bc - 2ca)$$

$$= \frac{-1}{2} (a + b + c) [(a - b)^2 + (b - c)^2 + (c - a)^2]$$

which is negative (since $a+b+c \square 0$ and $(a-b)^2+(b-c)^2+(c-a)^2\square 0$)

1 🖂

Example 31 If a, b, c, are in A. \square , find value of

$$\begin{vmatrix} 2y + \Box & \Box y + \Box & \Box y + a \\ \Box y + \Box & \Box y + \Box & \Box y + b \\ \Box y + \Box & \Box y + \Box & 10y + c \end{vmatrix}$$

Solution Applying $R_1 \rightarrow \mathbb{R}_1 + R_1 - 2R$, to the given determinant, we obtain

Example 32 Show that

$$\Delta = \begin{vmatrix} (y+z)^2 & xy & zx \\ xy & (x+z)^2 & yz \\ xz & yz & (x+y)^2 \end{vmatrix} = 2xyz (x+y+z)^{\square}$$

Solution Applying $R_1 \to xR_1$, $R_2 \to yR_2$, $R_{\Box} \to zR_{\Box}$ to Δ and dividing by xyz, we get

$$\Delta = \frac{1}{xyz} \begin{vmatrix} x(y+z)^2 & x^2 y & x^2 z \\ xy^2 & y(x+z)^2 & y^2 z \\ xz^2 & yz^2 & z(x+y)^2 \end{vmatrix}$$

Taking common factors x, y, z from $\Box_1 \Box_2$ and \Box_r , respectively, we get

$$\Delta = \frac{xyz}{xyz} \begin{vmatrix} (y+z)^2 & x^2 & x^2 \\ y^2 & (x+z)^2 & y^2 \\ z^2 & z^2 & (x+y)^2 \end{vmatrix}$$

Applying $\square_2 \rightarrow \square_2 - \square_1$, $\square_\square \rightarrow \square_\square - \square_1$, we have

$$\Delta = \begin{vmatrix} (y+z)^2 & x^2 - (y+z)^2 & x^2 - (y+z)^2 \\ y^2 & (x+z)^2 - y^2 & 0 \\ z^2 & 0 & (x+y)^2 - z^2 \end{vmatrix}$$

Taking common factor (x + y + z) from \square_2 and \square_r , we have

$$\Delta = (x + y + z)^{2} \begin{vmatrix} (y+z)^{2} & x - (y+z) & x - (y+z) \\ y^{2} & (x+z) - y & 0 \\ z^{2} & 0 & (x+y) - z \end{vmatrix}$$

Applying $R_1 \rightarrow R_1 - (R_2 + R_2)$, we have

$$\Delta = (x + y + z)^{2} \begin{vmatrix} 2yz & -2z & -2y \\ y^{2} & x - y + z & 0 \\ z^{2} & 0 & x + y - 1 \end{vmatrix}$$

Applying $\Box_2 \to (\Box_2 + \frac{1}{y} \Box_1)$ and $\Box_2 \to (\Box_2 + \frac{1}{z} \Box_1)$, we get

$$\Delta = (x+y+z)^2 \begin{vmatrix} 2yz & 0 & 0 \\ y^2 & x+z & \frac{y^2}{z} \\ z^2 & \frac{z^2}{y} & x+y \end{vmatrix}$$

 \Box inally expanding along R₁, we have

$$\Delta = (x + y + z)^2 (2yz) [(x + z) (x + y) - yz] = (x + y + z)^2 (2yz) (x^2 + xy + xz)$$
$$= (x + y + z)^{-1} (2xyz)$$

Example 33 \Box se product $\begin{bmatrix} 1 & -1 & 2 \\ 0 & 2 & -\Box \\ \Box & -2 & \Box \end{bmatrix} \begin{bmatrix} -2 & 0 & 1 \\ \Box & 2 & -\Box \\ \Box & 1 & -2 \end{bmatrix}$ to solve the system of equations

$$x - y + 2z = 1$$

$$2y - \Box z = 1$$

$$\Box x - 2y + \Box z = 2$$

Solution \square onsider the product $\begin{bmatrix} 1 & -1 & 2 \\ 0 & 2 & -\square \\ \square & -2 & \square \end{bmatrix} \begin{bmatrix} -2 & 0 & 1 \\ \square & 2 & -\square \\ \square & 1 & -2 \end{bmatrix}$

$$= \begin{bmatrix} -2 - \Box + 12 & 0 - 2 + 2 & 1 + \Box - \Box \\ 0 + 1 \Box - 1 \Box & 0 + \Box - \Box & 0 - \Box + \Box \\ -\Box - 1 \Box + 2 \Box & 0 - \Box + \Box & \Box + \Box - \Box \end{bmatrix} = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}$$

□ence

$$\begin{bmatrix} 1 & -1 & 2 \\ 0 & 2 & - \Box \\ \Box & -2 & \Box \end{bmatrix}^{-1} = \begin{bmatrix} -2 & 0 & 1 \\ \Box & 2 & - \Box \\ \Box & 1 & -2 \end{bmatrix}$$

Now, given system of equations can be written, in matrix form, as follows

$$\begin{bmatrix} 1 & -1 & 2 \\ 0 & 2 & -\Box \\ \Box & -2 & \Box \end{bmatrix} \begin{bmatrix} x \\ y \\ z \end{bmatrix} = \begin{bmatrix} 1 \\ 1 \\ 2 \end{bmatrix}$$

or

$$\begin{bmatrix} x \\ y \\ z \end{bmatrix} = \begin{bmatrix} 1 & -1 & 2 \\ 0 & 2 & -\Box \\ \Box & -2 & \Box \end{bmatrix}^{-1} \begin{bmatrix} 1 \\ 1 \\ 2 \end{bmatrix} = \begin{bmatrix} -2 & 0 & 1 \\ \Box & 2 & -\Box \\ \Box & 1 & -2 \end{bmatrix} \begin{bmatrix} 1 \\ 1 \\ 2 \end{bmatrix}$$
$$= \begin{bmatrix} -2 + 0 + 2 \\ \Box + 2 - \Box \\ \Box + 1 - \Box \end{bmatrix} = \begin{bmatrix} 0 \\ \Box \\ \Box \end{bmatrix}$$
$$x = 0, y = \Box \text{ and } z = \Box$$

 \Box ence

Example 34 Trove that

$$\Delta = \begin{vmatrix} a+bx & c+dx & p+qx \\ ax+b & cx+d & px+q \\ u & v & w \end{vmatrix} = (1-x^2) \begin{vmatrix} a & c & p \\ b & d & q \\ u & v & w \end{vmatrix}$$

Solution Applying $R_1 \rightarrow R_1 - x R_2$ to Δ , we get

$$\Delta = \begin{vmatrix} a(1-x^{2}) & c(1-x^{2}) & p(1-x^{2}) \\ ax+b & cx+d & px+q \\ u & v & w \end{vmatrix}$$
$$= (1-x^{2}) \begin{vmatrix} a & c & p \\ ax+b & cx+d & px+q \\ u & v & w \end{vmatrix}$$

Applying $R_2 \rightarrow R_2 - x R_1$, we get

$$\Delta = (1 - x^2) \begin{vmatrix} a & c & p \\ b & d & q \\ u & v & w \end{vmatrix}$$

Miscellaneous Exercises on Chapter 4

- \boldsymbol{x} $\sin\theta \cos\theta$ -x 1 | is independent of θ . 1. Trove that the determinant $-\sin\theta$ $\cos\theta$
- 2. Without expanding the determinant, prove that $\begin{vmatrix} a & a^2 & bc \\ b & b^2 & ca \\ c & c^2 & ab \end{vmatrix} = \begin{vmatrix} 1 & a^2 & a^2 \\ 1 & b^2 & b^2 \\ 1 & c^2 & c^2 \end{vmatrix}.$
- $|\cos\alpha\cos\beta|\cos\alpha\sin\beta| \sin\alpha$ 3. Evaluate $-\sin \beta \cos \beta = 0$. $\sin \alpha \cos \beta \quad \sin \alpha \sin \beta \quad \cos \alpha$
- **4.** If a, b and c are real numbers, and

$$\Delta = \begin{vmatrix} b+c & c+a & a+b \\ c+a & a+b & b+c \\ a+b & b+c & c+a \end{vmatrix} = 0,$$

Show that either a + b + c = 0 or a = b = c.

- 5. Solve the equation $\begin{vmatrix} x+a & x & x \\ x & x+a & x \end{vmatrix} = 0, a \neq 0$
- 5. Solve the equation $\begin{vmatrix} x & x+a & x \\ x & x & x+a \end{vmatrix} = 0, a \neq 0$ 6. Prove that $\begin{vmatrix} a^2 & bc & ac+c^2 \\ a^2+ab & b^2 & ac \\ ab & b^2+bc & c^2 \end{vmatrix} = \Box a^2b^2c^2$ 7. If $A^{-1} = \begin{bmatrix} \Box & -1 & 1 \\ -1\Box & \Box & -\Box \\ \Box & -2 & 2 \end{bmatrix}$ and $\Box = \begin{bmatrix} 1 & 2 & -2 \\ -1 & \Box & 0 \\ 0 & -2 & 1 \end{bmatrix}$, find $(A\Box)^{-1}$

8.
$$\Box$$
et $A = \begin{bmatrix} 1 & -2 & 1 \\ -2 & \Box & 1 \\ 1 & 1 & \Box \end{bmatrix}$. \Box erify that

(i)
$$[adj A]^{-1} = adj (A^{-1})$$
 (ii) $(A^{-1})^{-1} = A$

(ii)
$$(A^{-1})^{-1} = A$$

9. Evaluate
$$\begin{vmatrix} x & y & x+y \\ y & x+y & x \\ x+y & x & y \end{vmatrix}$$

10. Evaluate
$$\begin{vmatrix} 1 & x & y \\ 1 & x+y & y \\ 1 & x & x+y \end{vmatrix}$$

 \Box sing properties of determinants in Exercises 11 to $1\Box$ prove that \Box

11.
$$\begin{vmatrix} \alpha & \alpha^{2} & \beta + \gamma \\ \beta & \beta^{2} & \gamma + \alpha \\ \gamma & \gamma^{2} & \alpha + \beta \end{vmatrix} = (\beta - \gamma) (\gamma - \alpha) (\alpha - \beta) (\alpha + \beta + \gamma)$$

12.
$$\begin{vmatrix} x & x^2 & 1 + px \\ y & y^2 & 1 + py \\ z & z^2 & 1 + pz \end{vmatrix} = (1 + pxyz) (x - y) (y - z) (z - x), \text{ where } p \text{ is any scalar.}$$

13.
$$\begin{vmatrix} \Box a & -a+b & -a+c \\ -b+a & \Box b & -b+c \\ -c+a & -c+b & \Box c \end{vmatrix} = \Box (a+b+c) (ab+bc+ca)$$

14.
$$\begin{vmatrix} 1 & 1+p & 1+p+q \\ 2 & \Box + 2p & \Box + \Box p + 2q \\ \Box & \Box + \Box p & 10 + \Box p + \Box q \end{vmatrix} = 1$$
15.
$$\begin{vmatrix} \sin \alpha & \cos \alpha & \cos(\alpha + \delta) \\ \sin \beta & \cos \beta & \cos(\beta + \delta) \\ \sin \gamma & \cos \gamma & \cos(\gamma + \delta) \end{vmatrix} = 0$$

16. Solve the system of equations

$$\frac{2}{x} + \frac{\square}{y} + \frac{10}{z} = \square$$

$$\frac{\square}{x} - \frac{\square}{y} + \frac{\square}{z} = 1$$

$$\frac{\Box}{x} + \frac{\Box}{v} - \frac{20}{z} = 2$$

 \square hoose the correct answer in Exercise 1 \square to 1 \square

17. If a, b, c, are in A. \square , then the determinant

$$\begin{vmatrix} x+2 & x+\square & x+2a \\ x+\square & x+\square & x+2b \\ x+\square & x+\square & x+2c \end{vmatrix}$$
 is

- (\Box) 1
- $(\Box) x$
- (D) 2x

18. If x, y, z are non ero real numbers, then the inverse of matrix $A = \begin{bmatrix} x & 0 & 0 \\ 0 & y & 0 \\ 0 & 0 & z \end{bmatrix}$ is

(A)
$$\begin{bmatrix} x^{-1} & 0 & 0 \\ 0 & y^{-1} & 0 \\ 0 & 0 & z^{-1} \end{bmatrix}$$

(A)
$$\begin{bmatrix} x^{-1} & 0 & 0 \\ 0 & y^{-1} & 0 \\ 0 & 0 & z^{-1} \end{bmatrix}$$
 (\square) $xyz \begin{bmatrix} x^{-1} & 0 & 0 \\ 0 & y^{-1} & 0 \\ 0 & 0 & z^{-1} \end{bmatrix}$

$$(\Box) \ \frac{1}{xyz} \begin{bmatrix} x & 0 & 0 \\ 0 & y & 0 \\ 0 & 0 & z \end{bmatrix}$$
 (D)
$$\frac{1}{xyz} \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}$$

(D)
$$\frac{1}{xyz} \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}$$

19. Let $A = \begin{bmatrix} 1 & \sin \theta & 1 \\ -\sin \theta & 1 & \sin \theta \\ -1 & -\sin \theta & 1 \end{bmatrix}$, where $0 \le \theta \le 2\pi$. Then

- (A) Det(A) = 0
- (\Box) Det $(A) \in (2, \infty)$
- (\Box) Det $(A) \in (2, \Box)$
- (D) $Det(A) \in [2, \square]$

$1 \square$

Summary

- Determinant of a matrix $A = [a_{11}]_{1 = 1}$ is given by $[a_{11}] = a_{11}$
- Determinant of a matrix $A = \begin{bmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{bmatrix}$ is given by

$$|\mathbf{A}| = \begin{vmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{vmatrix} = a_{11} \ a_{22} - a_{12} \ a_{21}$$

◆ Determinant of a matrix $A = \begin{bmatrix} a_1 & b_1 & c_1 \\ a_2 & b_2 & c_2 \\ a_{\square} & b_{\square} & c_{\square} \end{bmatrix}$ is given by (expanding along R_1)

$$|\mathbf{A}| = \begin{vmatrix} a_1 & b_1 & c_1 \\ a_2 & b_2 & c_2 \\ a_{\Box} & b_{\Box} & c_{\Box} \end{vmatrix} = a_1 \begin{vmatrix} b_2 & c_2 \\ b_{\Box} & c_{\Box} \end{vmatrix} - b_1 \begin{vmatrix} a_2 & c_2 \\ a_{\Box} & c_{\Box} \end{vmatrix} + c_1 \begin{vmatrix} a_2 & b_2 \\ a_{\Box} & b_{\Box} \end{vmatrix}$$

For any square matrix A, the |A| satisfy following properties.

- \bullet $A' = A \cup A' = transpose of A.$
- If we interchange any two rows (or columns), then sign of determinant changes.
- ◆ If any two rows or any two columns are identical or proportional, then value of determinant is ☐ero.
- ◆ If we multiply each element of a row or a column of a determinant by constant *k*, then value of determinant is multiplied by *k*.
- ◆ Multiplying a determinant by *k* means multiply elements of only one row (or one column) by *k*.
- If $A = [a_{ij}]_{\bowtie \square}$, then $|k.A| = k^{\square}|A|$
- If elements of a row or a column in a determinant can be expressed as sum of two or more elements, then the given determinant can be expressed as sum of two or more determinants.
- ◆ If to each element of a row or a column of a determinant the equimultiples of corresponding elements of other rows or columns are added, then value of determinant remains same.

• Area of a triangle with vertices (x_1, y_1) , (x_2, y_2) and (x_1, y_2) is given by

$$\Delta = \frac{1}{2} \begin{vmatrix} x_1 & y_1 & 1 \\ x_2 & y_2 & 1 \\ x_{\Box} & y_{\Box} & 1 \end{vmatrix}$$

- Minor of an element a_{ij} of the determinant of matrix A is the determinant otand denoted by M_{ij} .
- □ofactor of a_{ii} of given by $A_{ii} = (-1)^{i+j} M_{ii}$
- ◆ □alue of determinant of a matrix A is obtained by sum of product of elements of a row (or a column) with corresponding cofactors. □or example,

$$|\mathbf{A}| = a_{11} \mathbf{A}_{11} + a_{12} \mathbf{A}_{12} + a_{10} \mathbf{A}_{10}$$

- If elements of one row (or column) are multiplied with cofactors of elements of any other row (or column), then their sum is Fero. For example, $a_{11} A_{21} + a_{12} A_{22} + a_{12} A_{22} = 0$
- ◆ If $A = \begin{bmatrix} a_{11} & a_{12} & a_{1\square} \\ a_{21} & a_{22} & a_{2\square} \\ a_{\square} & a_{\square} & a_{\square} \end{bmatrix}$, then $adj\ A = \begin{bmatrix} A_{11} & A_{21} & A_{\square} \\ A_{12} & A_{22} & A_{\square} \\ A_{1\square} & A_{2\square} & A_{\square} \end{bmatrix}$, where A_{ij} is cofactor of a_{ij}
- ♦ $A(adj A) = (adj A) A = \Box A \Box$, where A is square matrix of order n.
- A square matrix A is said to be singular or non singular according as $\triangle = 0$ or $\triangle \neq 0$.
- ◆ If $A \square = \square A = I$, where \square is square matrix, then \square is called inverse of A. Also $A^{-1} = \square$ or $\square^{-1} = A$ and hence $(A^{-1})^{-1} = A$.
- ◆ A square matrix A has inverse if and only if A is non singular.
- If $a_1 x + b_1 y + c_1 z = d_1$ $a_2 x + b_2 y + c_2 z = d_2$ $a_1 x + b_2 y + c_3 z = d_5$

then these equations can be written as A $\square = \square$, where

$$\mathbf{A} = \begin{bmatrix} a_1 & b_1 & c_1 \\ a_2 & b_2 & c_2 \\ a_{\square} & b_{\square} & c_{\square} \end{bmatrix}, \square = \begin{bmatrix} x \\ y \\ z \end{bmatrix} \text{ and } \square = \begin{bmatrix} d_1 \\ d_2 \\ d_{\square} \end{bmatrix}$$

- ▶ □ nique solution of equation $A \square = \square$ is given by $\square = A^{-1} \square$, where $|A| \neq 0$.
- ◆ A system of equation is consistent or inconsistent according as its solution exists or not.
- \bullet \Box or a square matrix A in matrix equation A \Box = \Box
 - (i) $\triangle = 0$, there exists unique solution
 - (ii) $\square A \square = 0$ and $(adj A) \square \neq 0$, then there exists no solution
 - (iii) $\Box A \Box = 0$ and $(adj A) \Box = 0$, then system may or may not be consistent.

Historical Note

The \Box hinese method of representing the coefficients of the unknowns of several linear equations by using rods on a calculating board naturally led to the discovery of simple method of elimination. The arrangement of rods was precisely that of the numbers in a determinant. The \Box hinese, therefore, early developed the idea of subtracting columns and rows as in simplification of a determinant \Box *Mikami, China, pp* \Box 0, \Box

Seki \square owa, the greatest of the Tapanese Mathematicians of seventeenth century in his work $\top Kai Fukudai no Ho \square in 1 \square \square$ showed that he had the idea of determinants and of their expansion. \square ut he used this device only in eliminating a quantity from two equations and not directly in the solution of a set of simultaneous linear equations. \square ayashi, \square The Fakudoi and Determinants in Japanese Mathematics, \square in the proc. of the Tokyo Math. Soc., \square

□ endermonde was the first to recognise determinants as independent functions. □ e may be called the formal founder. □ aplace $(1 \Box 2)$, gave general method of expanding a determinant in terms of its complementary minors. In $1 \Box \Box$ □ agrange treated determinants of the second and third orders and used them for purpose other than the solution of equations. In $1 \Box 01$, □ auss used determinants in his theory of numbers.

The next great contributor was \square acques \square hilippe \square Marie \square inet, $(1 \square 2)$ who stated the theorem relating to the product of two matrices of m columns and n rows, which for the special case of m = n reduces to the multiplication theorem.

Also on the same day, \square auchy $(1 \square 2)$ presented one on the same subject. \square used the word \square determinant \square in its present sense. \square e gave the proof of multiplication theorem more satisfactory than \square inet \square .

The greatest contributor to the theory was \square arl \square ustav \square acob \square acobi, after this the word determinant received its final acceptance.