Chapter

( DETERMINANTS )

% All Mathematical truths are relative and conditional. — C.P. STEINMETZ <

4.1 Introduction

In the previous chapter, we have studied about matrices
and algebra of matrices. We have also learnt that a system
of algebraic equations can be expressed in the form of
matrices. This means, a system of linear equations like

ax+b y=c,

a,x+b,y=c,
b
can be represented as {al 1} {x} ={cl}. Now, this
a, byJly =)

system of equations has a unique solution or not, is
determined by the number a, b, — a, b,. (Recall that if

P.S. Laplace
(1749-1827)

b
i_
a, b,
equations has a unique solution). The number a, b, —a, b,

a .
—L or,a b, —a,b # 0, then the system of linear

: . . o . : . a b
which determines uniqueness of solution is associated with the matrix A = { ! bl }
a b
and is called the determinant of A or det A. Determinants have wide applications in
Engineering, Science, Economics, Social Science, etc.

In this chapter, we shall study determinants up to order three only with real entries.
Also, we will study various properties of determinants, minors, cofactors and applications
of determinants in finding the area of a triangle, adjoint and inverse of a square matrix,
consistency and inconsistency of system of linear equations and solution of linear
equations in two or three variables using inverse of a matrix.

4.2 Determinant

To every square matrix A = [%] of order n, we can associate a number (real or
complex) called determinant of the square matrix A, where a;= (i, /)™ element of A.
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This may be thought of as a function which associates each square matrix with a
unique number (real or complex). If M is the set of square matrices, [J is the set of
numbers (real or complex) and f M — [ is defined by f(A) = k, where A € M and
k € [0, then f(A) is called the determinant of A. It is also denoted by [A Cor det A or A.

IfA—a
e d

b a b
} , then determinant of A is written as [A [ e d ‘ =det (A)
Remarks

(i) [Cor matrix A, A [is read as determinant of A and not modulus of A.
(i) Only square matrices have determinants.

4.2.1 Determinant of a matrix of order one

et A =[a ] be the matrix of order 1, then determinant of A is defined to be equal to a

4.2.2 Determinant of a matrix of order two

a4 .
Cet A= be a matrix of order 2 [12,
dy Ay
then the determinant of A is defined as[
a11~ . a12
det(A)=AF A= ; e ; =a,a,—a,a,
21 22,
0J

Example 1 Evaluate | 2

Solution We have =2Q)-0-H)=0+0=01

-1 2

x+1
Example 2 Evaluate

x—1 X
Solution We have

X x+1
=x(x)-(x+Dx-1) =x-x-D=x*—x2+1=1

x—1

4.2.3 Determinant of a matrix of order 3 x 3

Determinant of a matrix of order three can be determined by expressing it in terms of
second order determinants. This is known as expansion of a determinant along
a row (or a column). There are six ways of expanding a determinant of order
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corresponding to each of three rows (R, R, and R ) and three columns (L, [, and
[J) giving the same value as shown below.

Consider the determinant of square matrix A = [ai]_]

@G Ay g3
1e., [Al=|ay ay; a

an A 4
Expansion along first Row (R))

Multiply first element a,, of R by (1) * D [(=1)wmofsufxesinay] and with the
second order determinant obtained by deleting the elements of first row (R ) and first
column (L)) of [A [as a, liesin R and [],

ay 4

ic., 1) la,

an 4m

Multiply 2nd element a , of R by (=1)' *2 [(=1)sm ofsufxesinei,] and the second
order determinant obtained by deleting elements of first row (R,) and 2nd column (L)
of [Alasa,liesinR, and [,

a1

ic., -1)*2a,

an 4dm

Multiply third element a, of R, by (=1)' " [(=1)wmefsufxesina, ] and the second
order determinant obtained by deleting elements of first row (R, ) and third column (L )
of (Alasa, liesinR and [,

ay Ay

ie., D |,

Now the expansion of determinant of A, that is, CA Gwritten as sum of all three
terms obtained in steps 1, 2 and Cabove is given by

ay dyn 142 a1
detA=Al=(-1)""a,, +(D a4,
an 4 an 4o
a, a
+ (_1)l+ [al[ 21 22
n 4
or A=a, (a,a —a,a )—a,(a,a —a, a,)

+a1 (a21a2_ala22
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4,4, 4, -4, 4a,4,,— 4, azla\\+a12ama2\+a1\a21 a,
-a, a,a, .. (D

We shall apply all four steps together.

Expansion along second row (R,)

a;;p app Ay
(A |@y a; ay
g a4 am

Expanding along R, we get

A = (_1)2+1azl ap 4 +(_1)2+2 ) an 9o
ap am an 4o
L g an G
an dp
:_azl(alzau_ajza1>+azz(a11au_ama1>
_azw(auajz_aualz
DA[:_azlalzau—i_azlajzal\—i_azzauau_azzamal\_az\auafz
ta,a,a,
:auazzau_auazwaﬂ_alzazla\\+a12a2\au+a1\a21afz
-a, a,a, .. (2)

Expansion along first Column (C))

AF|ay a, an

Uy expanding along [, we get

a a
141 | %2 Ao
A= a (K1)

anp a4 anp a4

a a
[+1 12 10
+a; (D
ay  dyy

-4q, (azzau_azwaz)_azl (alza]\_al\a2)+aﬂ (alz azw_alwazz)
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DA[:anazza\_anaz a, — a4, al2a\+a2l a, a2+a1a12a2
— a4, 4,4y,
—4,a,4, -4, 4 a2_al2a2la\+al2a2 a1+a1 a, a,
—a, a, a, .. (D

Clearly, values of [A [in (1), (2) and (0) are equal. It is left as an exercise to the
reader to verify that the values of ‘A [by expanding along R , [], and [] are equal to the
value of TA [obtained in (1), (2) or (D).

Cence, expanding a determinant along any row or column gives same value.
Remarks

(i) [Coreasier calculations, we shall expand the determinant along that row or column
which contains maximum number of [eros.

(i) While expanding, instead of multiplying by (—~1)"*/, we can multiply by +1 or—1
according as (i +j) is even or odd.

2 2 11
@) CetA= { o 0} and (= {2 O} . Then, it is easy to verify that A =2[1. Also

Al=F0-[U=—0Uand I[=0-2=-2.

Ubserve that, [A[= [(—2) =2?[J[or [A [+ 2", Jwhere n = 2 is the order of
square matrices A and [,

In general, if A = k[Jwhere A and [ are square matrices of order », then (A= &”
[ [lwhere n=1, 2, [J

1 2 C

Example 3 Evaluate the determinant A= [—-1 [ 0],
o1 0

Solution Note that in the third column, two entries are [éro. So expanding along third
column (J ), we get

-1 O 1 2 1 2
01 01 -1
= 0(-1-12)-0+0 =—[2

A= [ -0 +0

0 sin o —Ccos o

Example 4 Evaluate A = | —sin o 0 sin 3

cosa —sinf 0
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Solution Expanding along R, we get
0 sin
—sinf3 0

=0 —sin a (0 —sin B cos a) —cos a (sin a sin B —0)
=sinasin B cosa—cosasinasinf =0

A=10

cos o 0

. . 0 x 0 2
Example 5 [ind values of x for which = .
x 1 01
0 x 0o 2
Solution We have =
x 1 01
1.€. O-x*=0-0
1.€. x2=0
Uence x=1232
|[EXERCISE 4.1 |
Evaluate the determinants in Exercises 1 and 2.
2 C
-0 -1

cos® —sin O X —x+1 x-1

(ii)

sin® cos 0O x+1 x+1

12
3. If A= 0 2},thenshowthat 2A =0MA O

4. If A= , then show that [TJA [=2[1[A [J

(e
oS = O
MmN

5. Evaluate the determinants
-1 =2 o -0 t
@ (0 0 -1 @ |1 1 2
O -0 o 2 0o 1
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0 1 2 2 -1 2
i) [-1 0 -C Gv) |0 2 -1
=2 [0 o -0 o
1 1 =2
6. IfA=]2 1 -0, find (A
0o o -C
7. [ind values of x, if
12 0 (2x C 12 0 x L
@ 01 - O x (w0 O D= 2x L
8. If ¥ 2 = - , then x is equal to
10 x 10
(A) O () 0o () — O (D) 0

4.3 Properties of Determinants

1001

In the previous section, we have learnt how to expand the determinants. In this section,
we will study some properties of determinants which simplifies its evaluation by obtaining
maximum number of [éros in a row or a column. These properties are true for
determinants of any order. JJowever, we shall restrict ourselves upto determinants of

order Tlonly.

Property 1 The value of the determinant remains unchanged if its rows and columns
are interchanged.

a  a, ap

Verification (et TA= |b, b, b

G G

Expanding along first row, we get

b, b.

G ¢

b

G

=a, (b,c —b c)—a,(b,c —b c)+a (b c,—b, c)
Oy interchanging the rows and columns of A, we get the determinant

>
Il

a,

(%)

a. b ¢,
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Expanding A, along first column, we get

A=a (b,c —c,b)~a,(byc —b c)+a (b c,—b,c)

Oence A= Al

Remark It follows from above property that if A is a square matrix, then

det (A) = det (A’), where A’ = transpose of A.

columns, we will symbolically write [ <> R,

Cet us verify the above property by example.

If R, = ith row and [ = ith column, then for interchange of row and

2 -0 C
Example 6 Cerify Croperty 1 forA= |1 0 [
1 O —C
Solution Expanding the determinant along first row, we have
A2 Il D o 0 N o0
0 -0 1 -0 1 0

=20-20)+0(=[2-0D+(0-0)
=—[0- 11+ 10=-20]
Oy interchanging rows and columns, we get

2 01
A= -0 L[| (Expanding along first column)
o o -C
_ > 0 O 0 01 N 01
- Tlo D 0 -0 0

2(0-20)+ 0(=2-0D+(0-0)
=—[0- 1T+ 1[0=-2[]

Clearly A=A,

Cence, [Toperty 1 is verified.

Property 2 If any two rows (or columns) of a determinant are interchanged, then sign

of determinant changes.
a  a, q
Verification (et A= |b, b, b,
G G ¢



DETERMINANTS 111

Expanding along first row, we get
A=a (byc —b c)—a,(bc —b c)+a (b c,~b,c)
Interchanging first and third rows, the new determinant obtained is given by

q & ¢
Al =|b b b
a  a, ap

Expanding along third row, we get
A=a (c,b —b,c)—a,(c,b —c b)+a (byc, —b c)
=—l[a, (b,c —b ¢c)—a,(byc —b c)+a (b c,—b, c)l
Llearly A =—A
Similarly, we can verify the result by interchanging any two columns.

We can denote the interchange of rows by R, <> Rj and interchange of
columns by [, <> 0.

2 -0 L
Example 7 Cerify [toperty 2 for A= [[1 0[],
10 -
2 -0 C
Solution A= | 0 [ | =—20(See Example [)
1 0 —r

Interchanging rows R, and R i.e., R, <> R, we have

2 -0 L
A = 1 0 -C
0o o0 C

Expanding the determinant A, along first row, we have

[_
0 H~ D

=220-0)+ [([1+ [2) + (0 - [0)
=0+ 11-100=20]

1 -0
+
o o

1 L

=2
A 00
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Clearly A =-A
Cence, [Toperty 2 is verified.

Property 3 If any two rows (or columns) of a determinant are identical (all corresponding
elements are same), then value of determinant is [eéro.

Proof If we interchange the identical rows (or columns) of the determinant A, then A
does not change. CJowever, by [Toperty 2, it follows that A has changed its sign

Therefore A=-A
or A=0
Cet us verify the above property by an example.

02 L
Example 8 Evaluate A= |2 2 [
02 L

Solution Expanding along first row, we get
A=1T1(0-D=2((0-D+ (-0
=0-2(-D+0(2)=0-011=0
Uere R, and R are identical.

Property 4 If each element of a row (or a column) of a determinant is multiplied by a
constant £, then its value gets multiplied by £.

a b ¢
Verification (et A= |4, b, ¢
a, b c

and A, be the determinant obtained by multiplying the elements of the first row by £.
Then

ka, kb kg
A=|a b ¢

a, b, ¢

Expanding along first row, we get
A =ka(b,c —b c)-kb (a,c —c,a)+kc (a, b —b,a)
=kla (byc —b c)—b (a,c —c,a)+c (a,b —Db, a)]
=k A
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ka, kb kg a b ¢
Clence a b o l|=k|la b q
a, b ¢ a, b, c

Remarks

(i) Oy this property, we can take out any common factor from any one row or any
one column of a given determinant.

(i) If corresponding elements of any two rows (or columns) of a determinant are
proportional (in the same ratio), then its value is [ero. Cor example

a, a, an

A=|b b b | =0(ows R, and R, are proportional)

ka, ka, ka-

102 100 [T

Example 9 Evaluate | 1 [ [
10 0 C

102 10 O |(1D OO @D 10 O
Solution Note that | 1 O dOl=| 1 O O =01 O =0
10 0O 0O 10 g g 10 O

(Osing “roperties Cand )

Property 5 If some or all elements of a row or column of a determinant are expressed
as sum of two (or more) terms, then the determinant can be expressed as sum of two
(or more) determinants.

a+A a,+Ar, a +A\: a, a, a- AAy, A
Cor example, b b, b |=|b b b |+|bh b, b
a &) cn G & G & C

a+A a,+r, a- +A\
Verification [.[1.S.=| b b, b,

¢ %) Ch



110 MATCEMATILCS

Expanding the determinants along the first row, we get
A=(a, +L)(b,c —c,b)—(a,+L) (D c —b c)
+(@ +r)(b c,~b,c)
=a, (byc —c,b)—-a,(bc —b c)+a (bc,—b, c)
A (b,c —c,b)=A, (byc —b c)+ A (b c,—b,c)
(by rearranging terms)
a a, ap Mohy A
=|b b, b |+|b b b | =RILS,
S B G &6 C

Similarly, we may verify [roperty [lfor other rows or columns.

a b c
Example 10 Show that [a +2x b+2y c+2z|=0
x % z
a b ¢ a b c a b ¢

Solution We have |a+2x b+2y c+2z| =|a b c|+|2x 2y 2z

x v z Xy z X y z
(by Croperty )
=0+0=0 (Osing Croperty TJand Croperty [)

Property 6 If, to each element of any row or column of a determinant, the equimultiples
of corresponding elements of other row (or column) are added, then value of determinant
remains the same, i.e., the value of determinant remain same if we apply the operation
R, —>Ri+kRj0r 0= [i+k[j.

Verification
a a a a +ke ay,+kc, a +kc
et A=|b b, blandA =| b b, b, |,
¢ & ¢ q cy c

where A, is obtained by the operation R, — R, + AR .

Cere, we have multiplied the elements of the third row (R ) by a constant £ and
added them to the corresponding elements of the first row (R,).

Symbolically, we write this operationas R, - R, + kR,



DETERMINANTS 110

Now, again
a a, a ke ke, kc
A=|b b b |+|b b b | (Using [roperty [)
6 ¢ ¢ q ¢ c
=A+0 (since R and R are proportional)
Lence A=A
Remarks

(i) If A, is the determinant obtained by applying R, — kR or [l — kLl to the
determinant A, then A = kKA.

(i) If more than one operation like R, — R, + AR is done in one step, care should be
taken to see that a row that is affected in one operation should not be used in
another operation. A similar remark applies to column operations.

a a+b a+b+c
Example 11 [rove that [2a [a+2b [a+[b+2c|=a .
ta La+[b 10a+ [b+[c

Solution Applying operations R, — R, — 2R, and R — R — [R, to the given
determinant A, we have

a a+b a+b+c
A= 1|0 a 2a +b
0 L[a Ca+ b

Now applying R — R — [R,, we get

a+b a+b+c

IS

A= 1|0 a 2a +b

0 0 a
Expanding along [ , we obtain
a 2a+b
A=a +0+0
0 a

=a(@-0)=a(@)=a
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Example 12 Without expanding, prove that

X+y y+z z+Xx

A=| z X y =0

1 1 1

Solution Applying R, = R, + R, to A, we get
X+y+z x+y+z x+y+z
A= z X y

1 1 1

Since the elements of R, and R are proportional, A= 0.
Example 13 Evaluate

1 a bc
A=1|1 b ca
1 ¢ ab
Solution Applying R, - R, -R and R - R - R, we get
1 a be
A=10 b—a c(a-b)
0 c—a b(a—c)

Taking factors (b — a) and (¢ — @) common from R, and R , respectively, we get

1 a bc
A=b—-a)(c—a)|0 1T -c
0 1 -b

=(b—-a) (c—a)[(- b+ )] (Expanding along first column)
=(a-b)(b-c)(c—a)

b+c a a
Example 14 [rovethat | b c+a b |=labc
c c a+b
b+c a a

Solution (et A=| b c+a b
c c a+b
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Applying R, — R —R, —R to A, we get
0 —2¢ -2b
A=1|b c+a b
c ¢ a+b
Expanding along R, we obtain

b c+a

b
c+a +(-2b)
c ¢

‘b
~(2¢)
C

c a+b +b‘
=2clab+b*—bc)—-2b(bc—c*—ac)
=2abc+2ch—2bc*—2 bc+2bc?+2abc
= Oabc

x x l+x

Example 15 If x, y, z are different and A=|y y* 1+ |=0, then

z 20 l+z
show that 1 +xyz=0
Solution We have

x x2 1+x"

2 1+y[

A=y
2
z

y
22 1+z

2 .0
x x 1 [x x° x

=|y ¥ 1+y ¥ »y| (Using Croperty )

2 2 0
zo 1 |z z¢ =z

1 x x° 1 x x°
= (=Dl y Y|+xzll ¥y Y (Using [ <> [, and then [, <> [1)
1 z Z? 1 z Z?
1 x x?

=l y y2 (1+xyz2)

2
1 z z
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2
1 X X

= (1 + xyz) 0 y—x y —x* (Using R, >R-R, and R —»R -R))
0 z—x z°-x°

Taking out common factor (y —x) from R, and (z — x) from R , we get

1 x X
A= (1+xyz2) (p—x) (z—x)|0 1 y+x
0 1 z+x

= (1 +xyz) (v —x) (z—x) (z —y) (on expanding along [)

Since A =0 and x, y, z are all different, i.e., x—y#0,y—z# 0, z—x # 0, we get
1+xyz=0

Example 16 Show that

l+a 1 1

1 1+b6 1 =abc(l+l+l+1J=abc+bc+ca+ab
a b ¢

1 1 1l+c¢

Solution Taking out factors a,b,c common from R, R, and R , we get

_+1 l l
a a a
1 1
—abcl — —+1 —
CL.0.S. b b b
r 1 1,
c c c

Applying R, - R, + R, + R, we have

1 I 1 1 I 1 1
I+—+—4+— I+—+—+— 1+—+—+—
a b c a b c a b c
1 1 1
= abc — —+1 -
A b b b
1 1 L
C C C




DETERMINANTS 110

1 1 1
= abc[lJrl+l+ljl l+1 1
a b c)ib b b
1 1,
c ¢ ¢
Now applying [, — [, — [, [J — [ -], we get
1 0 0
A:abc[l+l+l+lj 1 1 0
a b c)| b
Lo
c

1

abc[1+l +Z+%j[l(l ~0)]

a

1 1 1
abc[1+—+—+—j =abc + bc + ca + ab = R.[.S.
a b ¢

Alternately try by applying [, — [}, =[], and [J — [] — [, then apply
0,0 -al,

EXERCISE 4.2

Osing the property of determinants and without expanding in Exercises 1 to [] prove
that[]

X a x+a a-b b-c c—a

1. |y b y+b|=0 2. |b—c c—a a-bl=0
z ¢ z+c c—a a-b b-c
2 00O 1 bc a(b+c)

3. |0 0O If=0 4. |l ca b(c+a) =0
O O 1 ab c(a+b)
b+c q+r y+z a p x

5 lc+a r+p z+x|=21b q y
a+b p+q x+y c r z




120 MATCEMATILCS

2

0 a -b -a” ab ac
6. |Fa 0 —c|=0 7 |ba -b* bc|=la’b*c’
b ¢ 0 ca ¢ -

Oy using properties of determinants, in Exercises [to 1] show that™]

1 a &
8. ()|l b b =(a-b)(b-c)(c-a)

2
1 ¢ ¢

1 1
i) |« b c=(a—b)(b—c)(c—a)(a+b+c)

a b c
2
X x° yz
9. |y ¥ X=x—-y»)(y-2)(z—x) (xy + yz + zx)
22 xy

x+0 2x 2x
10. () | 2x  x+0 2x |=(Ce+0)(0-x)
2x 2x  x+

yt+k y y
Gi) | ¥ vtk v |=K(Dy+k)
y y ytk

a-b-c 2a 2a
1. G| 20 b-c-a 2b |=(a+b+c)
2c 2c c—a->b
xX+y+2z X y
(i) z y+z4+2x y =2(x+y+z)[

z X z+x+2y
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1 x x°
2
12. |¥* 1 xz(l—x[)
2
X X 1
1+a*-b* 2ab —2b
[}
13. 2ab  1-d*+b> 2a =(1+a2+b2)
2b —2a 1-a*-b*
2
a-+1 ab ac
14. ab  b*+1  be |=1+ad® +b*+C2
ca ch A2+l

[Choose the correct answer in Exercises 1Jand 17]
15. [Cet A be a square matrix of order (1] [] then (kA [is equal to

(A) kTA D () KA D (O) k"TA D (D) TkAD
16. Which of the following is correct

(A) Determinant is a square matrix.

() Determinant is a number associated to a matrix.

(0) Determinant is a number associated to a square matrix.

(D) None of these

4.4 Area of a Triangle
In earlier classes, we have studied that the area of a triangle whose vertices are

. . 1
(x,, ¥), (x,, »,) and (x, y ), is given by the expression 5 [x,(,») +x, v->)+

x (¥,~»,)]. Now this expression can be written in the form of a determinant as

. x y 1
=—|x 1

A RE Y, .. (1)
x y 1

Remarks
(i) Since area is a positive quantity, we always take the absolute value of the
determinant in (1).
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(i) If area is given, use both positive and negative values of the determinant for
calculation.

(ii)) The area of the triangle formed by three collinear points is [éro.
Example 17 Cind the area of the triangle whose vertices are (7] ), (— [J2) and (] 1).

Solution The area of triangle is given by

0o o1
Azl -2 1
11
=%[E(z—l)—[(—[—[)ﬂ(—[—lo)]
1 (1
-~ (*+2-10=—
2( i ) 2

Example 18 Cind the equation of the line joining A(1, [) and [7(0, 0) using determinants
and find & if D(%, 0) is a point such that area of triangle ACID is [8q units.

Solution et C(x, y) be any point on A[l. Then, area of triangle A JTis [ero (WhyD). So

10 0 1
—|1 O 1=0
2
x y 1
o 1
This gives E(y —[x)=0ory= (X,

which is the equation of required line A .
Also, since the area of the triangle A[ID is [Jsq. units, we have
1 01
1 0 0 I|=010

2
k0 1

This gives, % =+0,1e,k=7F 2.

|EXERCISE 4.3 |
1. [ind area of the triangle with vertices at the point given in each of the following [
® (1,0),(50), (LD @) (2,0, (1,1),(10,0

(i) (=2,-0), (4 2), (-1,-0
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2. Show that points
A(a b+c), 0, c+a),(c a+ b)are collinear.
3. [ind values of £ if area of triangle is [Jsq. units and vertices are
®) (£ 0),(50),(0,2) (i) (=2,0), (0,0, (0,k)
4. (1) [indequation ofline joining (1, 2) and ([} [) using determinants.
(i) Cind equation of line joining (] 1) and ([} [) using determinants.
5. Ifarea of triangle is [TIsq units with vertices (2, — ), (03 D) and (k, D). Then £ is
(A) 12 () =2 () 12,2 (D) 12,2

4.5 Minors and Cofactors

In this section, we will learn to write the expansion of a determinant in compact form
using minors and cofactors.

Definition 1 Minor of an element «a_of a determinant is the determinant obtained by
deleting its ith row and jth column in which element a, lies. Minor of an element g, is
denoted by M, . ‘ ‘

Remark Minor of an element of a determinant of order n(n > 2) is a determinant of
order n — 1.

[
[ T e T

1
Example 19 Cind the minor of element [Jin the determinant A = |[]
U

Solution Since [lies in the second row and third column, its minor M, is given by

1 2
0 [l = [~ 1= — [(obtained by deleting R, and [] in A).

2

Definition 2 Cofactor of an element a,, denoted by A is defined by
A, =(-1)"/M,, where M, is minor of a,.

Example 20 [find minors and cofactors of all the elements of the determinant

Solution Minor of the element a, is Mi/.
Uere a,, = 1. So M,, = Minor of a = []
M, = Minor of the element a,, = [

M,, = Minor of the element a,, = -2
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M_, = Minor of the element a,, = 1
Now, cofactor of a, is Ai/.. So

Ay =DM, = (2=
A= (D2 M= (1) () =—1
Ay =1 My, = () (=2
A =)y M, =) '(1)=1

Example 21 [ind minors and cofactors of the elements a ,, a,, in the determinant

11°
a, aqp  aq

A= |4y Ay a4y
an dp 4o

Solution [y definition of minors and cofactors, we have

. a4y 4y
Minor of a,, =M, = a, a, =a,a —a, a,
- = (1)1 = _
Uofactor of @, = A, =(-D"" M, =a,a —a,a,
a a
. 12 %o
Minor of a,, =M, = =a,a —a a
a a [ 1 2
n 47

Jofactor of @, = A, = (-1)*' M, =(-1) (a,a —a, a,)=-a,a +a a,
Remark Expanding the determinant A, in Example 21, along R, we have
ay Ay

ay a4 ay

A=ED"ay |, [F D, + (D" a, |a, a,

an  aq

=a, A, +a,A,+a A , where A,-,- is cofactor of a,
= sum of product of elements of R, with their corresponding cofactors

Similarly, A can be calculated by other five ways of expansion thatis alongR ,R ,
1, L, and [,

Cence A = sum of the product of elements of any row (or column) with their
corresponding cofactors.

If elements of a row (or column) are multiplied with cofactors of any
other row (or column), then their sum is Cero. Cor example,
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A= all A21 v a12 A22 v alquu

a9 1n %o a, a
=q (_1)1+1 +a (_1)1+u 11 12
11 a, a, a, 10

al[ 142 a
a +a, (G0
[T

a, a,
@y @ @
=|dn @y & =0(since R, and R, are identical)

an 4 a4

Similarly, we can try for other rows and columns.

Example 22 Cind minors and cofactors of the elements of the determinant

2 =0 L
© 0 [land verify thata,, A, +a,A, +a, A =0
1 0 -
0 L
Solution We have M, = O _r =0-20=-20UA , = (-1)""(=20) = -20
0 C
M,=|, _|=-2-0=-00 A =" D=
0 o
M, =|, |[=0-0=r00 A, = (1) (C0)= [0
0 C
M, =| _|=21-20=-(T A, =P (D=0
2 C
M,=|| _|=-10-0=-10  A,=(1P2E10) =10
2 =L
M, =|, |=10+0=1D A, = (1P (10D =10
-0 C
M,=|y [=-12-0=-120 A =(1)"(12)=-12
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2
M, = 0 [1=[—[0=—22[ A,=(-1)"(22)=22
2 —r
and M = 70 =0+ 10=10111 A =) AD=10
Now a,=2,a,=-a =1A =-12,A =22,A =10
So a, A, ta,A,+a A

=2 (12)+ (=) (22) + (1) =—20— T+ 0 =0

|EXERCISE 4.4
Write Minors and Clofactors of the elements of following determinants (]
Lot h Gy |© ¢
0 O b d
0 0 1 0 C
2. (i) 1 0 @ |0 O -1
0 1 01 2
0ot
3. UOsing Dofactors of elements of second row, evaluate A= |2 0 1],
1 2 €
I x yz
4. [Using Cofactors of elements of third column, evaluate A= |1 ¥ zx|,
1 z xy

a4 4di;
5. IfA=|a,; a,, a, and Ai/_ is Lofactors of a;, then value of A is given by
an dp 4ag
(A) all A 1+ alZA 2 + al A [ ([) all A11+ a12 A21 + al A 1
([) a21 A11+ a22 A12 + a2 Al (D) all A11+ a21 A21 + a lA 1
4.6 Adjoint and Inverse of a Matrix

In the previous chapter, we have studied inverse of a matrix. In this section, we shall
discuss the condition for existence of inverse of a matrix.

To find inverse of a matrix A, i.e., A~ we shall first define adjoint of a matrix.
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4.6.1 Adjoint of a matrix

Definition 3 The adjoint of a square matrix A =[a ], , is defined as the transpose of
the matrix [Ai/_]n » Where Ai/_ is the cofactor of the element a,. Adjoint of the matrix A
is denoted by adj A. ‘ ‘

a, dp 4
Let A=|ay, ay ay

an A4 4

Ay Ap Ay Ay Ay Ay
Then adjA=Transposeof| A,, A, A, |=|A, A, A,

AEI A[Z AE[ AlE AZ[ A[[

) 2 L
Example 23 Llind adj A for A = L J
Solution We have A, = A =-1,A =-1A =2
(A, Azl} { O —[}
Cence adji A= =
4 A, Ay -1 2

Remark Cor a square matrix of order 2, given by

a4y
A=

L 921 A

The adj A canalso be obtained by interchanging @ , and a,, and by changing signs

ofa,anda,,ie.,
| S

Change sign Interchange

21°

We state the following theorem without proof.

Theorem 1 If A be any given square matrix of order #, then

Aadj A) = (adj A) A = |A

L

where I is the identity matrix of order »
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Verification
a, ap aq Ay Ay Ay
Cet A=|4dy 4y 4y |, thenadj A= Ap Ay Ap
ag dp a4 A Ay A

Since sum of product of elements of a row (or a column) with corresponding
cofactors is equal to [A [and otherwise [ero, we have

Al 0 o0 100
AfadiA)=|0 [A] 0 |=[a] |0 1 0]=[A]T
0 0 |A 00 1

Similarly, we can show (adj A) A= |A| I

Cence A (adj A) = (adj A) A= |A| 1

Definition 4 A square matrix A is said to be singular if |A| =0.

1 2

0 J 1s Lero

Cor example, the determinant of matrix A = {

Cence A is a singular matrix.

Definition 5 A square matrix A is said to be non'Singular if |A| =0

=0-0=-2=%0.

A 1 2 ™ |A| 1 2
Cet =gl en |A|= 0
Cence A is a nonsingular matrix

We state the following theorems without proof.

Theorem 2 If A and [J are nonsingular matrices of the same order, then AT and [TA
are also nonsingular matrices of the same order.

Theorem 3 The determinant of the product of matrices is equal to product of their
ATl =|A] |0

respective determinants, that is, , where A and [J are square matrices of

the same order
Al 0 0
Remark We know that (adj A) A= |A| I=| 0 Al 0
0 0 |A
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Writing determinants of matrices on both sides, we have

Al 0 o0
(adj A)A] = |0 [A] 0
0 0 A
1 00
ie. (adj A)TAT= |A|]0 1 0 (Why0)
00 1
ie. (adj A)TAT= (A T(1)
ie. (adj A) = AL

In general, if A is a square matrix of order 7, then ladj (A) = AL

Theorem 4 A square matrix A is invertible if and only if A is nonsingular matrix.
Proof Cet A be invertible matrix of order # and I be the identity matrix of order x.
Then, there exists a square matrix [J of order n such that ATl= A =1

Now AU=1 So|AL| =1 or |A]|]]=1 (sincell|=],

Atf=[A][th
This gives |A| # 0. Oence A is nonsingular.

Conversely, let A be nonsingular. Then |A| =0

Now A (adj A) = (adj A) A = |A|1 (Theorem 1)
A Laa"A = Laa"A A=I
of N TN
Al=0A=1, wh = Laa"A
or 0= —,were[—mDJ
Th A is invertibl dA*‘—Lad'A
us 1s 1nvertible an =l 7

1

U
Example 24 IfA= |1 [
1 [

, then verify that A adj A = TA 1. Also find A™".

[ I A |

Solution We have |A| =1(10-D-(-D+(0-D=1=0
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[0 -0 —C
Therefore adj A = -1 1 O
-1 0 1
1 o O o -0 -0
Now A(adiA)y=|1 O -1 1 0
10 oj-1 o0 1
(=0 =% [+0 —[H0+[
=|-0-0 -[H[+0 -[HO0+C
_[—[—[ [+ +0 —-[HO+TC
(1 0 0 0 0
=10 1 0|=(1) |0 1 0|=]|A.I
10 0 1 0 0 1
0 -0 —C 0 -0 —C
1
Also A*l:l_ade :T_l 1 o|l=|-1 1 0
|A| -1 0 1 -1 0 1

2 0 1 2
Example 25 If A = L _ [} and [1= {_1 . }, then verify that (A[)' = ['A L
2 o r -2 -1 O
Solution We have A[] = =
I - -1 [ 0 -10

Since, |A[| =—11=0, (AD)"! exists and is given by

Ay = —agiary=—L 71T =LFD E}
(A0 A T 0 ) ulooa

Curther,

A| =—11#0and | [| =1=0. Therefore, A~ and [ both exist and are given by

L[-0 -0 L_[02
,]:__ s —
A 1 -1 2 11
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02700 =0 10 -0
Therefore D"A"=—i =_i =i 100
1111 1| -1 2 11 -0 -1 11 O 1

Oence (AD)"! =" A™!

(2 ¢
1 2

where [ is 2 (12 identity matrix and [ is 2 [J2 [éro matrix. [sing this equation, find A,

2 Of2 o [o 12
Solution We have A2=A.A= L { }:{ }

Example 26 Show that the matrix A = } satisfies the equation A>— [A + = [,

21 2 0O C
Cence  AT-[AsI= F UHD 12H1 0} {0 O}D
0 0 0o 0 1 0 0
Now AP—TA+1=10]
Therefore AA-TA=-1
or A AAYH)-TAA'=-TA" ([ost multiplying by A~ because A 0)
or AAAH)-O=-A"
or Al-TI=-A"
00| |2 O 2 —C
or AT =-A= {o [}{1 2} ) {—1 2}
. Al_{z —[}
ence 11 o
|EXERCISE 4.5
[ind adjoint of each of the matrices in Exercises 1 and 2.
1 -1 2]
1. F 2} 2. 02 0L
o -2 0 1)
Cerify A (adj A) = (adj A) A = A in Exercises [Jand [J
1 -1 2]
3. {_ZD _DJ 4. |50 2
110 ]
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[ind the inverse of each of the matrices (if it exists) given in Exercises Tto 11.

11.

12.

13.

14.

15.

16.

17.

18.

_ _ 1 2
- -1

2 2 6. 5 7.10 2 L
|0 O |- 00 ¢
1 0 0 (2 1 ¢ 1 -1 2
0 O 9 0 -1 0 10. |0 2 —T
|02 -1 -0 2 1 |0 -2 C
i 0 0

0 cosa sina.
i sinot. —coso

0 o 0o
[et A= ) L and [0 = ool Cerify that (AD)™" = O07' A™.

01
}, show that A2 — CA + (1 = 0. Oence find A".

IfA= L 5

0 2
Cor the matrix A = { 1 J , find the numbers a and b such that A2 + gA + bl = [,

1 1 1
[or the matrix A=|1 2 -—[
2 -1 [

Show that AL [A?+ [A+ 11 I= [I. Uence, find A'.
2 -1 1
IfA=|-1 2 -1
1 -1 2
Cerify that AY— [A? + [A— [1=[] and hence find A™!
et A be a nonsingular square matrix of order (111 Then [adj A [is equal to
(A) AL () AR () A0 (D) A
If A is an invertible matrix of order 2, then det (A™) is equal to
1
() et (A)

(A) det (A) () 1 (D) 0
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4.7 Applications of Determinants and Matrices

In this section, we shall discuss application of determinants and matrices for solving the
system of linear equations in two or three variables and for checking the consistency of
the system of linear equations.

Consistent system A system of equations is said to be consistent if its solution (one
or more) exists.

Inconsistent system A system of equations is said to be inconsistent if its solution
does not exist.

‘@ Note |In this chapter, we restrict ourselves to the system of linear equations
having unique solutions only.

4.7.1 Solution of system of linear equations using inverse of a matrix
Cet us express the system of linear equations as matrix equations and solve them using
inverse of the coefficient matrix.

Consider the system of equations
ax+bytcz=d
a,x+by+tc z=d,
axtby+cz=d
a b ¢ x d,
Cet A=|a, b, ¢ |,=|y|and=|d,
a. b, c- z d-

Then, the system of equations can be written as, Al = [J, i.e.,
a b ¢l |x d,
a, b, | |y|=14d,

a. b c ||z d-

If A is a nonsingular matrix, then its inverse exists. Now

All=1]
or AT (AD)=A1O (premultiplying by A™)
or (A'A) O0=A"10 (by associative property)
or I10=A"0
or O=A"'T

This matrix equation provides unique solution for the given system of equations as
inverse of a matrix is unique. This method of solving system of equations is known as
Matrix Method.
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If A is a singular matrix, then (A = 0.
In this case, we calculate (adj A) .

If (adj A) 0 # [, (O being [ero matrix), then solution does not exist and the
system of equations is called inconsistent.

If (adj A) 0= [J, then system may be either consistent or inconsistent according
as the system have either infinitely many solutions or no solution.

Example 27 Solve the system of equations

2x+ y=1
(x+2y=101

Solution The system of equations can be written in the form Al = [J, where

ot o]

Now, A| =-11#0, Oence, A is nonsingular matrix and so has a unique solution.
L 112 -C
Note that EETI
112 -0O)|1
Therefore O=All0=- —
-0 2|0
. X 1| =L g
e TR N !
[lence x=0y=-1

Example 28 Solve the following system of equations by matrix method.
x—2y+[z=01

2x+y—z=1
x— 3 +2z=0
Solution The system of equations can be written in the form Al = [, where
0o =2 0 X L
A=12 1 -1|,0=|y|and O=|1
0o -0 2 z L

We see that
Al =0Q-D+2(0+ D+ 0(0-0D)=-1020
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Cence, A is nonsingular and so its inverse exists. Now

A =1, A, =0 A =-10
A21=—E, A22=—[, A2:1
A =1, A, =10 A =
. -1 -0 -1
Therefore Al = 10 -0 -0 C
-10 1 C
-1 -0 -1||C
So [=A"[=—i -0 -0 0|1
10
-10 1 Ol|C
. -10 1
ie =—-—|-[}=|2
10
z - L
[lence x=1l,y=2andz=1]

Example 29 The sum of three numbers is [] If we multiply third number by TJand add
second number to it, we get 11. [y adding first and third numbers, we get double of the
second number. Represent it algebraically and find the numbers using matrix method.

Solution et first, second and third numbers be denoted by x, y and z, respectively.
Then, according to given conditions, we have
x+y+z="010
y+lz=11
x+tz=2y orx—2y+z=0
This system can be written as A [J = [, where

1 1 1 X C
A= |0 1 L[|, 0=|y|and1=]11
1 2 1 z 0

Lere |A| =1(1+1)—(0— D+ (0-1) = U= 0. Now we find adj A

A =1(1+0)=0] A,=—(0-0)=T] A =-1
A, =—(1+2)=-[] A, =0, A =—(-2-1)="0
A =(0-1)=2, A,=—(0-0)=-7] A =(1-0=1
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[Jence

Thus

Since

or

Thus

1. x+2y=2
2x+ [y=1

4. x+y+z=1
2x+ [y+2z=2
ax+ay +2az =[]

Solve system of linear equations, using matrix method, in Exercises Jto 1]

EXERCISE 4.6 |
Examine the consistency of the system of equations in Exercises 1 to [
2. 2x—y=1[] 3. x+Dy=0
x+y=0 2x+ =0
5 [ky—-2z=2 6. k—y+z=101
2y —z=-1 2x+ y+z=2
x—-p=0 -2+ [z=-1
7. x+2y=0 8. 2x—y=-2 9. [x—y=1[I
x+ =0 x+y=0 x—-p=0
10. Tx+2y=10 C2xt+y+z=1 12. x—y+z=1
L
[(x+2y=1[] x—2y—z=5 2x+y—-1[2=0
F-z=0 x+ty+z=2
Lx—y+2z=0

13. 2x+ y+lz=1]
x=2y+tz=-1]
(x—y—-2z=1[]

0o -0 2
ade: O 0 —L

| o o 2
1= — ; =—| 0 0 -C
-1 01
O=A"[0
o B 2 ¢
O=—| 0 0 —0f11
0
-1 0 1]o
[2—[TH0] C
S S I U (RS N O U 6 N
z] | -wwo  Co|2c

x=1,y=2,z=01

O+ - Z=—0
2x—y+1z=12
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2 -0 ¢
15. If A=|U 2 —L[]|, find A" Osing A solve the system of equations
1 1 =2

2xx—[y+z=11
x+2y—[z= -0
xX+y—-2z=—1[]
16. The cost of [Tkg onion, (kg wheat and 2 kg rice is Rs [0. The cost of 2 kg onion,
[Okg wheat and (kg rice is Rs [0. The cost of (kg onion 2 kg wheat and [Tkg
rice is Rs [0. [ind cost of each item per kg by matrix method.

Miscellaneous Examples
Example 30 If a, b, ¢ are positive and unequal, show that value of the determinant
a b c

A=|b c¢ a]isnegative.

c a b
Solution Applying [l — [ + [, + [ to the given determinant, we get

at+b+c b ¢ 1 b ¢
A=la+b+c ¢ al=@+b+c)|l ¢ a
at+tb+c a b 1 a b

1 b c
=(@+b+c)|0 c—b a-c|(ApplyingR,—>R-R,andR -»R —R))
0 a-b b-c
=(a+b+c)[(c—=b)(b—c)—(a—c)(a—b)] (Expandingalong [])
=(a+b+c)(—a*—b—c2+ab+ bc+ ca)

-1
B (a+b+c)Ra+ 202+ 2¢% —2ab — 2bc — 2ca)

_71 (a+b+c)f(a=-by+(b-c)P+(c—ay]

which is negative (since a + b + ¢ [10 and (a — b)> + (b —c)*+ (c —a)*[10)
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Example 31 If @, b, ¢, are in A.T] find value of
2y+ 1 [y+0 [y+a

y+0 y+0 y+b
(y+0 [y+0 10y+c

Solution Applying R, =R, +R — 2R, to the given determinant, we obtain

0 0 0

Ly D Dv+b g (Since 2 =a + ¢)
(y+0 [y+0 10y+c

Example 32 Show that

(r+ z)2 Xy zx
A=| xy (X+Z)2 Yz |=2xyz(x+y+z)
Xz vz (x+ y)2

Solution Applying R, - xR ,R, = yR ,R —zR to A and dividing by xyz, we get

x(y+ z)2 X'y X'z
1 , 2 )
A=—1] x) y(x+ z) y'z
xyz )
xz* vz’ Z(x+ y)h

Taking common factors x, y, z from [J [ and [, respectively, we get

(y+ z)2 x x

A= 0z (x+z) ¥’
xyz ,
z z (x+y)“

Applying [, — [ - [, [l — [~ L[], we have

y+z2 x* - y+z2 x* - y+z2
(y+2)
A=l ¥ ()c+z)2—y2 0

z2 0 (x + y)2 ~z?
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Taking common factor (x +y + z) from [, and [ , we have

(y+z) x—(y+z) x—(y+z)
A=(x+y+z)? b ()C+Z)—y 0
z’ 0 (x+y)-z

Applying R, - R, — (R, + R ), we have

2yz =2z -2y
A=(x+y+z? |y x—-ytz 0
z’ 0 x+y-"[

1 1
Applying [, - (C, + — ) and [ — ([ +—[J , we get
y z

2yz 0 0
A=(x+y+z? |y x+z 2
z

, Z
2 —  x+y

Y

Uinally expanding along R, we have

100

A=@x+y+2? Q2 [(x+2) (x+y)—yz] = (x +y +2)* (22) ( + xp + x2)

=(x+y+2z) 2xz)
1 -1 2 -2 0

—

Example 33 Oseproduct |0 2 =0 | [T 2 =[] tosolve the system of equations

0o =2 0 o1 -2

x—y+2z=1
2y—lz=1
x—2y+ =2

1 -1 2 -2 0 1
Solution Consider the product |0 2 -0 | 0T 2 [
0 o=2 0 I B)
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[—2— T+12 0-2+42 1+40-T 1
= O+10-10 0+0-0 O0-0[+LC| =10
|-C-10+20 0-C+ 0 H+O-C 0

S = O
—_ o O

1 -1 2 -2 0 1
[Cence 0o 2 -0 =0 2 -L
|0 -2 O 0o 1 =2

Now, given system of equations can be written, in matrix form, as follows

1 -1 217[x] 1
0 2 -0O|yl=11
| -2 0O | Z ] |12
x] 1 -1 271 [=2 o0 1
or =0 2 -0 {1 =0 2 -
lz| |02 0O |2 O -2
—2+0+2 0
—| +2-0|= 1
| C+1-0 C
[Jence x=0,y=0andz= "1

Example 34 [rove that

a+bx c+dx p+gx a ¢ p
A= lax+b cex+d px+q |=(1-x)|b d ¢
u v w u v w
Solution Applying R, - R — xR, to A, we get

a(l-x*) c(1-x*) pd-x?)

A=| ax+b ex+d px+gq

u v w

a c P
(I-xHlax+b cx+d px+q

u v w
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Applying R, - R, —x R, we get

a ¢ p
A=(1-x)b d ¢q
u v w

Miscellaneous Exercises on Chapter 4

X sin® cos0

1. [rove that the determinant|—sin® —x 1 | is independent of 0.
cosO 1 X

a a bc

o, S8,
SRS TR

1
2. Without expanding the determinant, prove that|b  b* ca| = |1
¢ ¢ ab 1

cosa cos cosa sinfl —sina

3. Evaluate | —sinf3 cosf 0
sina cosf  sina sin3  cosa
4. Ifa, b and c are real numbers, and

b+c c+a a+b
A=|cta a+b b+c|=0,
a+b b+c c+a
Show that eithera+b+c=0ora=b=c.
x+a x X

5. Solvetheequation| x x4+a x |[=0,a=0

x X x+a
a bc  ac+c’
6. [tove that |a’+ab b’ ac | = e
ab  b'+bc
011 1 2 =2
7. IfA'=|-10 O -Oland O={-1 O 0 |, find(AL)

b -2 2 0 2 1
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8. [etA=|-2 [

9. Evaluate |
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I 21

1 1 €
(i) [adj Al = adj (A7)
X y  x+y
x+y x

xX+y X y

1 x y

10. Evaluate 1 x+y y

I x x+ty

1|, Cerify that

i) (A=A

Osing properties of determinants in Exercises 11 to 1] prove that[]

11.

12.

13.

14.

16.

oa o PB+y
vy v a+p
1+ px
1+ py
z z l+pz
C —a+b —-atc
-b+a B
—-c+a —ctb [c
I 1+p I+ p+gq
2 [W2p [Hlp+2¢q| =1
L +0p 10+[p+Lgqg

Solve the system of equations

2 [0 10
—+—+— =0
X y oz

15.

Y+ =B-7) (y-a)(a-B) (a+p+7v)

=(1+ pxyz) (x —y) (y — z) (z — x), where p is any scalar.

—b+c| = {a+b+c)(ab+ bc + ca)

sina  cosa cos(oc + 8)
sinf3 cosf cos(B+8) =0
siny cosy cos(y +8)
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o o 20
—+——— =2
X y z

[Thoose the correct answer in Exercise 1[]to 1[]

17. Ifa, b, c, are in A.[] then the determinant

x+2 x+0 x+2a
x+0 x+0 x+2b is
x+0 x+0 x+2c

(A) O (M1 () x (D) 2x
x 0 0
18. If x,y, z are nonlero real numbers, then the inverse of matrix A={0 y 0|is
0 0 z
x' 0 0 x' 0 0
A |0 y' o0 () xpz| 0 y' 0
o o0 <z 0o 0 z!
. x 0 0 | 1 00
() —10 » 0 (D) —|0 1 0
z
Y50 0 2 Y50 0 1
1 sin6 1
19. [etA=|—sind 1 sin® |, where 0 <(0(< 2r. Then
-1 —sin® 1
(A) Det(A)=0 (1) Det(A) € (2, »)

(0) Det(A) e (2,D (D) Det(A) € [2, O
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Summary

¢ Determinant of a matrix A= [q, ], , is given by [, = a,

a, a
. . 11 12 |« .

¢ Determinant of a matrix A ={ } is given by

@y Uy
|A| %
= =a, a,—a,da
azl a22 1 722 12 721

a b ¢

*

Determinant of amatrix A=|a, b, c, |isgivenby (expandingalongR )

ag by cq
a b ¢ b
c a, c a
h G 2 O 2 O
|A|=a2 b, ¢|=aq - b e
by ¢y an Cq ag b

ag by cy

For any square matrix A, the |[A| satisfy following properties.

¢
¢

[A'= [A[Jwhere A’ = transpose of A.
If we interchange any two rows (or columns), then sign of determinant
changes.

If any two rows or any two columns are identical or proportional, then value
of determinant is [ero.

If we multiply each element of a row or a column of a determinant by constant
k, then value of determinant is multiplied by £.

Multiplying a determinant by k£ means multiply elements of only one row
(or one column) by £.

If A=[a;],then|k.A|=k |A]

If elements of a row or a column in a determinant can be expressed as sum
of two or more elements, then the given determinant can be expressed as
sum of two or more determinants.

Ifto each element of a row or a column of a determinant the equimultiples of
corresponding elements of other rows or columns are added, then value of
determinant remains same.
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Area of a triangle with vertices (x,, y,), (x,, y,) and (x , y ) is given by
1 x »n 1
A=—|x 1
5|7 b)
X5 o 1
Minor of an element a, of the determinant of matrix A is the determinant
oltancd (LIdLItni™ row and J™ column and denoted by M,.
Cofactor of a, of given by A, = (= 1) M,

[alue of determinant of a matrix A is obtained by sum of product of elements
of a row (or a column) with corresponding cofactors. Cor example,

|Al=a, A, +a,A, +a A

10 1cr

If elements of one row (or column) are multiplied with cofactors of elements
of any other row (or column), then their sum is Lero. Lor example, a, A, +a,,

Azz +a1quu: 0

a, a4 4q Ay Ay Ay
If A=|ay, ay a, |, then adf A=|A, A, A,|,where A, is
a4 a, aq A Agn A

cofactor of a,
A (adj A) = (adj A) A = TAT1, where A is square matrix of order n.

A square matrix A is said to be singular or nonfSingular according as
[A = 0 or [A [#[0.

If ACl= A =, where [Jis square matrix, then [ 1is called inverse of A.
Also A" =[or [I'=Aand hence (A")'=A
A square matrix A has inverse if and only if A is non[Singular.

A =i(adj A)

A

¢ If ax+bytcz=d,

a,x+b,yt+c,z=d,
axtbytcz=d,
then these equations can be written as A [J = [J, where
g b X d,
A=la, b, c,|,0=|y|and [=|d,

a- b c- z d-
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€ [Inique solution of equation A= [1is given by [1=A"! [], where |A| #0.

€ A system of equation is consistent or inconsistent according as its solution
exists or not.

@ [or asquare matrix A in matrix equation Al =[]
(i) A [#0, there exists unique solution
(i) TA0and (adj A) 0 # 0, then there exists no solution
(ii}) (A= 0and (adj A) [0 =0, then system may or may not be consistent.

Historical Note

The Thinese method of representing the coefficients of the unknowns of
several linear equations by using rods on a calculating board naturally led to the
discovery of simple method of elimination. The arrangement of rods was precisely
that of the numbers in a determinant. The [hinese, therefore, early developed the
idea of subtracting columns and rows as in simplification of a determinant
Mikami, China, pp [0, [T]

Seki Cowa, the greatest of the [apanese Mathematicians of seventeenth
century in his work 'Kai Fukudai no Holin 1[TTIshowed that he had the idea of
determinants and of their expansion. [ut he used this device only in eliminating a
quantity from two equations and not directly in the solution of a set of simultaneous
linear equations. [T. Oayashi, [The Fakudoi and Determinants in Japanese
Mathematics,in the proc. of the Tokyo Math. Soc., [1

Cendermonde was the first to recognise determinants as independent functions.
CJe may be called the formal founder. Caplace (1[T2), gave general method of
expanding a determinant in terms of its complementary minors. In 1TT](agrange
treated determinants of the second and third orders and used them for purpose
other than the solution of equations. In 1C01, Causs used determinants in his
theory of numbers.

The next great contributor was facques [Thilippe "TMarie Cinet, (112) who
stated the theorem relating to the product of two matrices of m[columns and n[]
rows, which for the special case of m = n reduces to the multiplication theorem.

Also on the same day, Cauchy (1712) presented one on the same subject. (e
used the word [determinant[in its present sense. [Je gave the proof of multiplication
theorem more satisfactory than Cinetls.

The greatest contributor to the theory was Carl Tustav [acob [acobi, after
this the word determinant received its final acceptance.



