Chapter

DETERMINANTS

* All Mathematical truths are relative and conditional. - C.P. STEINMETZ *

4.1 Introduction

In the previous chapter, we have studied about matrices and algebra of matrices. We have also learnt that a system of algebraic equations can be expressed in the form of matrices. This means, a system of linear equations like

$$
\begin{aligned}
& a_{1} x+b_{1} y=c_{1} \\
& a_{2} x+b_{2} y=c_{2}
\end{aligned}
$$

can be represented as $\left[\begin{array}{ll}a_{1} & b_{1} \\ a_{2} & b_{2}\end{array}\right]\left[\begin{array}{l}x \\ y\end{array}\right]=\left[\begin{array}{l}c_{1} \\ c_{2}\end{array}\right]$. Now, this system of equations has a unique solution or not, is determined by the number $a_{1} b_{2}-a_{2} b_{1}$. (Recall that if
$\frac{a_{1}}{a_{2}} \neq \frac{b_{1}}{b_{2}}$ or, $a_{1} b_{2}-a_{2} b_{1} \neq 0$, then the system of linear

P.S. Laplace
(1749-1827)
equations has a unique solution). The number $a_{1} b_{2}-a_{2} b_{1}$
which determines uniqueness of solution is associated with the matrix $\mathrm{A}=\left[\begin{array}{ll}a_{1} & b_{1} \\ a_{2} & b_{2}\end{array}\right]$
and is called the determinant of A or det A. Determinants have wide applications in Engineering, Science, Economics, Social Science, etc.

In this chapter, we shall study determinants up to order three only with real entries. Also, we will study various properties of determinants, minors, cofactors and applications of determinants in finding the area of a triangle, adjoint and inverse of a square matrix, consistency and inconsistency of system of linear equations and solution of linear equations in two or three variables using inverse of a matrix.

4.2 Determinant

To every square matrix $\mathrm{A}=\left[a_{i j}\right]$ of order n, we can associate a number (real or complex) called determinant of the square matrix A, where $a_{i j}=(i, j)^{\mathrm{th}}$ element of A.

This may be thought of as a function which associates each square matrix with a unique number (real or complex). If M is the set of square matrices, is the set of numbers (real or complex) and $f \mathrm{M} \rightarrow \quad$ is defined by $f(\mathrm{~A})=k$, where $\mathrm{A} \in \mathrm{M}$ and $k \in$, then $f(\mathrm{~A})$ is called the determinant of A . It is also denoted by A or $\operatorname{det} \mathrm{A}$ or Δ.

If $\mathrm{A}=\left[\begin{array}{ll}a & b \\ c & d\end{array}\right]$, then determinant of A is written as $\mathrm{A}=\left|\begin{array}{ll}a & b \\ c & d\end{array}\right|=\operatorname{det}(\mathrm{A})$
Remarks
(i) or matrix A, A is read as determinant of A and not modulus of A .
(ii) nly square matrices have determinants.
4.2.1 Determinant of a matrix of order one
et $\mathrm{A}=[a]$ be the matrix of order 1 , then determinant of A is defined to be equal to a

4.2.2 Determinant of a matrix of order two

$$
\mathrm{A}=\left[\begin{array}{ll}
a_{11} & a_{12} \\
a_{21} & a_{22}
\end{array}\right] \text { be a matrix of order 2 } 2
$$

then the determinant of A is defined as

$$
\operatorname{det}(\mathrm{A})=\mathrm{A}=\Delta=\left|\begin{array}{ll}
a_{11} & a_{12} \\
a_{21} & a_{22}
\end{array}\right|=a_{11} a_{22}-a_{21} a_{12}
$$

Example 1 Evaluate $\left|\begin{array}{cc}2 & \\ -1 & 2\end{array}\right|$.
Solution We have $\left|\begin{array}{cc}2 & \\ -1 & 2\end{array}\right|=2(2)-(-1)=+=$.
Example 2 Evaluate $\left|\begin{array}{cc}x & x+1 \\ x-1 & x\end{array}\right|$
Solution We have

$$
\left|\begin{array}{cc}
x & x+1 \\
x-1 & x
\end{array}\right|=x(x)-(x+1)(x-1)=x^{2}-\left(x^{2}-1\right)=x^{2}-x^{2}+1=1
$$

4.2.3 Determinant of a matrix of order 3×3

Determinant of a matrix of order three can be determined by expressing it in terms of second order determinants. This is known as expansion of a determinant along a row (or a column). There are six ways of expanding a determinant of order
corresponding to each of three rows $\left(\mathrm{R}_{1}, \mathrm{R}_{2}\right.$ and R) and three columns (${ }_{1},{ }_{2}$ and) giving the same value as shown below.
onsider the determinant of square matrix $\mathrm{A}=\left[a_{i j}\right]$
i.e.,

$$
\mathrm{A}=\left|\begin{array}{lll}
\boldsymbol{a}_{\mathbf{1 1}} & \boldsymbol{a}_{\mathbf{1 2}} & \boldsymbol{a}_{\mathbf{1 3}} \\
a_{21} & a_{22} & a_{2} \\
a_{1} & a_{2} & a
\end{array}\right|
$$

Expansion along first Row (\mathbf{R}_{1})

Step 1 Multiply first element a_{11} of R_{1} by $(-1)^{(1+1)}\left[(-1)^{\left.\text {sum of suffixes in } a_{11}\right]}\right.$ and with the second order determinant obtained by deleting the elements of first row $\left(\mathrm{R}_{1}\right)$ and first column (${ }_{1}$) of A as a_{11} lies in R_{1} and
i.e.,

$$
(-1)^{1+1} a_{11} \left\lvert\, \begin{array}{ll}
a_{22} & a_{2} \\
a_{2} & a
\end{array}\right.
$$

Step 2 Multiply 2 nd element a_{12} of R_{1} by $(-1)^{1+2}\left[(-1)^{\left.\text {sum of suffixes in } a_{12}\right]}\right.$ and the second order determinant obtained by deleting elements of first row $\left(\mathrm{R}_{1}\right)$ and 2 nd column (${ }_{2}$) of A as a_{12} lies in R_{1} and
i.e., $\quad(-1)^{1+2} a_{12}\left|\begin{array}{ll}a_{21} & a_{2} \\ a_{1} & a\end{array}\right|$

Step 3 Multiply third element a_{1} of R_{1} by $(-1)^{1+}\left[(-1)^{\text {sum of suffixes in } a_{1}}\right]$ and the second order determinant obtained by deleting elements of first row $\left(\mathrm{R}_{1}\right)$ and third column () of A as a_{1} lies in R_{1} and
i.e.,

$$
(-1)^{1+} a_{1}\left|\begin{array}{ll}
a_{21} & a_{22} \\
a_{1} & a_{2}
\end{array}\right|
$$

Step 4 Now the expansion of determinant of A, that is, A written as sum of all three terms obtained in steps 1,2 and above is given by

$$
\begin{aligned}
\operatorname{det} \mathrm{A}= & \mathrm{A}= \\
(-1)^{1+1} a_{11}\left|\begin{array}{ll}
a_{22} & a_{2} \\
a_{2} & a
\end{array}\right|+(-1)^{1+2} & a_{12}\left|\begin{array}{ll}
a_{21} & a_{2} \\
a_{1} & a
\end{array}\right| \\
& +(-1)^{1+} a_{1}\left|\begin{array}{ll}
a_{21} & a_{22} \\
a_{1} & a_{2}
\end{array}\right| \\
\mathrm{A}= & a_{11}\left(a_{22} a-a_{2} a_{2}\right)-a_{12}\left(a_{21} a-a_{1} a_{2}\right) \\
& +a_{1}\left(a_{21} a_{2}-a_{1} a_{22}\right)
\end{aligned}
$$

or

$$
\begin{align*}
= & a_{11} a_{22} a-a_{11} a_{2} a_{2}-a_{12} a_{21} a+a_{12} a_{1} a_{2}+a_{1} a_{21} a_{2} \\
& -a_{1} a_{1} a_{22} \tag{1}
\end{align*}
$$

Note We shall apply all four steps together.
Expansion along second row $\left(\mathbf{R}_{2}\right)$

$$
\mathrm{A}=\left|\begin{array}{lll}
\mathrm{a}_{11} & \mathrm{a}_{12} & \mathrm{a}_{1} \\
\boldsymbol{a}_{21} & \boldsymbol{a}_{22} & \boldsymbol{a}_{23} \\
\mathrm{a}_{1} & \mathrm{a}_{2} & \mathrm{a}
\end{array}\right|
$$

Expanding along R_{2}, we get

$$
\begin{aligned}
\mathrm{A}= & (-1)^{2+1} a_{21}\left|\begin{array}{ll}
a_{12} & a_{1} \\
a_{2} & a
\end{array}\right|+(-1)^{2+2} a_{22}\left|\begin{array}{ll}
a_{11} & a_{1} \\
a_{1} & a
\end{array}\right| \\
& +(-1)^{2+} a_{2}\left|\begin{array}{ll}
a_{11} & a_{12} \\
a_{1} & a_{2}
\end{array}\right| \\
= & -a_{21}\left(a_{12} a-a_{2} a_{1}\right)+a_{22}\left(a_{11} a-a_{1} a_{1}\right) \\
& -a_{2}\left(a_{11} a_{2}-a_{1} a_{12}\right) \\
\mathrm{A}= & -a_{21} a_{12} a+a_{21} a_{2} a_{1}+a_{22} a_{11} a-a_{22} a_{1} a_{1}-a_{2} a_{11} a_{2} \\
& +a_{2} a_{1} a_{12} \\
= & a_{11} a_{22} a-a_{11} a_{2} a_{2}-a_{12} a_{21} a+a_{12} a_{2} a_{1}+a_{1} a_{21} a_{2}
\end{aligned}
$$

$$
\begin{equation*}
-a_{1} a_{1} a_{22} \tag{2}
\end{equation*}
$$

Expansion along first Column (C_{1})

$$
\mathrm{A}=\left|\begin{array}{lll}
\boldsymbol{a}_{\mathbf{1 1}} & a_{12} & a_{1} \\
\boldsymbol{a}_{\mathbf{2 1}} & a_{22} & a_{2} \\
\boldsymbol{a}_{\mathbf{3 1}} & a_{2} & a
\end{array}\right|
$$

y expanding along, we get

$$
\begin{aligned}
\mathrm{A}= & a_{11}(-1)^{1+1}\left|\begin{array}{ll}
a_{22} & a_{2} \\
a_{2} & a
\end{array}\right|+a_{21}(-1)^{2+1}\left|\begin{array}{ll}
a_{12} & a_{1} \\
a_{2} & a
\end{array}\right| \\
& +a_{1}(-1)^{+1}\left|\begin{array}{ll}
a_{12} & a_{1} \\
a_{22} & a_{2}
\end{array}\right| \\
= & a_{11}\left(a_{22} a-a_{2} a_{2}\right)-a_{21}\left(a_{12} a-a_{1} a_{2}\right)+a_{1}\left(a_{12} a_{2}-a_{1} a_{22}\right)
\end{aligned}
$$

$$
\begin{align*}
\mathrm{A}= & a_{11} a_{22} a-a_{11} a_{2} a_{2}-a_{21} a_{12} a+a_{21} a_{1} a_{2}+a_{1} a_{12} a_{2} \\
& -a_{1} a_{1} a_{22} \\
= & a_{11} a_{22} a-a_{11} a_{2} a_{2}-a_{12} a_{21} a+a_{12} a_{2} a_{1}+a_{1} a_{21} a_{2} \\
& -a_{1} a_{1} a_{22}
\end{align*}
$$

learly, values of A in (1), (2) and () are equal. It is left as an exercise to the reader to verify that the values of A by expanding along $R,{ }_{2}$ and are equal to the value of A obtained in (1), (2) or ().
ence, expanding a determinant along any row or column gives same value.

Remarks

(i) or easier calculations, we shall expand the determinant along that row or column which contains maximum number of eros.
(ii) While expanding, instead of multiplying by $(-1)^{i+j}$, we can multiply by +1 or -1 according as $(i+j)$ is even or odd.
(iii) et $\mathrm{A}=\left[\begin{array}{ll}2 & 2 \\ & 0\end{array}\right]$ and $=\left[\begin{array}{ll}1 & 1 \\ 2 & 0\end{array}\right]$. Then, it is easy to verify that $\mathrm{A}=2$. Also $\mathrm{A}=0-\quad=-$ and $=0-2=-2$.
bserve that, $\mathrm{A}=(-2)=2^{2}$ or $\mathrm{A}=2^{n}$, where $n=2$ is the order of square matrices A and

In general, if $\mathrm{A}=k$ where A and are square matrices of order n, then $\mathrm{A}=k^{n}$, where $n=1,2$,

Example 3 Evaluate the determinant $\Delta=\left|\begin{array}{rrr}1 & 2 & \\ -1 & & 0 \\ & 1 & 0\end{array}\right|$.
Solution Note that in the third column, two entries are ero. So expanding along third column (), we get

$$
\begin{aligned}
\Delta & =\left|\begin{array}{ll}
-1 & \\
& 1
\end{array}\right|-0\left|\begin{array}{ll}
1 & 2 \\
& 1
\end{array}\right|+0\left|\begin{array}{rr}
1 & 2 \\
-1 &
\end{array}\right| \\
& =(-1-12)-0+0=-2
\end{aligned}
$$

Example 4 Evaluate $\Delta=\left|\begin{array}{ccc}0 & \sin \alpha & -\cos \alpha \\ -\sin \alpha & 0 & \sin \beta \\ \cos \alpha & -\sin \beta & 0\end{array}\right|$.

Solution Expanding along R_{1}, we get

$$
\begin{aligned}
\Delta & =0\left|\begin{array}{cc}
0 & \sin \beta \\
-\sin \beta & 0
\end{array}\right|-\sin \alpha\left|\begin{array}{cc}
-\sin \alpha & \sin \beta \\
\cos \alpha & 0
\end{array}\right|-\cos \alpha\left|\begin{array}{cc}
-\sin \alpha & 0 \\
\cos \alpha & -\sin \beta
\end{array}\right| \\
& =0-\sin \alpha(0-\sin \beta \cos \alpha)-\cos \alpha(\sin \alpha \sin \beta-0) \\
& =\sin \alpha \sin \beta \cos \alpha-\cos \alpha \sin \alpha \sin \beta=0
\end{aligned}
$$

Example 5 ind values of x for which $\left|\begin{array}{ll}x \\ x & 1\end{array}\right|=\left|\begin{array}{l}2 \\ 1\end{array}\right|$.
Solution We have $\left|\begin{array}{ll}x \\ x & 1\end{array}\right|=\left|\begin{array}{l}2 \\ 1\end{array}\right|$
i.e.
$-x^{2}=-$
i.e.
$x^{2}=$
ence

$$
x= \pm 2 \sqrt{2}
$$

EXERCISE 4.1

Evaluate the determinants in Exercises 1 and 2.

1. $\left|\begin{array}{cc}2 & \\ - & -1\end{array}\right|$
2. (i) $\left|\begin{array}{cc}\cos \theta & -\sin \theta \\ \sin \theta & \cos \theta\end{array}\right|$
(ii) $\left|\begin{array}{cc}x^{2}-x+1 & x-1 \\ x+1 & x+1\end{array}\right|$
3. If $\mathrm{A}=\left[\begin{array}{ll}1 & 2 \\ & 2\end{array}\right]$, then show that $2 \mathrm{~A}=\mathrm{A}$
4. If $\mathrm{A}=\left[\begin{array}{lll}1 & 0 & 1 \\ 0 & 1 & 2 \\ 0 & 0 & \end{array}\right]$, then show that $\mathrm{A}=2 \quad \mathrm{~A}$
5. Evaluate the determinants
(i) $\left|\begin{array}{rrr} & -1 & -2 \\ 0 & 0 & -1 \\ & - & 0\end{array}\right|$
(ii) $\left|\begin{array}{llr} & - & \\ 1 & 1 & -2 \\ 2 & & 1\end{array}\right|$
(iii) $\left|\begin{array}{ccc}0 & 1 & 2 \\ -1 & 0 & - \\ -2 & & 0\end{array}\right|$
(iv) $\left|\begin{array}{ccc}2 & -1 & -2 \\ 0 & 2 & -1 \\ & - & 0\end{array}\right|$
6. If $\mathrm{A}=\left[\begin{array}{lll}1 & 1 & -2 \\ 2 & 1 & - \\ & & -\end{array}\right]$, find A
7. ind values of x, if
(i) $\left|\begin{array}{ll}2 & \\ & 1\end{array}\right|=\left|\begin{array}{ll}2 x & \\ & x\end{array}\right|$
(ii) $\left.\right|^{2}|=| \begin{gathered}x \\ 2 x\end{gathered}$
8. If $\left|\begin{array}{cc}x & 2 \\ 1 & x\end{array}\right|=\left|\begin{array}{l}2 \\ 1\end{array}\right|$, then x is equal to
(A)
()
() -
(D) 0

4.3 Properties of Determinants

In the previous section, we have learnt how to expand the determinants. In this section, we will study some properties of determinants which simplifies its evaluation by obtaining maximum number of eros in a row or a column. These properties are true for determinants of any order. owever, we shall restrict ourselves upto determinants of order only.
Property 1 The value of the determinant remains unchanged if its rows and columns are interchanged.
Verification et $\square \Delta=\left|\begin{array}{lll}a_{1} & a_{2} & a \\ b_{1} & b_{2} & b \\ c_{1} & c_{2} & c\end{array}\right|$
Expanding along first row, we get

$$
\begin{aligned}
\Delta & =a_{1}\left|\begin{array}{ll}
b_{2} & b \\
c_{2} & c
\end{array}\right|-a_{2}\left|\begin{array}{ll}
b_{1} & b \\
c_{1} & c
\end{array}\right|+a\left|\begin{array}{ll}
b_{1} & b_{2} \\
c_{1} & c_{2}
\end{array}\right| \\
& =a_{1}\left(b_{2} c-b \quad c_{2}\right)-a_{2}\left(b_{1} c-b c c\right)+a\left(b_{1} c_{2}-b_{2} c_{1}\right)
\end{aligned}
$$

y interchanging the rows and columns of Δ, we get the determinant

$$
\Delta_{1}=\left|\begin{array}{lll}
a_{1} & b_{1} & c_{1} \\
a_{2} & b_{2} & c_{2} \\
a & b & c
\end{array}\right|
$$

Expanding Δ_{1} along first column, we get

$$
\Delta_{1}=a_{1}\left(b_{2} c-c_{2} b\right)-a_{2}\left(b_{1} \mathrm{c}-b c_{1}\right)+a\left(b_{1} c_{2}-b_{2} c_{1}\right)
$$

ence $\Delta=\Delta_{1}$
Remark It follows from above property that if A is a square matrix, then $\operatorname{det}(A)=\operatorname{det}\left(A^{\prime}\right)$, where $A^{\prime}=\operatorname{transpose}$ of A.

> Note If $\mathrm{R}_{i}=i$ th row and $\quad=i$ th column, then for interchange of row and columns, we will symbolically write ${ }_{i} \leftrightarrow \mathrm{R}_{i}$
> et us verify the above property by example.

Example 6 erify roperty 1 for $\Delta=\left|\begin{array}{ccc}2 & - & \\ & 0 & \\ 1 & & -\end{array}\right|$
Solution Expanding the determinant along first row, we have

$$
\begin{aligned}
\Delta & =\left.2\right|^{0}-|-(-)|_{1}-\left|+\left|\begin{array}{ll}
& 0 \\
1
\end{array}\right|\right. \\
& =2(0-20)+(-2-)+(0-0) \\
& =-0-1+10=-2
\end{aligned}
$$

y interchanging rows and columns, we get

$$
\Delta_{1}=\left\lvert\, \begin{array}{ccc}
2 & & 1 \\
- & 0 & \\
& & -
\end{array} \quad\right. \text { (Expanding along first column) }
$$

$$
=2\left|\begin{array}{cc}
0 & |-(-)| \\
- & 1 \\
-
\end{array}\right|+\left\lvert\, \begin{array}{ll}
1 \\
0 & 1
\end{array}\right.
$$

$$
=2(0-20)+(-2-)+(0-0)
$$

$$
=-0-1+10=-2
$$

learly $\quad \Delta=\Delta_{1}$
ence, roperty 1 is verified.
Property 2 If any two rows (or columns) of a determinant are interchanged, then sign of determinant changes.
Verification et $\Delta=\left|\begin{array}{lll}a_{1} & a_{2} & a \\ b_{1} & b_{2} & b \\ c_{1} & c_{2} & c\end{array}\right|$

Expanding along first row, we get

$$
\Delta=a_{1}\left(b_{2} c-b c_{2}\right)-a_{2}\left(b_{1} c-b c_{1}\right)+a\left(b_{1} c_{2}-b_{2} c_{1}\right)
$$

Interchanging first and third rows, the new determinant obtained is given by

$$
\Delta_{1}=\left|\begin{array}{lll}
c_{1} & c_{2} & c \\
b_{1} & b_{2} & b \\
a_{1} & a_{2} & a
\end{array}\right|
$$

Expanding along third row, we get

$$
\begin{aligned}
\Delta_{1} & =a_{1}\left(c_{2} b-b_{2} c\right)-a_{2}\left(c_{1} b-c b_{1}\right)+a\left(b_{2} c_{1}-b_{1} c_{2}\right) \\
& =-\left[a_{1}\left(b_{2} c-b c_{2}\right)-a_{2}\left(b_{1} c-b c_{1}\right)+a\left(b_{1} c_{2}-b_{2} c_{1}\right)\right]
\end{aligned}
$$

learly $\Delta_{1}=-\Delta$
Similarly, we can verify the result by interchanging any two columns.

\sim Note We can denote the interchange of rows by $\mathrm{R}_{i} \leftrightarrow \mathrm{R}_{i}$ and interchange of

 columns byExample 7 erify roperty 2 for $\Delta=\left|\begin{array}{ccc}2 & - & \\ & 0 & \\ 1 & & -\end{array}\right|$.
Solution $\Delta=\left|\begin{array}{ccc}2 & - & \\ & 0 & \\ 1 & & -\end{array}\right|=-2 \quad$ (See Example)
Interchanging rows R_{2} and R i.e., $R_{2} \leftrightarrow R$, we have

$$
\Delta_{1}=\left|\begin{array}{ccc}
2 & - & \\
1 & & - \\
& 0
\end{array}\right|
$$

Expanding the determinant Δ_{1} along first row, we have

$$
\begin{aligned}
\Delta_{1} & =2\left|\begin{array}{ll}
0 & -
\end{array}\right|-(-)\left|\begin{array}{ll}
1 & - \\
0
\end{array}+\left|\begin{array}{ll}
1 & \\
& 0
\end{array}\right|\right. \\
& =2(20-0)+(+2)+(0-0) \\
& =0+1-1 \quad 0=2
\end{aligned}
$$

learly
 $$
\Delta_{1}=-\Delta
$$

ence, roperty 2 is verified.
Property 3 If any two rows (or columns) of a determinant are identical (all corresponding elements are same), then value of determinant is ero.
Proof If we interchange the identical rows (or columns) of the determinant Δ, then Δ does not change. owever, by roperty 2 , it follows that Δ has changed its sign

Therefore

$$
\Delta=-\Delta
$$

or

$$
\Delta=0
$$

et us verify the above property by an example.
Example 8 Evaluate $\Delta=\left\lvert\, \begin{array}{ll}2 \\ 2 & 2 \\ 2\end{array}\right.$
Solution Expanding along first row, we get

$$
\begin{aligned}
\Delta & =(-)-2(-)+(-) \\
& =0-2(-)+(-2)=-=0
\end{aligned}
$$

ere R_{1} and R are identical.
Property 4 If each element of a row (or a column) of a determinant is multiplied by a constant k, then its value gets multiplied by k.

Verification et $\Delta=\left|\begin{array}{lll}a_{1} & b_{1} & c_{1} \\ a_{2} & b_{2} & c_{2} \\ a & b & c\end{array}\right|$
and Δ_{1} be the determinant obtained by multiplying the elements of the first row by k. Then

$$
\Delta_{1}=\left|\begin{array}{ccc}
k a_{1} & k b_{1} & k c_{1} \\
a_{2} & b_{2} & c_{2} \\
a & b & c
\end{array}\right|
$$

Expanding along first row, we get

$$
\begin{aligned}
\Delta_{1} & =k a_{1}\left(b_{2} c-b c_{2}\right)-k b_{1}\left(a_{2} c-c_{2} a\right)+k c_{1}\left(a_{2} b-b_{2} a\right) \\
& =k\left[a_{1}\left(b_{2} c-b c_{2}\right)-b_{1}\left(a_{2} c-c_{2} a\right)+c_{1}\left(a_{2} b-b_{2} a\right)\right] \\
& =k \Delta
\end{aligned}
$$

$$
\text { ence } \quad\left|\begin{array}{ccc}
k a_{1} & k b_{1} & k c_{1} \\
a_{2} & b_{2} & c_{2} \\
a & b & c
\end{array}\right|=k\left|\begin{array}{lll}
a_{1} & b_{1} & c_{1} \\
a_{2} & b_{2} & c_{2} \\
a & b & c
\end{array}\right|
$$

Remarks
(i) y this property, we can take out any common factor from any one row or any one column of a given determinant.
(ii) If corresponding elements of any two rows (or columns) of a determinant are proportional (in the same ratio), then its value is ero. or example

$$
\Delta=\left|\begin{array}{ccc}
a_{1} & a_{2} & a \\
b_{1} & b_{2} & b \\
k a_{1} & k a_{2} & k a
\end{array}\right|=0 \text { (rows } \mathrm{R}_{1} \text { and } \mathrm{R}_{2} \text { are proportional) }
$$

Example 9 Evaluate $\left|\begin{array}{cc}102 & 1 \\ 1 & \\ 1\end{array}\right|$

Solution Note that $\left|\begin{array}{cc}102 & 1 \\ 1 & \\ 1\end{array}\right|=\left|\begin{array}{llll}(1) & () & (~) \\ 1 & & \\ 1 & & \end{array}\right|=\left|\begin{array}{l}1 \\ 1 \\ 1\end{array}\right|=0$
(sing roperties and)
Property 5 If some or all elements of a row or column of a determinant are expressed as sum of two (or more) terms, then the determinant can be expressed as sum of two (or more) determinants
or example, $\left|\begin{array}{ccc}a_{1}+\lambda_{1} & a_{2}+\lambda_{2} & a+\lambda \\ b_{1} & b_{2} & b \\ c_{1} & c_{2} & c\end{array}\right|=\left|\begin{array}{ccc}a_{1} & a_{2} & a \\ b_{1} & b_{2} & b \\ c_{1} & c_{2} & c\end{array}\right|+\left|\begin{array}{ccc}\lambda_{1} & \lambda_{2} & \lambda \\ b_{1} & b_{2} & b \\ c_{1} & c_{2} & c\end{array}\right|$
Verification . . S. $=\left|\begin{array}{ccc}a_{1}+\lambda_{1} & a_{2}+\lambda_{2} & a+\lambda \\ b_{1} & b_{2} & b \\ c_{1} & c_{2} & c\end{array}\right|$

Expanding the determinants along the first row, we get

$$
\begin{aligned}
& \Delta=\left(a_{1}+\lambda_{1}\right)\left(b_{2} c-c_{2} b\right)-\left(a_{2}+\lambda_{2}\right)\left(b_{1} c-b c_{1}\right) \\
& +(a+\lambda)\left(b_{1} c_{2}-b_{2} c_{1}\right) \\
& =a_{1}\left(b_{2} c-c_{2} b\right)-a_{2}\left(b_{1} c-b c_{1}\right)+a\left(b_{1} c_{2}-b_{2} c_{1}\right) \\
& +\lambda_{1}\left(b_{2} c-c_{2} b\right)-\lambda_{2}\left(b_{1} c-b c_{1}\right)+\lambda\left(b_{1} c_{2}-b_{2} c_{1}\right) \\
& \text { (by rearranging terms) } \\
& =\left|\begin{array}{lll}
a_{1} & a_{2} & a \\
b_{1} & b_{2} & b \\
c_{1} & c_{2} & c
\end{array}\right|+\left|\begin{array}{lll}
\lambda_{1} & \lambda_{2} & \lambda \\
b_{1} & b_{2} & b \\
c_{1} & c_{2} & c
\end{array}\right|=\text { R. .S. }
\end{aligned}
$$

Similarly, we may verify roperty for other rows or columns.
Example 10 Show that $\left|\begin{array}{ccc}a & b & c \\ a+2 x & b+2 y & c+2 z \\ x & y & z\end{array}\right|=0$
Solution We have $\left|\begin{array}{ccc}a & b & c \\ a+2 x & b+2 y & c+2 z \\ x & y & z\end{array}\right|=\left|\begin{array}{ccc}a & b & c \\ a & b & c \\ x & y & z\end{array}\right|+\left|\begin{array}{ccc}a & b & c \\ 2 x & 2 y & 2 z \\ x & y & z\end{array}\right|$ (by roperty)

$$
=0+0=0 \quad(\text { sing roperty and roperty })
$$

Property 6 If, to each element of any row or column of a determinant, the equimultiples of corresponding elements of other row (or column) are added, then value of determinant remains the same, i.e., the value of determinant remain same if we apply the operation $\mathrm{R}_{i} \rightarrow \mathrm{R}_{i}+k \mathrm{R}_{j}$ or ${ }_{i} \rightarrow \quad+k_{j}$.

Verification

et

$$
\Delta=\left|\begin{array}{lll}
a_{1} & a_{2} & a \\
b_{1} & b_{2} & b \\
c_{1} & c_{2} & c
\end{array}\right| \text { and } \Delta_{1}=\left|\begin{array}{ccc}
a_{1}+k c_{1} & a_{2}+k c_{2} & a+k c \\
b_{1} & b_{2} & b \\
c_{1} & c_{2} & c
\end{array}\right|
$$

where Δ_{1} is obtained by the operation $\mathrm{R}_{1} \rightarrow \mathrm{R}_{1}+k \mathrm{R}$.
ere, we have multiplied the elements of the third row (R) by a constant k and added them to the corresponding elements of the first row $\left(R_{1}\right)$.

Symbolically, we write this operation as $\mathrm{R}_{1} \rightarrow \mathrm{R}_{1}+k \mathrm{R}$.

Now, again

$$
\begin{aligned}
\Delta_{1} & =\left|\begin{array}{lll}
a_{1} & a_{2} & a \\
b_{1} & b_{2} & b \\
c_{1} & c_{2} & c
\end{array}\right|+\left|\begin{array}{ccc}
k c_{1} & k c_{2} & k c \\
b_{1} & b_{2} & b \\
c_{1} & c_{2} & c
\end{array}\right| \\
& =\Delta+0
\end{aligned}
$$

$$
\text { ence } \quad \Delta=\Delta_{1}
$$

Remarks

(i) If Δ_{1} is the determinant obtained by applying $\mathrm{R}_{i} \rightarrow k \mathrm{R}_{i}$ or ${ }_{i} \rightarrow k_{i}$ to the determinant Δ, then $\Delta_{1}=k \Delta$.
(ii) If more than one operation like $\mathrm{R}_{i} \rightarrow \mathrm{R}_{i}+k \mathrm{R}_{j}$ is done in one step, care should be taken to see that a row that is affected in one operation should not be used in another operation. A similar remark applies to column operations.

Example 11 rove that $\left|\begin{array}{ccc}a & a+b & a+b+c \\ 2 a & a+2 b & a+b+2 c \\ a & a+b & 10 a+b+c\end{array}\right|=a$.
Solution Applying operations $\mathrm{R}_{2} \rightarrow \mathrm{R}_{2}-2 \mathrm{R}_{1}$ and $\mathrm{R} \rightarrow \mathrm{R}-\mathrm{R}_{1}$ to the given determinant Δ, we have

$$
\Delta=\left|\begin{array}{ccc}
a & a+b & a+b+c \\
0 & a & 2 a+b \\
0 & a & a+b
\end{array}\right|
$$

Now applying $R \rightarrow R-R_{2}$, we get

$$
\Delta=\left|\begin{array}{ccc}
a & a+b & a+b+c \\
0 & a & 2 a+b \\
0 & 0 & a
\end{array}\right|
$$

Expanding along ${ }_{1}$, we obtain

$$
\begin{aligned}
\Delta & =a\left|\begin{array}{cc}
a & 2 a+b \\
0 & a
\end{array}\right|+0+0 \\
& =a\left(a^{2}-0\right)=a\left(a^{2}\right)=a
\end{aligned}
$$

Example 12 Without expanding, prove that

$$
\Delta=\left|\begin{array}{ccc}
x+y & y+z & z+x \\
z & x & y \\
1 & 1 & 1
\end{array}\right|=0
$$

Solution Applying $\mathrm{R}_{1} \rightarrow \mathrm{R}_{1}+\mathrm{R}_{2}$ to Δ, we get

$$
\Delta=\left|\begin{array}{ccc}
x+y+z & x+y+z & x+y+z \\
z & x & y \\
1 & 1 & 1
\end{array}\right|
$$

Since the elements of R_{1} and R are proportional, $\Delta \mp 0$.
Example 13 Evaluate

$$
\Delta=\left|\begin{array}{lll}
1 & a & b c \\
1 & b & c a \\
1 & c & a b
\end{array}\right|
$$

Solution Applying $\mathrm{R}_{2} \rightarrow \mathrm{R}_{2}-\mathrm{R}_{1}$ and $\mathrm{R} \rightarrow \mathrm{R}-\mathrm{R}_{1}$, we get

$$
\Delta=\left|\begin{array}{ccc}
1 & a & b c \\
0 & b-a & c(a-b) \\
0 & c-a & b(a-c)
\end{array}\right|
$$

Taking factors $(b-a)$ and $(c-a)$ common from R_{2} and R , respectively, we get

$$
\begin{aligned}
\Delta & =(b-a)(c-a)\left|\begin{array}{ccc}
1 & a & b c \\
0 & 1 & -c \\
0 & 1 & -b
\end{array}\right| \\
& =(b-a)(c-a)[(-b+c)] \text { (Expanding along first column) } \\
& =(a-b)(b-c)(c-a)
\end{aligned}
$$

Example 14 rove that $\left|\begin{array}{ccc}b+c & a & a \\ b & c+a & b \\ c & c & a+b\end{array}\right|=a b c$
Solution et $\Delta=\left|\begin{array}{ccc}b+c & a & a \\ b & c+a & b \\ c & c & a+b\end{array}\right|$

Applying $\quad \mathrm{R}_{1} \rightarrow \mathrm{R}_{1}-\mathrm{R}_{2}-\mathrm{R}$ to Δ, we get

$$
\Delta=\left|\begin{array}{ccc}
0 & -2 c & -2 b \\
b & c+a & b \\
c & c & a+b
\end{array}\right|
$$

Expanding along R_{1}, we obtain

$$
\begin{aligned}
\Delta & =0\left|\begin{array}{cc}
c+a & b \\
c & a+b
\end{array}\right|-(-2 c)\left|\begin{array}{cc}
b & b \\
c & a+b
\end{array}\right|+(-2 b)\left|\begin{array}{cc}
b & c+a \\
c & c
\end{array}\right| \\
& =2 c\left(a b+b^{2}-b c\right)-2 b\left(b c-c^{2}-a c\right) \\
& =2 a b c+2 c b^{2}-2 b c^{2}-2 b^{2} c+2 b c^{2}+2 a b c \\
& =a b c
\end{aligned}
$$

Example 15 If x, y, z are different and $\Delta=\left|\begin{array}{lll}x & x^{2} & 1+x \\ y & y^{2} & 1+y \\ z & z^{2} & 1+z\end{array}\right|=0$, then
show that $1+x y z=0$
Solution We have

$$
\begin{aligned}
\Delta & =\left|\begin{array}{lll}
x & x^{2} & 1+x \\
y & y^{2} & 1+y \\
z & z^{2} & 1+z
\end{array}\right| \\
& =\left|\begin{array}{lll}
x & x^{2} & 1 \\
y & y^{2} & 1 \\
z & z^{2} & 1
\end{array}\right|+\left|\begin{array}{lll}
x & x^{2} & x \\
y & y^{2} & y \\
z & z^{2} & z
\end{array}\right|(\text { sing roperty }) \\
& =(-1)^{2}\left|\begin{array}{lll}
1 & x & x^{2} \\
1 & y & y^{2} \\
1 & z & z^{2}
\end{array}\right|+x y z\left|\begin{array}{lll}
1 & x & x^{2} \\
1 & y & y^{2} \\
1 & z & z^{2}
\end{array}\right| \quad\left(\text { sing } \leftrightarrow_{2} \text { and then } \quad{ }_{1}{ }_{2}\right) \\
& =\left|\begin{array}{lll}
1 & x & x^{2} \\
1 & y & y^{2} \\
1 & z & z^{2}
\end{array}\right|(1+x y z)
\end{aligned}
$$

$$
=(1+x y z)\left|\begin{array}{ccc}
1 & x & x^{2} \\
0 & y-x & y^{2}-x^{2} \\
0 & z-x & z^{2}-x^{2}
\end{array}\right| \quad\left(\operatorname{sing} \mathrm{R}_{2} \rightarrow \mathrm{R}_{2}-\mathrm{R}_{1} \text { and } \mathrm{R} \rightarrow \mathrm{R}-\mathrm{R}_{1}\right)
$$

Taking out common factor $(y-x)$ from R_{2} and $(z-x)$ from R , we get

$$
\begin{aligned}
\Delta & =(1+x y z)(y-x)(z-x)\left|\begin{array}{ccc}
1 & x & x^{2} \\
0 & 1 & y+x \\
0 & 1 & z+x
\end{array}\right| \\
& =(1+x y z)(y-x)(z-x)(z-y)(\text { on expanding along } \quad)
\end{aligned}
$$

Since $\Delta=0$ and x, y, z are all different, i.e., $x-y \neq 0, y-z \neq 0, z-x \neq 0$, we get $1+x y z=0$

Example 16 Show that

$$
\left|\begin{array}{ccc}
1+a & 1 & 1 \\
1 & 1+b & 1 \\
1 & 1 & 1+c
\end{array}\right|=a b c\left(1+\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)=a b c+b c+c a+a b
$$

Solution Taking out factors a, b, c common from $\mathrm{R}_{1}, \mathrm{R}_{2}$ and R , we get

$$
\text { . .S. }=a b c\left|\begin{array}{ccc}
\frac{1}{a}+1 & \frac{1}{a} & \frac{1}{a} \\
\frac{1}{b} & \frac{1}{b}+1 & \frac{1}{b} \\
\frac{1}{c} & \frac{1}{c} & \frac{1}{c}+1
\end{array}\right|
$$

Applying $\mathrm{R}_{1} \rightarrow \mathrm{R}_{1}+\mathrm{R}_{2}+\mathrm{R}$, we have

$$
\Delta=a b c\left|\begin{array}{ccc}
1+\frac{1}{a}+\frac{1}{b}+\frac{1}{c} & 1+\frac{1}{a}+\frac{1}{b}+\frac{1}{c} & 1+\frac{1}{a}+\frac{1}{b}+\frac{1}{c} \\
\frac{1}{b} & \frac{1}{b}+1 & \frac{1}{b} \\
\frac{1}{c} & \frac{1}{c} & \frac{1}{c}+1
\end{array}\right|
$$

$$
=a b c\left(1+\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)\left|\begin{array}{ccc}
1 & 1 & 1 \\
\frac{1}{b} & \frac{1}{b}+1 & \frac{1}{b} \\
\frac{1}{c} & \frac{1}{c} & \frac{1}{c}+1
\end{array}\right|
$$

Now applying ${ }_{2} \rightarrow{ }_{2}{ }_{1}, \rightarrow-{ }_{1}$, we get

$$
\begin{aligned}
\Delta & =a b c\left(1+\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)\left|\begin{array}{ccc}
1 & 0 & 0 \\
\frac{1}{b} & 1 & 0 \\
\frac{1}{c} & 0 & 1
\end{array}\right| \\
& =a b c\left(1+\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)[1(1-0)] \\
& =a b c\left(1+\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)=a b c+b c+c a+a b=\text { R. .S. }
\end{aligned}
$$

\rightarrow Note Alternately try by applying $\rightarrow{ }_{1}-{ }_{2}$ and $\rightarrow \quad-{ }_{2}$, then apply ${ }_{1} \rightarrow \quad 1-a$

EXERCISE 4.2

sing the property of determinants and without expanding in Exercises 1 to, prove that

1. $\left|\begin{array}{lll}x & a & x+a \\ y & b & y+b \\ z & c & z+c\end{array}\right|=0$
2. $\left|\begin{array}{lll}a-b & b-c & c-a \\ b-c & c-a & a-b \\ c-a & a-b & b-c\end{array}\right|=0$
3. $\left.\right|^{2} \mid=0$
4. $\left|\begin{array}{lll}1 & b c & a(b+c) \\ 1 & c a & b(c+a) \\ 1 & a b & c(a+b)\end{array}\right|=0$
5. $\left|\begin{array}{lll}b+c & q+r & y+z \\ c+a & r+p & z+x \\ a+b & p+q & x+y\end{array}\right|=2\left|\begin{array}{lll}a & p & x \\ b & q & y \\ c & r & z\end{array}\right|$
6. $\left|\begin{array}{ccc}0 & a & -b \\ -a & 0 & -c \\ b & c & 0\end{array}\right|=0$
7. $\left|\begin{array}{ccc}-a^{2} & a b & a c \\ b a & -b^{2} & b c \\ c a & c b & -c^{2}\end{array}\right|=a^{2} b^{2} c^{2}$
y using properties of determinants, in Exercises to 1 , show that
8. (i) $\left|\begin{array}{lll}1 & a & a^{2} \\ 1 & b & b^{2} \\ 1 & c & c^{2}\end{array}\right|=(a-b)(b-c)(c-a)$
(ii) $\left|\begin{array}{lll}1 & 1 & 1 \\ a & b & c \\ a & b & c\end{array}\right|=(a-b)(b-c)(c-a)(a+b+c)$
9. $\left|\begin{array}{lll}x & x^{2} & y z \\ y & y^{2} & z x \\ z & z^{2} & x y\end{array}\right|=(x-y)(y-z)(z-x)(x y+y z+z x)$
10. (i) $\left|\begin{array}{ccc}x+ & 2 x & 2 x \\ 2 x & x+ & 2 x \\ 2 x & 2 x & x+\end{array}\right|=(x+)(-x)^{2}$
(ii) $\left|\begin{array}{ccc}y+k & y & y \\ y & y+k & y \\ y & y & y+k\end{array}\right|=k^{2}(y+k)$
11. (i) $\left|\begin{array}{ccc}a-b-c & 2 a & 2 a \\ 2 b & b-c-a & 2 b \\ 2 c & 2 c & c-a-b\end{array}\right|=(a+b+c)$
(ii) $\left|\begin{array}{ccc}x+y+2 z & x & y \\ z & y+z+2 x & y \\ z & x & z+x+2 y\end{array}\right|=2(x+y+z)$
12. $\left|\begin{array}{ccc}1 & x & x^{2} \\ x^{2} & 1 & x \\ x & x^{2} & 1\end{array}\right|=(1-x)^{2}$
13. $\left|\begin{array}{ccc}1+a^{2}-b^{2} & 2 a b & -2 b \\ 2 a b & 1-a^{2}+b^{2} & 2 a \\ 2 b & -2 a & 1-a^{2}-b^{2}\end{array}\right|=\left(1+a^{2}+b^{2}\right)$
14. $\left|\begin{array}{ccc}a^{2}+1 & a b & a c \\ a b & b^{2}+1 & b c \\ c a & c b & c^{2}+1\end{array}\right|=1+a^{2}+b^{2}+c^{2}$
hoose the correct answer in Exercises 1 and 1 .
15. et A be a square matrix of order , then $k \mathrm{~A}$ is equal to
(A) $k \mathrm{~A}$
() $k^{2} \mathrm{~A}$
() $k \mathrm{~A}$
(D) $k \mathrm{~A}$
16. Which of the following is correct
(A) Determinant is a square matrix.
() Determinant is a number associated to a matrix.
() Determinant is a number associated to a square matrix.
(D) None of these
4.4 Area of a Triangle

In earlier classes, we have studied that the area of a triangle whose vertices are $\left(x_{1}, y_{1}\right),\left(x_{2}, y_{2}\right)$ and (x, y), is given by the expression $\frac{1}{2}\left[x_{1}\left(y_{2}-y\right)+x_{2}\left(y-y_{1}\right)+\right.$ $\left.x\left(y_{1}-y_{2}\right)\right]$. Now this expression can be written in the form of a determinant as

$$
\Delta=\frac{1}{2}\left|\begin{array}{lll}
x_{1} & y_{1} & 1 \tag{1}\\
x_{2} & y_{2} & 1 \\
x & y & 1
\end{array}\right|
$$

Remarks
(i) Since area is a positive quantity, we always take the absolute value of the determinant in (1).
(ii) If area is given, use both positive and negative values of the determinant for calculation.
(iii) The area of the triangle formed by three collinear points is ero.

Example 17 ind the area of the triangle whose vertices are (,), (-2) and (, 1).
Solution The area of triangle is given by

$$
\begin{aligned}
\Delta & =\frac{1}{2}\left|-\begin{array}{rr}
1 \\
2 & 1 \\
1 & 1
\end{array}\right| \\
& =\frac{1}{2}[(2-1)-(--)+1(--10)] \\
& =\frac{1}{2}(+2-1)=\frac{1}{2}
\end{aligned}
$$

Example 18 ind the equation of the line joining A(1,) and $(0,0)$ using determinants and find k if $\mathrm{D}(k, 0)$ is a point such that area of triangle A D is sq units.

Solution et (x, y) be any point on A. Then, area of triangle A is ero (Why). So

$$
\frac{1}{2}\left|\begin{array}{lll}
0 & 0 & 1 \\
1 & & 1 \\
x & y & 1
\end{array}\right|=0
$$

This gives

$$
\frac{1}{2}(y-x)=0 \text { or } y=x
$$

which is the equation of required line A
Also, since the area of the triangle A D is sq. units, we have

$$
\frac{1}{2}\left|\begin{array}{lll}
1 & & 1 \\
0 & 0 & 1 \\
k & 0 & 1
\end{array}\right|=
$$

This gives, $\frac{-k}{2}= \pm$, i.e., $k=\mp 2$.

EXERCISE 4.3

1. ind area of the triangle with vertices at the point given in each of the following
(i) $(1,0),(, 0),($,
(ii) $(2),,(1,1),(10$,
(iii) $(-2,-),(, 2),(-1,-)$
2. Show that points
$\mathrm{A}(a, b+c), \quad(b, c+a), \quad(c, a+b)$ are collinear.
3. ind values of k if area of triangle is sq. units and vertices are
(i) $(k, 0),(, 0),(0,2)$
(ii) $(-2,0),(0),,(0, k)$
4. (i) ind equation of line joining $(1,2)$ and (,) using determinants.
(ii) ind equation of line joining $(, 1)$ and (,) using determinants.
5. If area of triangle is sq units with vertices $(2,-),($,$) and (k$,$) . Then k$ is
(A) 12
() -2
() $-12,-2$
(D) $12,-2$

4.5 Minors and Cofactors

In this section, we will learn to write the expansion of a determinant in compact form using minors and cofactors.

Definition 1 Minor of an element $a_{i j}$ of a determinant is the determinant obtained by deleting its i th row and j th column in which element $a_{i j}$ lies. Minor of an element $a_{i j}$ is denoted by $\mathrm{M}_{i j}$.

Remark Minor of an element of a determinant of order $n(n \geq 2)$ is a determinant of order $n-1$.

Example 19 ind the minor of element in the determinant $\Delta=\left|\begin{array}{ll}1 & 2 \\ & \end{array}\right|$
Solution Since lies in the second row and third column, its minor M_{2} is given by

$$
M_{2}=\left|\begin{array}{ll}
1 & 2
\end{array}\right|=-1=-\quad\left(\text { obtained by deleting } R_{2} \text { and } \quad \text { in } \Delta\right)
$$

Definition 2 ofactor of an element $a_{i j}$, denoted by $\mathrm{A}_{i j}$ is defined by

$$
\mathrm{A}_{i j}=(-1)^{i+j} \mathrm{M}_{i j}, \text { where } \mathrm{M}_{i j} \text { is minor of } a_{i j} .
$$

Example 20 ind minors and cofactors of all the elements of the determinant $\left|\begin{array}{ll}1 & -2 \\ \end{array}\right|$
Solution Minor of the element $a_{i j}$ is $\mathrm{M}_{i j}$
ere $a_{11}=1$. So $\mathrm{M}_{11}=$ Minor of $a_{11}=$
$\mathrm{M}_{12}=$ Minor of the element $a_{12}=$
$\mathrm{M}_{21}=$ Minor of the element $a_{21}=-2$
$\mathrm{M}_{22}=$ Minor of the element $a_{22}=1$
Now, cofactor of $a_{i j}$ is $\mathrm{A}_{i j}$. So

$$
\begin{aligned}
& \mathrm{A}_{11}=(-1)^{1+1} \quad \mathrm{M}_{11}=(-1)^{2}()= \\
& \mathrm{A}_{12}=(-1)^{1+2} \quad \mathrm{M}_{12}=(-1) \quad()=- \\
& \mathrm{A}_{21}=(-1)^{2+1} \quad \mathrm{M}_{21}=(-1)(-2)=2 \\
& \mathrm{~A}_{22}=(-1)^{2+2} \quad \mathrm{M}_{22}=(-1)(1)=1
\end{aligned}
$$

Example 21 ind minors and cofactors of the elements a_{11}, a_{21} in the determinant

$$
\Delta=\left|\begin{array}{lll}
a_{11} & a_{12} & a_{1} \\
a_{21} & a_{22} & a_{2} \\
a_{1} & a_{2} & a
\end{array}\right|
$$

Solution y definition of minors and cofactors, we have
Minor of $a_{11}=\mathrm{M}_{11}=\left|\begin{array}{ll}a_{22} & a_{2} \\ a_{2} & a\end{array}\right|=a_{22} a-a_{2} a_{2}$
ofactor of $a_{11}=\mathrm{A}_{11}=(-1)^{1+1} \quad \mathrm{M}_{11}=a_{22} a-a_{2} a_{2}$
Minor of $a_{21}=\mathrm{M}_{21}=\left|\begin{array}{ll}a_{12} & a_{1} \\ a_{2} & a\end{array}\right|=a_{12} a-a_{1} a_{2}$
ofactor of $a_{21}=\mathrm{A}_{21}=(-1)^{2+1} \quad \mathrm{M}_{21}=(-1)\left(a_{12} a-a_{1} a_{2}\right)=-a_{12} a+a_{1} a_{2}$
Remark Expanding the determinant Δ, in Example 21, along R_{1}, we have

$$
\begin{aligned}
\Delta & =(-1)^{1+1} a_{11}\left|\begin{array}{ll}
a_{22} & a_{2} \\
a_{2} & a
\end{array}\right|+(-1)^{1+2} a_{12}\left|\begin{array}{ll}
a_{21} & a_{2} \\
a_{1} & a
\end{array}\right|+(-1)^{1+} \\
a_{1} & \left|\begin{array}{ll}
a_{21} & a_{22} \\
a_{1} & a_{2}
\end{array}\right| \\
& =a_{11} \mathrm{~A}_{11}+a_{12} \mathrm{~A}_{12}+a_{1} \mathrm{~A}_{1} \text {, where } \mathrm{A}_{i j} \text { is cofactor of } a_{i j} \\
& =\text { sum of product of elements of } \mathrm{R}_{1} \text { with their corresponding cofactors }
\end{aligned}
$$

Similarly, Δ can be calculated by other five ways of expansion that is along R_{2}, R, , 2 and
ence $\Delta=$ sum of the product of elements of any row (or column) with their corresponding cofactors.

Note If elements of a row (or column) are multiplied with cofactors of any other row (or column), then their sum is ero. or example,

$$
\begin{aligned}
\Delta & =a_{11} \mathrm{~A}_{21}+a_{12} \mathrm{~A}_{22}+a_{1} \mathrm{~A}_{2} \\
& =a_{11}(-1)^{1+1}\left|\begin{array}{ll}
a_{12} & a_{1} \\
a_{2} & a
\end{array}\right|+a_{12}(-1)^{1+2}\left|\begin{array}{ll}
a_{11} & a_{1} \\
a_{1} & a
\end{array}\right|+a_{1}(-1)^{1+}\left|\begin{array}{ll}
a_{11} & a_{12} \\
a_{1} & a_{2}
\end{array}\right| \\
& =\left|\begin{array}{lll}
a_{11} & a_{12} & a_{1} \\
a_{11} & a_{12} & a_{1} \\
a_{1} & a_{2} & a
\end{array}\right|=0 \text { (since } \mathrm{R}_{1} \text { and } \mathrm{R}_{2} \text { are identical) }
\end{aligned}
$$

Similarly, we can try for other rows and columns.
Example 22 ind minors and cofactors of the elements of the determinant

$$
\left|\begin{array}{ccc}
2 & - & \\
& 0 & \\
1 & & -
\end{array}\right| \text { and verify that } a_{11} \mathrm{~A}_{1}+a_{12} \mathrm{~A}_{2}+a_{1} \mathrm{~A}=0
$$

Solution We have $\mathrm{M}_{11}=\left|\begin{array}{ll}0 & \\ -\end{array}\right|=0-20=-20 \quad \mathrm{~A}_{11}=(-1)^{1+1}(-20)=-20$

$$
\begin{aligned}
& \mathrm{M}_{12}=\left\lvert\, \begin{array}{ll}
\\
1- & -2-=-\quad \mathrm{A}_{12}=(-1)^{1+2}(-\quad)=
\end{array}\right. \\
& M_{1}=\left|\begin{array}{ll}
0 \\
1 &
\end{array}\right|=0-0=0 \quad A_{1}=(-1)^{1+}(0)=0 \\
& M_{21}=|-|=21-2=-\quad \mathrm{A}_{21}=(-1)^{2+1}(-)= \\
& M_{22}=\left|\begin{array}{ll}
2 & \\
1 & -
\end{array}\right|=-1 \quad-\quad=-1 \quad \mathrm{~A}_{22}=(-1)^{2+2}(-1)=-1 \\
& M_{2}=\left|\begin{array}{ll}
2 & - \\
1 &
\end{array}\right|=10+=1 \quad A_{2}=(-1)^{2+}(1)=-1 \\
& M_{1}=\left|\begin{array}{l}
- \\
0
\end{array}\right|=-12-0=-12 \quad \mathrm{~A}_{1}=(-1)^{+1}(-12)=-12
\end{aligned}
$$

```
    \(\mathrm{M}_{2}=\left.\right|^{2} \mid=-0=-22 \quad \mathrm{~A}_{2}=(-1)^{+2}(-22)=22\)
and
\(\mathrm{M}=\left|\begin{array}{cc}2 & - \\ & 0\end{array}\right|=0+1=1\)
    \(\mathrm{A}=(-1)^{+}(1)=1\)
Now \(a_{11}=2, a_{12}=-, a_{1}=\mathrm{A}_{1}=-12, \mathrm{~A}_{2}=22, \mathrm{~A}=1\)
So \(\quad a_{11} \mathrm{~A}_{1}+a_{12} \mathrm{~A}_{2}+a_{1} \mathrm{~A}\)
    \(=2(-12)+(-)(22)+(1)=-2-\quad+0=0\)
```


EXERCISE 4.4

Write Minors and ofactors of the elements of following determinants

1. (i) $\left|\begin{array}{ll}2 & - \\ 0 & \end{array}\right|$
(ii) $\left|\begin{array}{ll}a & c \\ b & d\end{array}\right|$
2. (i) $\left|\begin{array}{lll}1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1\end{array}\right|$
(ii) $\left|\begin{array}{rrr}1 & 0 & \\ & & -1 \\ 0 & 1 & 2\end{array}\right|$
3. $\quad \operatorname{sing} \quad$ ofactors of elements of second row, evaluate $\Delta=\left|\begin{array}{lll}2 & 0 & 1 \\ 1 & 2\end{array}\right|$.
4. $\quad \operatorname{sing}$ ofactors of elements of third column, evaluate $\Delta=\left|\begin{array}{lll}1 & x & y z \\ 1 & y & z x \\ 1 & z & x y\end{array}\right|$.
5. If $\Delta=\left|\begin{array}{lll}a_{11} & a_{12} & a_{1} \\ a_{21} & a_{22} & a_{2} \\ a_{1} & a_{2} & a\end{array}\right|$ and $\mathrm{A}_{i j}$ is ofactors of $a_{i j}$, then value of Δ is given by
(A) $a_{11} \mathrm{~A}_{1}+a_{12} \mathrm{~A}_{2}+a_{1} \mathrm{~A}$ () $a_{11} \mathrm{~A}_{11}+a_{12} \mathrm{~A}_{21}+a_{1} \mathrm{~A}_{1}$
() $a_{21} \mathrm{~A}_{11}+a_{22} \mathrm{~A}_{12}+a_{2} \mathrm{~A}_{1}$ (D) $a_{11} \mathrm{~A}_{11}+a_{21} \mathrm{~A}_{21}+a_{1} \mathrm{~A}_{1}$
4.6 Adjoint and Inverse of a Matrix

In the previous chapter, we have studied inverse of a matrix. In this section, we shall discuss the condition for existence of inverse of a matrix.

To find inverse of a matrix A , i.e., A^{-1} we shall first define adjoint of a matrix.

4.6.1 Adjoint of a matrix

Definition 3 The adjoint of a square matrix $\mathrm{A}=\left[a_{i j}\right]_{n}{ }_{n}$ is defined as the transpose of the matrix $\left[\mathrm{A}_{i j}\right]_{n}$, where $\mathrm{A}_{i j}$ is the cofactor of the element $a_{i j}$. Adjoint of the matrix A is denoted by adj A .
et

$$
\mathrm{A}=\left[\begin{array}{lll}
a_{11} & a_{12} & a_{1} \\
a_{21} & a_{22} & a_{2} \\
a_{1} & a_{2} & a
\end{array}\right]
$$

Then $\quad \operatorname{adj} \mathrm{A}=$ Transpose of $\left[\begin{array}{lll}\mathrm{A}_{11} & \mathrm{~A}_{12} & \mathrm{~A}_{1} \\ \mathrm{~A}_{21} & \mathrm{~A}_{22} & \mathrm{~A}_{2} \\ \mathrm{~A}_{1} & \mathrm{~A}_{2} & \mathrm{~A}\end{array}\right]=\left[\begin{array}{lll}\mathrm{A}_{11} & \mathrm{~A}_{21} & \mathrm{~A}_{1} \\ \mathrm{~A}_{12} & \mathrm{~A}_{22} & \mathrm{~A}_{2} \\ \mathrm{~A}_{1} & \mathrm{~A}_{2} & \mathrm{~A}\end{array}\right]$
Example 23 ind $\operatorname{adj} \mathrm{A}$ for $\mathrm{A}=\left[\begin{array}{l}2 \\ 1\end{array}\right]$
Solution We have $\mathrm{A}_{11}=, \mathrm{A}_{12}=-1, \mathrm{~A}_{21}=-, \mathrm{A}_{22}=2$
ence

$$
\operatorname{adj} \mathrm{A}=\left[\begin{array}{ll}
\mathrm{A}_{11} & \mathrm{~A}_{21} \\
\mathrm{~A}_{12} & \mathrm{~A}_{22}
\end{array}\right]=\left[\begin{array}{cc}
& - \\
-1 & 2
\end{array}\right]
$$

Remark or a square matrix of order 2, given by

$$
\mathrm{A}=\left[\begin{array}{ll}
a_{11} & a_{12} \\
a_{21} & a_{22}
\end{array}\right]
$$

The adj A can also be obtained by interchanging a_{11} and a_{22} and by changing signs of a_{12} and a_{21}, i.e.,

We state the following theorem without proof.
Theorem 1 If A be any given square matrix of order n, then
$\mathrm{A}(\operatorname{adj} \mathrm{A})=(\operatorname{adj} \mathrm{A}) \mathrm{A}=|\mathrm{A}| \mathrm{I}$,
where I is the identity matrix of order n

Verification

et

$$
\mathrm{A}=\left[\begin{array}{lll}
a_{11} & a_{12} & a_{1} \\
a_{21} & a_{22} & a_{2} \\
a_{1} & a_{2} & a
\end{array}\right] \text {, then } \operatorname{adj} \mathrm{A}=\left[\begin{array}{lll}
\mathrm{A}_{11} & \mathrm{~A}_{21} & \mathrm{~A}_{1} \\
\mathrm{~A}_{12} & \mathrm{~A}_{22} & \mathrm{~A}_{2} \\
\mathrm{~A}_{1} & \mathrm{~A}_{2} & \mathrm{~A}
\end{array}\right]
$$

Since sum of product of elements of a row (or a column) with corresponding cofactors is equal to A and otherwise ero, we have

$$
\mathrm{A}(\operatorname{adj} \mathrm{~A})=\left[\begin{array}{ccc}
|\mathrm{A}| & 0 & 0 \\
0 & |\mathrm{~A}| & 0 \\
0 & 0 & |\mathrm{~A}|
\end{array}\right]=|\mathrm{A}|\left[\begin{array}{ccc}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right]=|\mathrm{A}| \mathrm{I}
$$

Similarly, we can show $(\operatorname{adj} \mathrm{A}) \mathrm{A}=|\mathrm{A}| \mathrm{I}$

$$
\text { ence } \mathrm{A}(\operatorname{adj} \mathrm{~A})=(\operatorname{adj} \mathrm{A}) \mathrm{A}=|\mathrm{A}| \mathrm{I}
$$

Definition 4 A square matrix A is said to be singular if $|A|=0$.
or example, the determinant of matrix $A=\left[\begin{array}{ll}1 & 2 \\ & \end{array}\right]$ is ero ence A is a singular matrix.

Definition 5 A square matrix A is said to be non singular if $|A| \neq 0$
et

$$
A=\left[\begin{array}{ll}
1 & 2 \\
&
\end{array}\right] . \text { Then }|A|=\left|\begin{array}{ll}
1 & 2
\end{array}\right|=-\quad=-2 \neq 0 .
$$

ence A is a nonsingular matrix
We state the following theorems without proof.
Theorem 2 If A and are nonsingular matrices of the same order, then A and A are also nonsingular matrices of the same order.
Theorem 3 The determinant of the product of matrices is equal to product of their respective determinants, that is, $|\mathrm{A}|=|\mathrm{A}| \mid$, where A and are square matrices of the same order

Remark We know that $(\operatorname{adj} \mathrm{A}) \mathrm{A}=|\mathrm{A}| \mathrm{I}=\left[\begin{array}{ccc}|\mathrm{A}| & 0 & 0 \\ 0 & |\mathrm{~A}| & 0 \\ 0 & 0 & |\mathrm{~A}|\end{array}\right]$

Writing determinants of matrices on both sides, we have

$$
|(\operatorname{adj} \mathrm{A}) \mathrm{A}|=\left|\begin{array}{ccc}
\mathrm{A} \mid & 0 & 0 \\
0 & |\mathrm{~A}| & 0 \\
0 & 0 & \mid \mathrm{A}
\end{array}\right|
$$

$$
(\operatorname{adj} \mathrm{A}) \mathrm{A}=|\mathrm{A}|\left|\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right|
$$

i.e.

$$
(\operatorname{adj} \mathrm{A}) \quad \mathrm{A}=\mathrm{A}
$$

i.e. $(\operatorname{adj} \mathrm{A})=\mathrm{A}^{2}$
In general, if A is a square matrix of order n, then $\operatorname{adj}(\mathrm{A})=\mathrm{A}^{n-1}$.
Theorem 4 A square matrix A is invertible if and only if A is nonsingular matrix.
Proof et A be invertible matrix of order n and I be the identity matrix of order n.
Then, there exists a square matrix of order n such that $\mathrm{A}=\mathrm{A}=\mathrm{I}$
Now $\quad A=I$. So $|A|=|I|$ or $|A||\mid=1 \quad$ (since $| I|=1,|A|=|A|| \mid)$
This gives $\quad|A| \neq 0$. ence A is nonsingular.
onversely, let A be nonsingular. Then $|A| \neq 0$
Now

$$
\mathrm{A}(\operatorname{adj} \mathrm{~A})=(\operatorname{adj} \mathrm{A}) \mathrm{A}=|\mathrm{A}| \mathrm{I}
$$

(Theorem 1)

or
$\mathrm{A}\left(\frac{1}{\mathrm{~A}} \operatorname{adj} \mathrm{~A}\right)=\left(\frac{1}{\mathrm{~A}} \operatorname{adj} \mathrm{~A}\right) \mathrm{A}=\mathrm{I}$
or $\quad \mathrm{A}=\mathrm{A}=\mathrm{I}$, where $=\frac{1}{\mathrm{~A}} \operatorname{adj} \mathrm{~A}$

Thus
A is invertible and $\mathrm{A}^{-1}=\frac{1}{\mathrm{~A}} \operatorname{adj} \mathrm{~A}$
Example 24 If $\mathrm{A}=\left[\begin{array}{l}1 \\ 1 \\ 1\end{array}\right]$, then verify that $\mathrm{A} \operatorname{adj} \mathrm{A}=\mathrm{A}$ I. Also find A^{-1}.
Solution We have $|\mathrm{A}|=1(1-)-(-)+\quad(-)=1 \neq 0$

Now $A_{11}=, A_{12}=-1, A_{1}=-1, A_{21}=-, A_{22}=1, A_{2}=0, A_{1}=-, A_{2}=0$,
$\mathrm{A}=1$

Therefore

$$
\operatorname{adj} \mathrm{A}=\left[\begin{array}{ccc}
& - & - \\
-1 & 1 & 0 \\
-1 & 0 & 1
\end{array}\right]
$$

Now

$$
\begin{aligned}
\mathrm{A}(\operatorname{adj} \mathrm{~A}) & =\left[\begin{array}{ll}
1 & \\
1 & \\
1 &
\end{array}\right]\left[\begin{array}{ccc}
& - & - \\
-1 & 1 & 0 \\
-1 & 0 & 1
\end{array}\right] \\
& =\left[\begin{array}{lll}
- & - & -+0 \\
- & - & -+0+ \\
- & - & -++0 \\
- & -+0+ \\
- & +
\end{array}\right] \\
& =\left[\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right]=(1)\left[\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right]=|\mathrm{A}| . \mathrm{I}
\end{aligned}
$$

Also

$$
\mathrm{A}^{-1}=\frac{1}{|\mathrm{~A}|} \operatorname{adj} \mathrm{A}=\frac{1}{1}\left[\begin{array}{rrr}
& - & - \\
-1 & 1 & 0 \\
-1 & 0 & 1
\end{array}\right]=\left[\begin{array}{ccc}
& - & - \\
-1 & 1 & 0 \\
-1 & 0 & 1
\end{array}\right]
$$

Example 25 If $\mathrm{A}=\left[\begin{array}{cc}2 & \\ 1 & -\end{array}\right]$ and $=\left[\begin{array}{cc}1 & -2 \\ -1 & \end{array}\right]$, then verify that $(\mathrm{A} \quad)^{-1}={ }^{-1} \mathrm{~A}^{-1}$.
Solution We have $A=\left[\begin{array}{ll}2 & \\ 1 & -\end{array}\right]\left[\begin{array}{cc}1 & -2 \\ -1 & \end{array}\right]=\left[\begin{array}{ll}-1 & \\ & -1\end{array}\right]$
Since, $|\mathrm{A}|=-11 \neq 0,(\mathrm{~A})^{-1}$ exists and is given by

$$
(\mathrm{A})^{-1}=\frac{1}{|\mathrm{~A}|} \operatorname{adj}(\mathrm{A} \quad)=-\frac{1}{11}\left[\begin{array}{cc}
-1 & - \\
- & -1
\end{array}\right]=\frac{1}{11}\left[\begin{array}{ll}
1 & \\
& 1
\end{array}\right]
$$

urther, $|\mathrm{A}|=-11 \neq 0$ and $\left|\mid=1 \neq 0\right.$. Therefore, A^{-1} and ${ }^{-1}$ both exist and are given by

$$
\mathrm{A}^{-1}=-\frac{1}{11}\left[\begin{array}{ll}
- & - \\
-1 & 2
\end{array}\right], \quad-\quad=\left[\begin{array}{ll}
& 2 \\
1 & 1
\end{array}\right]
$$

Therefore $\quad{ }^{-1} \mathrm{~A}^{-1}=-\frac{1}{11}\left[\begin{array}{ll}2 \\ 1 & 1\end{array}\right]\left[\begin{array}{ll}- & - \\ -1 & 2\end{array}\right]=-\frac{1}{11}\left[\begin{array}{ll}-1 & - \\ - & -1\end{array}\right]=\frac{1}{11}\left[\begin{array}{ll}1 & \\ & 1\end{array}\right]$ ence $(\mathrm{A})^{-1}={ }^{-1} \mathrm{~A}^{-1}$

Example 26 Show that the matrix $A=\left[\begin{array}{ll}2 & \\ 1 & 2\end{array}\right]$ satisfies the equation $A^{2}-A+I=$, where I is 22 identity matrix and is 22 ero matrix. sing this equation, find A^{-1}.
Solution We have $A^{2}=A . A=\left[\begin{array}{ll}2 & \\ 1 & 2\end{array}\right]\left[\begin{array}{ll}2 & \\ 1 & 2\end{array}\right]=\left[\begin{array}{ll}12 \\ \end{array}\right]$
ence

$$
\mathrm{A}^{2}-\mathrm{A}+\mathrm{I}=\left[\begin{array}{l}
12 \\
\end{array}\right]-\left[\begin{array}{l}
12 \\
0
\end{array}\right]+\left[\begin{array}{ll}
1 & 0 \\
0
\end{array}\right]=\left[\begin{array}{ll}
0 & 0 \\
0 & 0
\end{array}\right]=
$$

Now $\quad A^{2}-A+I=$
Therefore
$\mathrm{A} A-\mathrm{A}=-\mathrm{I}$
or
A $\mathrm{A}\left(\mathrm{A}^{-1}\right)-\mathrm{AA}^{-1}=-\mathrm{IA}^{-1}\left(\right.$ ost multiplying by A^{-1} because $\left.\mathrm{A} \neq 0\right)$
or $\quad \mathrm{A}\left(\mathrm{A} \mathrm{A}^{-1}\right)-\mathrm{I}=-\mathrm{A}^{-1}$
or $\quad A I-I=-A^{-1}$
or
$\mathrm{A}^{-1}=\mathrm{I}-\mathrm{A}=\left[\begin{array}{ll}0 \\ 0 & \end{array}\right]-\left[\begin{array}{ll}2 & \\ 1 & 2\end{array}\right]=\left[\begin{array}{cc}2 & - \\ -1 & 2\end{array}\right]$
ence

$$
\mathrm{A}^{-1}=\left[\begin{array}{cc}
2 & - \\
-1 & 2
\end{array}\right]
$$

EXERCISE 4.5

ind adjoint of each of the matrices in Exercises 1 and 2.

1. $\left[\begin{array}{ll}1 & 2 \\ & \end{array}\right]$ 2. $\left[\begin{array}{ccc}1 & -1 & 2 \\ 2 & & \\ -2 & 0 & 1\end{array}\right]$
$\operatorname{erify} \mathrm{A}(\operatorname{adj} \mathrm{A})=(\operatorname{adj} \mathrm{A}) \mathrm{A}=\mathrm{A} \mathrm{I}$ in Exercises and
2. $\left[\begin{array}{cc}2 & \\ - & -\end{array}\right]$ 4. $\left[\begin{array}{ccc}1 & -1 & 2 \\ & 0 & -2 \\ 1 & 0 & \end{array}\right]$
ind the inverse of each of the matrices (if it exists) given in Exercises to 11.
3. $\left[\begin{array}{ll}2 & -2 \\ & \end{array}\right]$
4. $\left[\begin{array}{ll}-1 & \\ - & 2\end{array}\right]$
5. $\left[\begin{array}{ll}1 & 2 \\ 0 & 2 \\ 0 & 0\end{array}\right]$
6. $\left[\begin{array}{ccc}1 & 0 & 0 \\ & & 0 \\ & 2 & -1\end{array}\right]$
7. $\left[\begin{array}{ccc}2 & 1 & \\ & -1 & 0 \\ - & 2 & 1\end{array}\right]$
8. $\left[\begin{array}{ccc}1 & -1 & 2 \\ 0 & 2 & - \\ & -2 & \end{array}\right]$
9. $\left[\begin{array}{ccc}1 & 0 & 0 \\ 0 & \cos \alpha & \sin \alpha \\ 0 & \sin \alpha & -\cos \alpha\end{array}\right]$
10. et $\mathrm{A}=\left[\begin{array}{l}2\end{array}\right]$ and $=[\quad]$. erify that $(\mathrm{A})^{-1}={ }^{-1} \mathrm{~A}^{-1}$.
11. If $A=\left[\begin{array}{rr}1 \\ -1 & 2\end{array}\right]$, show that $A^{2}-A+I=$. ence find A^{-1}.
12. or the matrix $\mathrm{A}=\left[\begin{array}{ll} & 2 \\ 1 & 1\end{array}\right]$, find the numbers a and b such that $\mathrm{A}^{2}+a \mathrm{~A}+b \mathbf{I}=$.
13. or the matrix $\mathrm{A}=\left[\begin{array}{ccc}1 & 1 & 1 \\ 1 & 2 & - \\ 2 & -1\end{array}\right]$

Show that $A-A^{2}+A+11 I=$. ence, find A^{-1}.
16. If $\mathrm{A}=\left[\begin{array}{ccc}2 & -1 & 1 \\ -1 & 2 & -1 \\ 1 & -1 & 2\end{array}\right]$
erify that $A-A^{2}+A-I=$ and hence find A^{-1}
17. et A be a nonsingular square matrix of order . Then $\operatorname{adj} \mathrm{A}$ is equal to
(A) A
() A^{2}
() A
(D) A
18. If A is an invertible matrix of order 2 , then $\operatorname{det}\left(\mathrm{A}^{-1}\right)$ is equal to
(A) $\operatorname{det}(\mathrm{A})$
() $\frac{1}{\operatorname{det}(\mathrm{~A})}$
() 1
(D) 0

4.7 Applications of Determinants and Matrices

In this section, we shall discuss application of determinants and matrices for solving the system of linear equations in two or three variables and for checking the consistency of the system of linear equations.
Consistent system A system of equations is said to be consistent if its solution (one or more) exists.
Inconsistent system A system of equations is said to be inconsistent if its solution does not exist.

- Note In this chapter, we restrict ourselves to the system of linear equations having unique solutions only.
4.7.1 Solution of system of linear equations using inverse of a matrix et us express the system of linear equations as matrix equations and solve them using inverse of the coefficient matrix.
onsider the system of equations

$$
\begin{array}{rl}
a_{1} x+b_{1} y+c_{1} z & =d_{1} \\
a_{2} x+b_{2} y+c_{2} z & =d_{2} \\
a & x+b y+c \quad z=d \\
\mathrm{~A}= & {\left[\begin{array}{lll}
a_{1} & b_{1} & c_{1} \\
a_{2} & b_{2} & c_{2} \\
a & b & c
\end{array}\right], \quad=\left[\begin{array}{c}
x \\
y \\
z
\end{array}\right] \text { and }=\left[\begin{array}{c}
d_{1} \\
d_{2} \\
d
\end{array}\right]}
\end{array}
$$

Then, the system of equations can be written as, $\mathrm{A}=$, i.e.,

$$
\left[\begin{array}{lll}
a_{1} & b_{1} & c_{1} \\
a_{2} & b_{2} & c_{2} \\
a & b & c
\end{array}\right]\left[\begin{array}{l}
x \\
y \\
z
\end{array}\right]=\left[\begin{array}{l}
d_{1} \\
d_{2} \\
d
\end{array}\right]
$$

Case II If is a nonsingular matrix, then its inverse exists. Now

$$
\mathrm{A}=
$$

or

$$
\begin{array}{rlr}
\mathrm{A}^{-1}(\mathrm{~A}) & =\mathrm{A}^{-1} & \text { (premultiplying by } \left.\mathrm{A}^{-1}\right) \\
\left(\mathrm{A}^{-1} \mathrm{~A}\right) & =\mathrm{A}^{-1} & \text { (by associative property) } \\
\mathrm{I} & =\mathrm{A}^{-1} & \\
& =\mathrm{A}^{-1} &
\end{array}
$$

This matrix equation provides unique solution for the given system of equations as inverse of a matrix is unique. This method of solving system of equations is known as Matrix Method.

Case II If A is a singular matrix, then $\mathrm{A}=0$.
In this case, we calculate (adj A)
If $(\operatorname{adj} \mathrm{A}) \neq,($ being ero matrix), then solution does not exist and the system of equations is called inconsistent.

If (adj A) $=$, then system may be either consistent or inconsistent according as the system have either infinitely many solutions or no solution.
Example 27 Solve the system of equations

$$
\begin{aligned}
2 x+y & =1 \\
x+2 y & =
\end{aligned}
$$

Solution The system of equations can be written in the form $\mathrm{A}=$, where

$$
\mathrm{A}=\left[\begin{array}{ll}
2 & \\
& 2
\end{array}\right],=\left[\begin{array}{l}
x \\
y
\end{array}\right] \text { and }=\left[\begin{array}{l}
1 \\
\end{array}\right]
$$

Now, $|\mathrm{A}|=-11 \neq 0$, ence, A is nonsingular matrix and so has a unique solution.

Note that

$$
\mathrm{A}^{-1}=-\frac{1}{11}\left[\begin{array}{cc}
2 & - \\
- & 2
\end{array}\right]
$$

Therefore

$$
=\mathrm{A}^{-1}=-\frac{1}{11}\left[\begin{array}{cc}
2 & - \\
- & 2
\end{array}\right][1]
$$

$$
\left[\begin{array}{l}
x \\
y
\end{array}\right]=-\frac{1}{11}\left[\begin{array}{c}
- \\
11
\end{array}\right]=\left[\begin{array}{c}
\\
-1
\end{array}\right]
$$

ence

$$
x=, y=-1
$$

Example 28 Solve the following system of equations by matrix method.

$$
\begin{aligned}
x-2 y+z & = \\
2 x+y-z & =1 \\
x-y+2 z & =
\end{aligned}
$$

Solution The system of equations can be written in the form $\mathrm{A}=$, where

$$
\mathrm{A}=\left[\begin{array}{ccc}
& -2 & \\
2 & 1 & -1 \\
- & 2
\end{array}\right],=\left[\begin{array}{l}
x \\
y \\
z
\end{array}\right] \text { and }=[1]
$$

We see that

$$
|\mathrm{A}|=(2-)+2(+)+(--)=-1 \neq 0
$$

ence, A is nonsingular and so its inverse exists. Now
$\mathrm{A}_{11}=-1$,
$\mathrm{A}_{21}=-$,
$\mathrm{A}_{1}=-1$,
$\mathrm{A}_{12}=-$
$\mathrm{A}_{22}=-$,
$\mathrm{A}_{2}=$,
$\mathrm{A}_{1}=-10$
$\mathrm{A}_{2}=1$
A =
$\mathrm{A}^{-1}=-\frac{1}{1}\left[\begin{array}{lll}-1 & - & -1 \\ - & - & \\ -10 & 1 & \end{array}\right]$
$=\mathrm{A}^{-1}=-\frac{1}{1}\left[\begin{array}{ccc}-1 & - & -1 \\ - & - & \\ -10 & 1 & \end{array}\right]\left[\begin{array}{l} \\ 1\end{array}\right]$
So

$$
\left[\begin{array}{l}
x \\
y \\
z
\end{array}\right]=-\frac{1}{1}\left[\begin{array}{l}
-1 \\
- \\
-1
\end{array}\right]=\left[\begin{array}{l}
1 \\
2
\end{array}\right]
$$

ence

$$
x=1, y=2 \text { and } z=.
$$

Example 29 The sum of three numbers is. If we multiply third number by and add second number to it, we get 11. y adding first and third numbers, we get double of the second number. Represent it algebraically and find the numbers using matrix method.

Solution et first, second and third numbers be denoted by x, y and z, respectively. Then, according to given conditions, we have

$$
\begin{aligned}
x+y+z & = \\
y+z & =11 \\
x+z & =2 y \text { or } x-2 y+z=0
\end{aligned}
$$

This system can be written as $\mathrm{A}=$, where

$$
\mathrm{A}=\left[\begin{array}{ccc}
1 & 1 & 1 \\
0 & 1 & \\
1 & -2 & 1
\end{array}\right],=\left[\begin{array}{l}
x \\
y \\
z
\end{array}\right] \text { and }=\left[\begin{array}{c}
\\
11 \\
0
\end{array}\right]
$$

ere $|\mathrm{A}|=1(1+)-(0-)+(0-1)=\neq 0$. Now we find adj A

$$
\begin{array}{lll}
A_{11}=1(1+)=, & A_{12}=-(0-)=, & A_{1}=-1 \\
A_{21}=-(1+2)=-, & A_{22}=0, & A_{2}=-(-2-1)= \\
A_{1}=(-1)=2, & A_{2}=-(-0)=-, & A=(1-0)=1
\end{array}
$$

ence

$$
\operatorname{adj} \mathrm{A}=\left[\begin{array}{ccc}
& - & 2 \\
& 0 & - \\
-1 & & 1
\end{array}\right]
$$

Thus

$$
\begin{aligned}
\mathrm{A}^{-1} & =\frac{1}{|\mathrm{~A}|} \operatorname{adj}(\mathrm{A})=\frac{1}{}\left[\begin{array}{ccc}
- & 2 \\
& 0 & - \\
-1 & & 1
\end{array}\right] \\
& =\mathrm{A}^{-1}
\end{aligned}
$$

Since

$$
=-\frac{1}{}\left[\begin{array}{ccc}
& - & 2 \\
& 0 & - \\
-1 & & 1
\end{array}\right]\left[\begin{array}{c}
\\
11 \\
0
\end{array}\right]
$$

$$
\left[\begin{array}{l}
x \\
y \\
z
\end{array}\right]=\frac{1}{-}\left[\begin{array}{rr}
2- & +0 \\
1+0+0 \\
-+ & +0
\end{array}\right]=\frac{1}{2}\left[\begin{array}{l}
1 \\
2
\end{array}\right]=\left[\begin{array}{l}
1 \\
2
\end{array}\right]
$$

Thus

$$
x=1, y=2, z=
$$

EXERCISE 4.6

Examine the consistency of the system of equations in Exercises 1 to

1. $\begin{aligned} & x+2 y=2 \\ & 2 x+y=\end{aligned}$
2. $2 x-y=$
3. $x+y=$
$x+y=$
$2 x+y=$
4. $x+y+z=1$
$2 x+y+2 z=2$
5. $x-y-2 z=2$
6. $x-y+z=$
$2 y-z=-1$
$2 x+y+z=2$
$a x+a y+2 a z=$
$x-y=$
$x-2 y+z=-1$

Solve system of linear equations, using matrix method, in Exercises to 1
7. $x+2 y=$
8. $2 x-y=-2$
9. $x-y=$
$x+y=$
$x+y=$
$x-y=$
10. $x+2 y=$
$x+2 y=$
11. $2 x+y+z=1$
$x-2 y-z=\frac{-}{2}$
12. $x-y+z=$
$2 x+y-z=0$
$y-z=$
$x+y+z=2$
13. $2 x+y+z=$
14. $x-y+2 z=$
$x-2 y+z=-$
$x+y-z=-$
$x-y-2 z=$
$2 x-y+z=12$
15. If $A=\left[\begin{array}{ccc}2 & - & \\ & 2 & - \\ 1 & 1 & -2\end{array}\right]$, find $A^{-1} . \quad \operatorname{sing} \mathrm{A}^{-1}$ solve the system of equations

$$
\begin{aligned}
2 x-y+z & =11 \\
x+2 y-z & =- \\
x+y-2 z & =-
\end{aligned}
$$

16. The cost of kg onion, kg wheat and 2 kg rice is Rs 0 . The cost of 2 kg onion, kg wheat and kg rice is Rs 0 . The cost of kg onion 2 kg wheat and kg rice is Rs 0 . ind cost of each item per kg by matrix method.

Miscellaneous Examples

Example 30 If a, b, c are positive and unequal, show that value of the determinant

$$
\Delta=\left|\begin{array}{lll}
a & b & c \\
b & c & a \\
c & a & b
\end{array}\right| \text { is negative }
$$

Solution Applying $\rightarrow_{1}+{ }_{2}+$ to the given determinant, we get

$$
\begin{aligned}
\Delta & =\left|\begin{array}{lll}
a+b+c & b & c \\
a+b+c & c & a \\
a+b+c & a & b
\end{array}\right|=(a+b+c)\left|\begin{array}{ccc}
1 & b & c \\
1 & c & a \\
1 & a & b
\end{array}\right| \\
& =(a+b+c)\left|\begin{array}{ccc}
1 & b & c \\
0 & c-b & a-c \\
0 & a-b & b-c
\end{array}\right|\left(\text { Applying }_{2} \rightarrow \mathrm{R}_{2}-\mathrm{R}_{1}, \text { and } \mathrm{R} \rightarrow \mathrm{R}-\mathrm{R}_{1}\right) \\
& =(a+b+c)[(c-b)(b-c)-(a-c)(a-b)] \quad(\text { Expanding along }) \\
& =(a+b+c)\left(-a^{2}-b^{2}-c^{2}+a b+b c+c a\right) \\
& =\frac{-1}{2}(a+b+c)\left(2 a^{2}+2 b^{2}+2 c^{2}-2 a b-2 b c-2 c a\right) \\
& =\frac{-1}{2}(a+b+c)\left[(a-b)^{2}+(b-c)^{2}+(c-a)^{2}\right]
\end{aligned}
$$

which is negative (since $a+b+c \quad 0$ and $\left.(a-b)^{2}+(b-c)^{2}+(c-a)^{2} \quad 0\right)$

Example 31 If a, b, c, are in A., find value of

$$
\left|\begin{array}{ccc}
2 y+ & y+ & y+a \\
y+ & y+ & y+b \\
y+ & y+ & 10 y+c
\end{array}\right|
$$

Solution Applying $\mathrm{R}_{1} \rightarrow \mathrm{R}_{1}+\mathrm{R}-2 \mathrm{R}_{2}$ to the given determinant, we obtain

$$
\left|\begin{array}{ccc}
0 & 0 & 0 \\
y+ & y+ & y+b \\
y+ & y+ & 10 y+c
\end{array}\right|=0 \quad(\text { Since } 2 b=a+c)
$$

Example 32 Show that

$$
\Delta=\left|\begin{array}{ccc}
(y+z)^{2} & x y & z x \\
x y & (x+z)^{2} & y z \\
x z & y z & (x+y)^{2}
\end{array}\right|=2 x y z(x+y+z)
$$

Solution Applying $\mathrm{R}_{1} \rightarrow x \mathrm{R}_{1}, \mathrm{R}_{2} \rightarrow y \mathrm{R}_{2}, \mathrm{R} \rightarrow z \mathrm{R}$ to Δ and dividing by $x y z$, we get

$$
\Delta=\frac{1}{x y z}\left|\begin{array}{ccc}
x(y+z)^{2} & x^{2} y & x^{2} z \\
x y^{2} & y(x+z)^{2} & y^{2} z \\
x z^{2} & y z^{2} & z(x+y)^{2}
\end{array}\right|
$$

Taking common factors x, y, z from 1_{2} and , respectively, we get

$$
\Delta=\frac{x y z}{x y z}\left|\begin{array}{ccc}
(y+z)^{2} & x^{2} & x^{2} \\
y^{2} & (x+z)^{2} & y^{2} \\
z^{2} & z^{2} & (x+y)^{2}
\end{array}\right|
$$

Applying ${ }_{2} \rightarrow{ }_{2}{ }_{1}, \quad \rightarrow \quad-\quad 1$, we have

$$
\Delta=\left|\begin{array}{ccc}
(y+z)^{2} & x^{2}-(y+z)^{2} & x^{2}-(y+z)^{2} \\
y^{2} & (x+z)^{2}-y^{2} & 0 \\
z^{2} & 0 & (x+y)^{2}-z^{2}
\end{array}\right|
$$

Taking common factor $(x+y+z)$ from ${ }_{2}$ and , we have

$$
\Delta=(x+y+z)^{2}\left|\begin{array}{ccc}
(y+z)^{2} & x-(y+z) & x-(y+z) \\
y^{2} & (x+z)-y & 0 \\
z^{2} & 0 & (x+y)-z
\end{array}\right|
$$

Applying $\mathrm{R}_{1} \rightarrow \mathrm{R}_{1}-\left(\mathrm{R}_{2}+\mathrm{R}\right)$, we have

$$
\Delta=(x+y+z)^{2}\left|\begin{array}{ccc}
2 y z & -2 z & -2 y \\
y^{2} & x-y+z & 0 \\
z^{2} & 0 & x+y-
\end{array}\right|
$$

Applying ${ }_{2} \rightarrow\left({ }_{2}+\frac{1}{y} \quad 1\right)$ and $\rightarrow\left(\begin{array}{ll}\frac{1}{z} & 1\end{array}\right)$, we get

$$
\Delta=(x+y+z)^{2}\left|\begin{array}{ccc}
2 y z & 0 & 0 \\
y^{2} & x+z & \frac{y^{2}}{z} \\
z^{2} & \frac{z^{2}}{y} & x+y
\end{array}\right|
$$

inally expanding along R_{1}, we have

$$
\begin{aligned}
\Delta & =(x+y+z)^{2}(2 y z)[(x+z)(x+y)-y z]=(x+y+z)^{2}(2 y z)\left(x^{2}+x y+x z\right) \\
& =(x+y+z)(2 x y z)
\end{aligned}
$$

Example 33 se product $\left[\begin{array}{ccc}1 & -1 & 2 \\ 0 & 2 & - \\ & -2 & \end{array}\right]\left[\begin{array}{ccc}-2 & 0 & 1 \\ & 2 & - \\ & 1 & -2\end{array}\right]$ to solve the system of equations

$$
x-y+2 z=1
$$

$$
2 y-z=1
$$

$$
x-2 y+z=2
$$

Solution onsider the product $\left[\begin{array}{ccc}1 & -1 & 2 \\ 0 & 2 & - \\ & -2 & \end{array}\right]\left[\begin{array}{ccc}-2 & 0 & 1 \\ & 2 & - \\ & 1 & -2\end{array}\right]$

$$
\begin{aligned}
& =\left[\begin{array}{cllll}
-2- & +12 & 0-2+2 & 1+ & - \\
0+1 & -1 & 0+ & - & 0- \\
- & + \\
-1 & +2 & 0- & + & + \\
\hline
\end{array}\right]=\left[\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right] \\
& \text { ence } \\
& {\left[\begin{array}{ccc}
1 & -1 & 2 \\
0 & 2 & - \\
& -2 &
\end{array}\right]^{-1}=\left[\begin{array}{ccc}
-2 & 0 & 1 \\
& 2 & - \\
& 1 & -2
\end{array}\right]}
\end{aligned}
$$

Now, given system of equations can be written, in matrix form, as follows

$$
\left[\begin{array}{ccc}
1 & -1 & 2 \\
0 & 2 & - \\
& -2 &
\end{array}\right]\left[\begin{array}{l}
x \\
y \\
z
\end{array}\right]=\left[\begin{array}{l}
1 \\
1 \\
2
\end{array}\right]
$$

or

$$
\begin{aligned}
{\left[\begin{array}{l}
x \\
y \\
z
\end{array}\right] } & =\left[\begin{array}{rrr}
1 & -1 & 2 \\
0 & 2 & - \\
& -2 &
\end{array}\right]^{-1}\left[\begin{array}{l}
1 \\
1 \\
2
\end{array}\right]=\left[\begin{array}{rrr}
-2 & 0 & 1 \\
& 2 & - \\
& 1 & -2
\end{array}\right]\left[\begin{array}{l}
1 \\
1 \\
2
\end{array}\right] \\
& =\left[\begin{array}{c}
-2+0+2 \\
+2- \\
+1-
\end{array}\right]=\left[\begin{array}{l}
0 \\
x
\end{array}\right]=0, y=\text { and } z=
\end{aligned}
$$

ence
rove that

$$
\Delta=\left|\begin{array}{ccc}
a+b x & c+d x & p+q x \\
a x+b & c x+d & p x+q \\
u & v & w
\end{array}\right|=\left(1-x^{2}\right)\left|\begin{array}{ccc}
a & c & p \\
b & d & q \\
u & v & w
\end{array}\right|
$$

Solution Applying $\mathrm{R}_{1} \rightarrow \mathrm{R}_{1}-x \mathrm{R}_{2}$ to Δ, we get

$$
\begin{aligned}
\Delta & =\left|\begin{array}{ccc}
a\left(1-x^{2}\right) & c\left(1-x^{2}\right) & p\left(1-x^{2}\right) \\
a x+b & c x+d & p x+q \\
u & v & w
\end{array}\right| \\
& =\left(1-x^{2}\right)\left|\begin{array}{ccc}
a & c & p \\
a x+b & c x+d & p x+q \\
u & v & w
\end{array}\right|
\end{aligned}
$$

Applying $\mathrm{R}_{2} \rightarrow \mathrm{R}_{2}-x \mathrm{R}_{1}$, we get

$$
\Delta=\left(1-x^{2}\right)\left|\begin{array}{ccc}
a & c & p \\
b & d & q \\
u & v & w
\end{array}\right|
$$

Miscellaneous Exercises on Chapter 4

1. rove that the determinant $\left|\begin{array}{ccc}x & \sin \theta & \cos \theta \\ -\sin \theta & -x & 1 \\ \cos \theta & 1 & x\end{array}\right|$ is independent of θ.
2. Without expanding the determinant, prove that $\left|\begin{array}{lll}a & a^{2} & b c \\ b & b^{2} & c a \\ c & c^{2} & a b\end{array}\right|=\left|\begin{array}{lll}1 & a^{2} & a \\ 1 & b^{2} & b \\ 1 & c^{2} & c\end{array}\right|$.
3. Evaluate $\left|\begin{array}{ccc}\cos \alpha \cos \beta & \cos \alpha \sin \beta & -\sin \alpha \\ -\sin \beta & \cos \beta & 0 \\ \sin \alpha \cos \beta & \sin \alpha \sin \beta & \cos \alpha\end{array}\right|$.
4. If a, b and c are real numbers, and

$$
\Delta=\left|\begin{array}{lll}
b+c & c+a & a+b \\
c+a & a+b & b+c \\
a+b & b+c & c+a
\end{array}\right|=0
$$

Show that either $a+b+c=0$ or $a=b=c$.
5. Solve the equation $\left|\begin{array}{ccc}x+a & x & x \\ x & x+a & x \\ x & x & x+a\end{array}\right|=0, a \neq 0$
6. rove that $\left|\begin{array}{ccc}a^{2} & b c & a c+c^{2} \\ a^{2}+a b & b^{2} & a c \\ a b & b^{2}+b c & c^{2}\end{array}\right|=a^{2} b^{2} c^{2}$
7. If $\mathrm{A}^{-1}=\left[\begin{array}{ccc} & -1 & 1 \\ -1 & & - \\ & -2 & 2\end{array}\right]$ and $=\left[\begin{array}{ccc}1 & 2 & -2 \\ -1 & & 0 \\ 0 & -2 & 1\end{array}\right]$, find $(\mathrm{A})^{-1}$
8. et $\mathrm{A}=\left[\begin{array}{ccc}1 & -2 & 1 \\ -2 & & 1 \\ 1 & 1 & \end{array}\right]$. erify that
(i) $[\operatorname{adj} \mathrm{A}]^{-1}=\operatorname{adj}\left(\mathrm{A}^{-1}\right)$
(ii) $\left(\mathrm{A}^{-1}\right)^{-1}=\mathrm{A}$
9. Evaluate $\left|\begin{array}{ccc}x & y & x+y \\ y & x+y & x \\ x+y & x & y\end{array}\right|$
10. Evaluate $\left|\begin{array}{ccc}1 & x & y \\ 1 & x+y & y \\ 1 & x & x+y\end{array}\right|$
sing properties of determinants in Exercises 11 to 1 , prove that
11. $\left|\begin{array}{lll}\alpha & \alpha^{2} & \beta+\gamma \\ \beta & \beta^{2} & \gamma+\alpha \\ \gamma & \gamma^{2} & \alpha+\beta\end{array}\right|=(\beta-\gamma)(\gamma-\alpha)(\alpha-\beta)(\alpha+\beta+\gamma)$
12. $\left|\begin{array}{lll}x & x^{2} & 1+p x \\ y & y^{2} & 1+p y \\ z & z^{2} & 1+p z\end{array}\right|=(1+p x y z)(x-y)(y-z)(z-x)$, where p is any scalar.
13. $\left|\begin{array}{ccc}a & -a+b & -a+c \\ -b+a & b & -b+c \\ -c+\mathrm{a} & -c+b & \mathrm{c}\end{array}\right|=(a+b+c)(a b+b c+c a)$
14. $\left|\begin{array}{ccc}1 & 1+p & 1+p+q \\ 2 & +2 p & +p+2 q \\ +p & 10+p+q\end{array}\right|=1$
15. $\left|\begin{array}{lll}\sin \alpha & \cos \alpha & \cos (\alpha+\delta) \\ \sin \beta & \cos \beta & \cos (\beta+\delta) \\ \sin \gamma & \cos \gamma & \cos (\gamma+\delta)\end{array}\right|=0$
16. Solve the system of equations

$$
\frac{2}{x}+\frac{-}{y}+\frac{10}{z}=
$$

$$
\begin{aligned}
& \bar{x}-\frac{-}{y}+\frac{-}{z}=1 \\
& \frac{-}{x}+\frac{-}{y}-\frac{20}{z}=2
\end{aligned}
$$

hoose the correct answer in Exercise 1 to 1.
17. If a, b, c, are in A., then the determinant

$$
\left|\begin{array}{lll}
x+2 & x+ & x+2 a \\
x+ & x+ & x+2 b \\
x+ & x+ & x+2 c
\end{array}\right| \text { is }
$$

(A) 0
() 1
() x
(D) $2 x$
18. If x, y, z are non ero real numbers, then the inverse of matrix $A=\left[\begin{array}{ccc}x & 0 & 0 \\ 0 & y & 0 \\ 0 & 0 & z\end{array}\right]$ is
(A) $\left[\begin{array}{ccc}x^{-1} & 0 & 0 \\ 0 & y^{-1} & 0 \\ 0 & 0 & z^{-1}\end{array}\right]$
() $x y z\left[\begin{array}{ccc}x^{-1} & 0 & 0 \\ 0 & y^{-1} & 0 \\ 0 & 0 & z^{-1}\end{array}\right]$
() $\frac{1}{x y z}\left[\begin{array}{ccc}x & 0 & 0 \\ 0 & y & 0 \\ 0 & 0 & z\end{array}\right]$
(D) $\frac{1}{x y z}\left[\begin{array}{lll}1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1\end{array}\right]$
19. et $\mathrm{A}=\left[\begin{array}{ccc}1 & \sin \theta & 1 \\ -\sin \theta & 1 & \sin \theta \\ -1 & -\sin \theta & 1\end{array}\right]$, where $0 \leq \theta \leq 2 \pi$. Then
(A) $\operatorname{Det}(\mathrm{A})=0$
() $\operatorname{Det}(\mathrm{A}) \in(2, \infty)$
() $\operatorname{Det}(\mathrm{A}) \in(2, \quad)$
(D) $\operatorname{Det}(\mathrm{A}) \in[2, \quad]$

Summary

- Determinant of a matrix $\mathrm{A}=\left[a_{11}\right]_{11}$ is given by $a_{11}=a_{11}$
- Determinant of a matrix $\mathrm{A}=\left[\begin{array}{ll}a_{11} & a_{12} \\ a_{21} & a_{22}\end{array}\right]$ is given by

$$
|\mathrm{A}|=\left|\begin{array}{ll}
a_{11} & a_{12} \\
a_{21} & a_{22}
\end{array}\right|=a_{11} a_{22}-a_{12} a_{21}
$$

Determinant of a matrix $\mathrm{A}=\left[\begin{array}{lll}a_{1} & b_{1} & c_{1} \\ a_{2} & b_{2} & c_{2} \\ a & b & c\end{array}\right]$ is given by (expanding along R_{1})

$$
|\mathrm{A}|=\left|\begin{array}{lll}
a_{1} & b_{1} & c_{1} \\
a_{2} & b_{2} & c_{2} \\
a & b & c
\end{array}\right|=a_{1}\left|\begin{array}{ll}
b_{2} & c_{2} \\
b & c
\end{array}\right|-b_{1}\left|\begin{array}{ll}
a_{2} & c_{2} \\
a & c
\end{array}\right|+c_{1}\left|\begin{array}{ll}
a_{2} & b_{2} \\
a & b
\end{array}\right|
$$

For any square matrix A, the $|A|$ satisfy following properties.

- $\mathrm{A}^{\prime}=\mathrm{A}$, where $\mathrm{A}^{\prime}=$ transpose of A .
- If we interchange any two rows (or columns), then sign of determinant changes.
- If any two rows or any two columns are identical or proportional, then value of determinant is ero.
- If we multiply each element of a row or a column of a determinant by constant k, then value of determinant is multiplied by k.
- Multiplying a determinant by k means multiply elements of only one row (or one column) by k.
- If $\mathrm{A}=\left[a_{i j}\right]_{\times}$, then $|k . \mathrm{A}|=k|\mathrm{~A}|$
- If elements of a row or a column in a determinant can be expressed as sum of two or more elements, then the given determinant can be expressed as sum of two or more determinants.
- If to each element of a row or a column of a determinant the equimultiples of corresponding elements of other rows or columns are added, then value of determinant remains same.

Area of a triangle with vertices $\left(x_{1}, y_{1}\right),\left(x_{2}, y_{2}\right)$ and (x, y) is given by

$$
\Delta=\frac{1}{2}\left|\begin{array}{lll}
x_{1} & y_{1} & 1 \\
x_{2} & y_{2} & 1 \\
x & y & 1
\end{array}\right|
$$

- Minor of an element $a_{i j}$ of the determinant of matrix A is the determinant

- ofactor of $a_{i j}$ of given by $\mathrm{A}_{i j}=(-1)^{i+j} \mathrm{M}_{i j}$
- alue of determinant of a matrix A is obtained by sum of product of elements of a row (or a column) with corresponding cofactors. or example,

$$
|\mathrm{A}|=a_{11} \mathrm{~A}_{11}+a_{12} \mathrm{~A}_{12}+a_{1} \mathrm{~A}_{1}
$$

- If elements of one row (or column) are multiplied with cofactors of elements of any other row (or column), then their sum is ero. or example, $a_{11} \mathrm{~A}_{21}+a_{12}$ $\mathrm{A}_{22}+a_{1} \quad \mathrm{~A}_{2}=0$
- If $\mathrm{A}=\left[\begin{array}{lll}a_{11} & a_{12} & a_{1} \\ a_{21} & a_{22} & a_{2} \\ a_{1} & a_{2} & a\end{array}\right]$, then $\operatorname{adj} \mathrm{A}=\left[\begin{array}{lll}\mathrm{A}_{11} & \mathrm{~A}_{21} & \mathrm{~A}_{1} \\ \mathrm{~A}_{12} & \mathrm{~A}_{22} & \mathrm{~A}_{2} \\ \mathrm{~A}_{1} & \mathrm{~A}_{2} & \mathrm{~A}\end{array}\right]$, where $\mathrm{A}_{i j}$ is cofactor of $a_{i j}$
- $\mathrm{A}(\operatorname{adj} \mathrm{A})=(\operatorname{adj} \mathrm{A}) \mathrm{A}=\mathrm{A} \quad \mathrm{I}$, where A is square matrix of order n.
- A square matrix A is said to be singular or non singular according as $\mathrm{A}=0$ or $\mathrm{A} \neq 0$.
- If $A=A=I$, where is square matrix, then is called inverse of A. Also $\mathrm{A}^{-1}=$ or ${ }^{-1}=\mathrm{A}$ and hence $\left(\mathrm{A}^{-1}\right)^{-1}=\mathrm{A}$.
- A square matrix A has inverse if and only if A is non singular.
- $\mathrm{A}^{-1}=\frac{1}{|\mathrm{~A}|}(\operatorname{adj} \mathrm{A})$
- If $a_{1} x+b_{1} y+c_{1} z=d_{1}$

$$
a_{2} x+b_{2} y+c_{2} z=d_{2}
$$

$$
a x+b y+c \quad z=d
$$

then these equations can be written as A $=$, where
$\mathrm{A}=\left[\begin{array}{lll}a_{1} & b_{1} & c_{1} \\ a_{2} & b_{2} & c_{2} \\ a & b & c\end{array}\right],=\left[\begin{array}{l}x \\ y \\ z\end{array}\right]$ and $=\left[\begin{array}{l}d_{1} \\ d_{2} \\ d\end{array}\right]$

- nique solution of equation $\mathrm{A}=$ is given by $=\mathrm{A}^{-1}$, where $|\mathrm{A}| \neq 0$.
- A system of equation is consistent or inconsistent according as its solution exists or not.
- or a square matrix A in matrix equation $\mathrm{A}=$
(i) $\mathrm{A} \neq 0$, there exists unique solution
(ii) $\mathrm{A}=0$ and $(\operatorname{adj} \mathrm{A}) \neq 0$, then there exists no solution
(iii) $\mathrm{A}=0$ and $(\operatorname{adj} \mathrm{A}) \quad=0$, then system may or may not be consistent.

Historical Note

The hinese method of representing the coefficients of the unknowns of several linear equations by using rods on a calculating board naturally led to the discovery of simple method of elimination. The arrangement of rods was precisely that of the numbers in a determinant. The hinese, therefore, early developed the idea of subtracting columns and rows as in simplification of a determinant Mikami, China, pp 0,

Seki owa, the greatest of the apanese Mathematicians of seventeenth century in his work Kai Fukudai no Ho in 1 showed that he had the idea of determinants and of their expansion. ut he used this device only in eliminating a quantity from two equations and not directly in the solution of a set of simultaneous linear equations. T. ayashi, The Fakudoi and Determinants in Japanese Mathematics, in the proc. of the Tokyo Math. Soc.,
endermonde was the first to recognise determinants as independent functions. e may be called the formal founder. aplace ($\left.1 \begin{array}{l}1\end{array}\right)$, gave general method of expanding a determinant in terms of its complementary minors. In 1 agrange treated determinants of the second and third orders and used them for purpose other than the solution of equations. In 101 , auss used determinants in his theory of numbers.

The next great contributor was acques hilippe Marie inet, (112) who stated the theorem relating to the product of two matrices of m columns and n rows, which for the special case of $m=n$ reduces to the multiplication theorem.

Also on the same day, auchy (12) presented one on the same subject. e used the word determinant in its present sense. e gave the proof of multiplication theorem more satisfactory than inet s.

The greatest contributor to the theory was arl ustav acob acobi, after this the word determinant received its final acceptance.

