Chapter 5

CONTINUITY AND
DIFFERENTIABILITY

&% The whole of science is nothing more than a refinement
of everyday thinking.” — ALBERT EINSTEIN +»

5.1 Introduction

This chapter is essentially a continuation of our study of [=2
differentiation of functions in Class XI. We had learnt to
differentiate certain functions like polynomial functions and
trigonometric functions. In this chapter, we introduce the
very important concepts of continuity, differentiability and
relations between them. We will also learn differentiation
of inverse trigonometric functions. Further, we introduce a
new class of functions called exponential and logarithmic
functions. These functions lead to powerful techniques of
differentiation. We illustrate certain geometrically obvious
conditions through differential calculus. In the process, we
will learn some fundamental theorems in this area.

5
T ety A e S M N

L Sir Issac Newton
5.2 Continuity (1642-1727)

We start the section with two informal examples to get a feel of continuity. Consider
the function

Fay BT <0 v
P2t x>0 *
This function is of course defined at every y=f(x)

point of the real line. Graph of this function is 0,2)
given in the Fig 5.1. One can deduce from the
graph that the value of the function at nearby (0,1)

points on x-axis remain close to each other
except at x = 0. At the points near and to the [4)
left of 0, i.e., at points like —0.1,—0.01,—0.001, V'
the value of the function is 1. At the points near

and to the right of 0, i.e., at points like 0.1, 0.01, Fig 5.1
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0.001, the value of the function is 2. sing the language of left and right hand limits, we
may say that the left (respectively right) hand limit of fat 0 is 1 (respectively 2). In
particular the left and right hand limits do not coincide. We also observe that the value
of the function at x =0 concides with the left hand limit. ote that when we try to draw
the graph, we cannot draw it in one stroke, i.e., without lifting pen from the plane of the
paper, we can not draw the graph of this function. In fact, we need to lift the pen when
we come to 0 from left. This is one instance of function being not continuous at x = 0.
ow, consider the function defined as

Lif x#0

f(x)={2,ifx=0

This function is also defined at every point. eft and the right hand limits at x=0
are both equal to 1. ut the value of the
function at x = 0 equals 2 which does not
coincide with the common value of the left
and right hand limits. Again, we note that we
cannot draw the graph of the function without
lifting the pen. This is yet another instance of
a function being not continuous at x = 0. T

10
.

Fig 5.2

-~
Y

aively, we may say that a function is
continuous at a fixed point if we can draw the
graph of the function around that point without
lifting the pen from the plane of the paper.

Mathematically, it may be phrased precisely as follows

Definition 1 uppose f'is a real function on a subset of the real numbers and let ¢ be
a point in the domain of . Then f'is continuous at ¢ if

lim /()= £ (¢)

More elaborately, if the left hand limit, right hand limit and the value of the function
at x = ¢ exist and equal to each other, then f7is said to be continuous at x = c. ecall that
if the right hand and left hand limits at x = ¢ coincide, then we say that the common
value is the limit of the function at x = c. ence we may also rephrase the definition of
continuity as follows a function is continuous at x = c if the function is defined at
x = ¢ and if the value of the function at x = c equals the limit of the function at
x = c. If fis not continuous at ¢, we say fis discontinuous at ¢ and c is called a point
of discontinuity of f.
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Example 1 Check the continuity of the function fgiven by f(x) =2x at x=1.

Solution First note that the function is defined at the given point x = 1 and its value is 5.
Then find the limit of the function at x = 1. Clearly

lim f(x)= linr%(Zx +) 2(0) 6 =
x—1 x—>

Thus ELT} f(x)=5=f1

ence, fis continuous atx = 1.

Example 2 xamine whether the function f'given by f(x) = x? is continuous at x = 0.

Solution First note that the function is defined at the given point x =0 and its value is 0.
Then find the limit of the function at x = 0. Clearly

lim £ (x) = lir%xz =0>=0
Thus )lci_lil)f(x) =0=71(0)
ence, f'is continuous at x = 0.

Example 3 iscuss the continuity of the function fgiven by f{x)= x at x=0.

Solution y definition

—x,if x<0
SO =1x, ifx20
Clearly the function is defined at 0 and f(0) = 0. eft hand limit of fat 0 is

lim f(x)= linol (—x)=0

x—0" x—>0"
imilarly, the right hand limit of fat0Ois

lim f(x)=limx=0

x—>0" x—>0"

Thus, the left hand limit, right hand limit and the value of the function coincide at
x=0.ence, fiscontinuous atx=0.

Example 4 how that the function fgiven by

x +, if x#

f("):{l, if x=0

1s not continuous at x = 0.
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Solution The function is defined at x = 0 and its value at x = 0 is 1. When x # 0, the
function is given by a polynomial. ence,

liIr(l)f(X)zlir%(x +) H + =

ince the limitof fatx =0 does not coincide with f(0), the function is not continuous
at x = 0. It may be noted that x = 0 is the only point of discontinuity for this function.

Example 5 Check the points where the constant function f(x) = & is continuous.
Solution The function is defined at all real numbers and by definition, its value at any
real number equals k. et ¢ be any real number. Then

lim f(x) = limk =k

ince f(c)=k= lim f(x) for any real number ¢, the function f'is continuous at

X—>C

every real number.

Example 6 rove that the identity function on real numbers given by f(x) = x is
continuous at every real number.

Solution The function is clearly defined at every point and f(c) = ¢ for every real
number c. Also,

lim f(x) = limx=c
xX—c X—>cC
Thus, lim f(x) = ¢ = f(c) and hence the function is continuous at every real number.
X—>C

aving defined continuity of a function at a given point, now we make a natural
extension of this definition to discuss continuity of a function.

Definition 2 A real function f'is said to be continuous if it is continuous at every point
in the domain of f.

This definition requires a bit of elaboration. uppose f'is a function defined on a
closed interval a, b, then for fto be continuous, it needs to be continuous at every
pointin a, b including the end points « and . Continuity of fat a means

fim £9=(0
and continuity of / at » means

lim 7 (x) =)

Observe that lim f(x) and lin}} f(x)do not make sense. As a consequence
x—a xX—>

of this definition, if f is defined only at one point, it is continuous there, i.e., if the
domain of f is a singleton, fis a continuous function.
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Example 7 Is the function defined by f(x) = x, a continuous function
Solution We may rewrite f as

—x,if x<0
fx) = x, if x>0

y xample , we know that ~ f'is continuous at x = 0.
et ¢ be areal number such that ¢ 0. Then f(c)=-c. Also

lim f(x) = lim (-x)=—c  (Why)
ince )1(1_>mc f(x)=f(c), f is continuous at all negative real numbers.
ow, let ¢ be a real number such that ¢ 0. Then f(c)=c. Also
m ) = mx=c (Why)
ince }gri f(x)=f(c), fis continuous at all positive real numbers. ence, f

is continuous at all points.
Example 8 iscuss the continuity of the function fgivenby f(x)=x x?>—1.

Solution Clearly fis defined at every real number ¢ and its valueatcisc  ¢*—1. We
also know that

lim £ (x) = )lcigg(x%x ~D=c +c -1
Thus )1(1_>mc f(x) = f(c),and hence fis continuous at every real number. This means
f1is a continuous function.
Example 9 iscuss the continuity of the function fdefined by f(x) = i, x#0.
Solution Fix any non ero real number ¢, we have

lim f(x) = lim + =1
X—>C X—>C x C

1
Also, since for ¢ #0, f(c) = ~owe have lim f(x) = f(c) and hence, fis continuous

at every point in the domain of f. Thus fis a continuous function.
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We take this opportunity to explain the concept of infinity. This we do by analysing

1
the function f(x) = - near x = 0. To carry out this analysis we follow the usual trick of

finding the value of the function at real numbers close to 0. ssentially we are trying to
find the right hand limit of fat 0. We tabulate this in the following (Table 5.1).

TableS5.1

x | 1] 002|o01F10 | 001=102| 0.001=10 | 10"
fol 1] ... s 10 100=10 > | 1000=10 | 107

We observe that as x gets closer to 0 from the right, the value of f(x) shoots up
higher. This may be rephrased as the value of f(x) may be made larger than any given
number by choosing a positive real number very close to 0. In symbols, we write

lim f(x)=+o
x—0"

(to be read as the right hand limit of f(x) at O is plus infinity). We wish to emphasise
that oofis OT a real number and hence the right hand limit of fat 0 does not exist (as
a real number).

imilarly, the left hand limit of f at 0 may be found. The following table is self
explanatory.

Table 5.2
x | -1 -0. -02] -10" - 107 - 10 - 10"
fx) | -1 —.. -5 -10 - 102 - 10 — 107
From the Table 5.2, we deduce that the !Y

value of f(x) may be made smaller than any ;
given number by choosing a negative real 3y (3.3
number very close to 0. In symbols, 244 (1/2.2)
we write L)

lim f(x)=—o0
x—0"

(to be read as the left hand limit of f(x)at0is
minus infinity). Again, we wish to emphasise
that — oo is OT a real number and hence the

left hand limit of fat 0 does not exist (as a real (-1 /3.3)\"3
number). The graph of the reciprocal function ¥
given in Fig 5. is a geometric representation Y’

of the above mentioned facts. Fig 5.3
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Example 10 iscuss the continuity of the function fdefined by

x+2,if x<1

x—=2,if x>1

f(X)={

Solution The function fis defined at all points of the real line.
Case 1 If ¢ 1,then f(c)=c 2. Therefore, lim f(x)=1lim(x+2)=c+2
x—c x—c

Thus, fis continuous at all real numbers less than 1.

Case 2 If ¢ 1, then f(c) =c— 2. Therefore, X
1,3)
lim f(x)=lim (x —2)=c—-2=f(c)
X—>C X—>C g /
Thus, fis continuous at all points x 1. Z ’ 7z
Case 3 If ¢ = 1, then the left hand limit of f at - / i/
x=1is 3/2 a [O 1C/ 103
1irnf(x)=lirn(x+2)=1+2= P 1,-1)
x—1" x—1 T ?
The right hand limit of fatx =1 is +
lim f(x)=1lim(x-2)=1-2=-1 ¥
x—l* x—l* Y
ince the left and right hand limits of fatx=1 Fig 5.4

do not coincide, f is not continuous at x= 1. ence
x =1 is the only point of discontinuity of /. The graph of the function is given in Fig 5..

Example 11 Find all the points of discontinuity of the function fdefined by
x+2,if x<1

fx)y=19 0, ifx=1

x—=2,if x>1 4

Solution As in the previous example we find that P

is continuous at all real numbers x # 1. The left L/ >

hand limit of fatx = 1 is | F
lim f(x)=lim(x+2)=1+2= /
x—1" x—>1

The right hand limit of fatx =1 is
lim f(x)=lim(x-2)=1-2=-1
x—1 x—1"

ince, the left and right hand limits of fatx=1
do not coincide, fis not continuous at x = 1. ence v

x =1 is the only point of discontinuity of f. The )
graph of the function is given in the Fig 5.5. Fig 5.5

X
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Example 12 iscuss the continuity of the function defined by

x+2,if x<0
S = —x+2,if x>0
Solution Observe that the function is defined at all real numbers except at 0. omain
of definition of this function is Y
v ,where = xeR x Oand
,=xeR x0
Case 1 If c € |, then }Ciilgf(x):}cﬂ (x 2) - \

=c¢ 2= f(c)and hence fis continuous in

1

x’:s'/: '\f:-x

373 4 |91

3
Case 2 If c € , then lim f(x)=lim (—x 2) T \

=—c 2= f(c)and hence fis continuous in ..
ince fis continuous at all points in the domain of £,
we deduce that f is continuous. Graph of this
function is given in the Fig 5.. ote that to graph
this function we need to lift the pen from the plane
of the paper, but we need to do that only for those points where the function is not
defined.

Example 13 iscuss the continuity of the function fgiven by

¥
Y’

Fig 5.6

x, if x>0 3
= (_‘ !4)

SO, i x <0 .
Solution Clearly the function is defined at
every real number. Graph of the function is
givenin Fig 5.. y inspection, it seems prudent i
to partition the domain of definition of finto X< —
three disoint subsets of the real line.

et ,= xeR x 0, ,=0and

= xeR x 0

(-1.1)

Case 1 Atany pointin , we have f(x) = x* and it is easy to see that it is continuous
there (see xample 2).

Case 2 Atany pointin , we have f(x) = x and it is easy to see that it is continuous
there (see xample ).
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Case 3 ow we analyse the function at x = 0. The value of the function at 0 is £(0) = 0.
The left hand limit of fat 0 is

lim f(x)=lim x* =0 =0
x—0" x—0"
The right hand limit of fat 0 is
lim f(x)=limx=0
x—0" x—0"
Thus lim f(x) =0= f(0) and hence f is continuous at 0. This means that f is
x—0

continuous at every point in its domain and hence, fis a continuous function.
Example 14 how that every polynomial function is continuous.
Solution ecall that a function p is a polynomial function if it is defined by
px)=a, a x .. a x"forsome natural number n,a # 0 and a, € R. Clearly this
function is defined for every real number. For a fixed real number ¢, we have

lim p(x) = p(c)

X—>C

y definition, p is continuous at c. ince ¢ is any real number, p is continuous at

every real number and hence p is a continuous function.

Example 15 Find all the points of discontinuity of the greatest integer function defined
by f(x) = x, where x denotes the greatest integer less than or equal to x.

Solution First observe that f'is defined for all real numbers. Graph of the function is
given in Fig 5.. From the graph it looks like that f'is discontinuous at every integral
point. elow we explore, if this is true.

Y

A

0,3) 1 s
©0,2) T *=—0

0.1)+ e—o0
(3.0 (1,0) (2,0) (4.0)

e _:1‘0 = — .
C40) 20 QLU GO &Y

1 e
€

s
>
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et ¢ be areal number which is not equal to any integer. It is evident from the
graph that for all real numbers close to ¢ the value of the function is equal to ci.e.,

lim f(x)=lim x = ¢ .Alsof(c)= candhence the function is continuous at all real
X—C X—>C

numbers not equal to integers.

et ¢ be an integer. Then we can find a sufficiently small real number
r Osuchthat c—r= c—1 whereas ¢ r= c.

This, in terms of limits mean that
lim f(x)=c—1, lim f(x) = ¢
x—c” xX—c
ince these limits cannot be equal to each other for any ¢, the function is
discontinuous at every integral point.
5.2.1 Algebra of continuous functions

In the previous class, after having understood the concept of limits, we learnt some
algebra of limits. Analogously, now we will study some algebra of continuous functions.
ince continuity of a function at a point is entirely dictated by the limit of the function at
that point, it is reasonable to expect results analogous to the case of limits.

Theorem 1 uppose fand g be two real functions continuous at a real number c.
Then

(1) f gis continuous at x = c.
(2) f—gis continuous at x = c.

() f.gis continuous at x = c.

0 (iJ is continuous at x = ¢, (provided g (c) # 0).

g
Proof We are investigating continuity of (f g) at x = ¢. Clearly it is defined at
x = c. We have

im(f +g)(x) = lim (/) x 42 x (by definition of f  g)

= liil} S(x)+ liil}g (x)  (by the theorem on limits)

=f(c) g(o) (as fand g are continuous)
= 2 () (by definition of f g)
ence, f g is continuous atx = c.

roofs for the remaining parts are similar and left as an exercise to the reader.
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Remarks

(i) Asaspecial case of () above, if f7is a constant function, i.e., f(x) = A for some
real number A, then the function (AZl g) defined by (ALl g) (x) = ALl g(x) is also
continuous. In particular if A =— 1, the continuity of fimplies continuity of — f.

(i) As a special case of () above, if f'is the constant function f(x) = A, then the

function > defined by &(x) = A is also continuous wherever g(x) = 0. In
g g g(x)

particular, the continuity of g implies continuity of ra

The above theorem can be exploited to generate many continuous functions. They
also aid in deciding if certain functions are continuous or not. The following examples
illustrate this

Example 16 rove that every rational function is continuous.

Solution ecall that every rational function fis given by

£(0) =%), 4(x) %0

q(x
where p and ¢ are polynomial functions. The domain of fis all real numbers except
points at which g is ero. ince polynomial functions are continuous (xample 1), fis

continuous by () of Theorem 1.
Example 17 iscuss the continuity of sine function.

Solution To see this we use the following facts

limsinx=0
x—0

We have not proved it, but is intuitively clear from the graph of sin x near 0.

ow, observe that f(x) = sin x is defined for every real number. et ¢ be a real
number. ut x=c¢ A If x > ¢ we know that # — 0. Therefore

lim f(x) = limsinx
X—>C X—>C

= }1123 sin(c+ h)

— limsin «os /4 +cos «sin A
h—0

— limsin «cos Aintcos sinc A
h—0 h—0

=sinc 0=sin c¢=f{(c)

Thus lim f(x) =f(c) and hence fis a continuous function.



15 MATMATIC

Remark A similar proof may be given for the continuity of cosine function.

Example 18 rove that the function defined by f(x) = tan x is a continuous function.

Solution The function f(x) = tan x = R . This is defined for all real numbers such

0S X

TE .
that cos x # 0, i.e., x # 2n 1) 5 We have ust proved that both sine and cosine
functions are continuous. Thus tan x being a quotient of two continuous functions is
continuous wherever it is defined.

An interesting fact is the behaviour of continuous functions with respect to
composition of functions. ecall that if fand g are two real functions, then

(fog) (x)=f(g()
is defined whenever the range of g is a subset of domain of /. The following theorem
(stated without proof) captures the continuity of composite functions.

Theorem 2 uppose fand g are real valued functions such that (f'o g) is defined at c.
If g is continuous at ¢ and if fis continuous at g (c), then (f'o g) is continuous at c.

The following examples illustrate this theorem.
Example 19 how that the function defined by f(x)=sin (x?) is a continuous function.

Solution Observe that the function is defined for every real number. The function
f may be thought of as a composition g o / of the two functions g and 4, where
g(x)=sinxand % (x)=x% ince both g and % are continuous functions, by Theorem 2,
it can be deduced that fis a continuous function.

Example 20 how that the function fdefined by
J@=1-x x,
where x is any real number, is a continuous function.
Solution efine gbyg(x)=1—-x x and h by h(x)= x for all real x. Then
(hog) (x)="h(g(x)
=h(l-x x)
=1l-x x= f(x)

In xample , we have seen that 4 is a continuous function. ence g being a sum
of a polynomial function and the modulus function is continuous. ut then f being a
composite of two continuous functions is continuous.
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| EXERCISE 5.1|

1. rove that the function f(x)=5x— iscontinuousat x=0,atx=— andat x=5.

2. xamine the continuity of the function f(x)=2x>—1atx=.
3. xamine the following functions for continuity.

@ f@)=x-5 () f()=——,x#5
x* =25
(c) flx)= s x#35 0 (d) f)= x-5
x+5
4. rove that the function f(x) = x" is continuous at x = n, where 7 is a positive

integer.
5. s the function f'defined by
x, if x<1

f(x)z{s, i x 1

continuous atx =0 At x=1At x=2
Find all points of discontinuity of f, where fis defined by

. ,xif+ x<—
6. f(x) 2x4+, if x=2 7. ) e i <
. X)= . x)=9 2x, if— <x
2x—, if 2 .
2xtf x>
x . X
—, ifx#0 —, 1f x<0
8. f(x)=1 x 9. f(x)=1 x
0, ifx=0 -1, ifx>0
) x+1, ifx>1 x —, if x2
X)= =
10. 2 +Lif x<1 1. S 4l ifx>2
10 .
x° =1, ifx<1
12. f(x): 5 .
X7, if x>1

13. Isthe function defined by

x+5, if x<1

x=5, if x>1

f(x)={

a continuous function
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iscuss the continuity of the function f, where f'is defined by

,1if0 <xd 2x, if x< 0
14. f(x)=4, ifl <x< 15. f(x)=40, if0<x<1
5, if 1&x< i Ix
=2, if x<-1
16. f(x)=92x, if —1<x<1
2, if x>1

17. Find the relationship between a and b so that the function f defined by

@) ax+1, if x<
X)=

bx+, if x>
1S continuous at x = .

18. For what value of A is the function defined by
M(x* —2x), if x<0
Ix+ if Ox >

continuous at x = 0 What about continuity at x =1

f(X)={

19. how that the function defined by g(x)=x— xis discontinuous at all integral
points. ere  x denotes the greatest integer less than or equal to x.

20. Is the function defined by f(x) = x*> —sin x 5 continuous at x=Tm
21. iscuss the continuity of the following functions
(a) f(x)=sinx cos x (b) f(x)=sinx—cosx
(c) f(x)=sinx.cosx
22. iscuss the continuity of the cosine, cosecant, secant and cotangent functions.
23. Find all points of discontinuity of £, where

sinx
@)=y x

x+1, ifx>0

if x<0

24. etermine if fdefined by

> . 1,
x“sin—, if x#0
S(x)= x
0, ifx=0

1s a continuous function
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25. xamine the continuity of f, where f'is defined by
sinx—cosx, if x#0

f00={4’ if x=0

Find the values of & so that the function fis continuous at the indicated point in xercises
2t02.

kcosx . b
5 , 1fx;t5 -
26. f(o)=4""" atx=—
. b 2
, if x=—
2
k*, if x<2
27. f()= . at x=2
, if x>2
kx+1, if x<m
28. f(x)= . atx=n
cosx, ifx>mn
) kx+1, if x<5
x)= =
29. Sy if S atx=15
30. Find the values of @ and 4 such that the function defined by
5, if x<2
f(x)=<3ax+b, if 2<x<10
21, if x>10

is a continuous function.
31. how that the function defined by f(x) = cos (x?) is a continuous function.
32. how that the function defined by f(x) =cos x is a continuous function.
33. xaminethatsin x isa continuous function.
34. Find all the points of discontinuity of f'defined by f(x)= x — x 1.

5.3. Differentiability

ecall the following facts from previous class. We had defined the derivative of a real
function as follows

uppose f1is areal function and c is a point in its domain. The derivative of fat c is
defined by

p et = f(©

h—0 h
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d
provided this limit exists. erivative of fat ¢ is denoted by f'(¢) or a(f (x)) .. The

function defined by

f'(x)=1lim

h—0

Sx+h)—f(x)
h

wherever the limit exists is defined to be the derivative of f. The derivative of f'is

d . dy .
denoted by f7(x) or a(f(x)) or if y = f(x) by pa y'. The process of finding
derivative of a function is called differentiation. We also use the phrase differentiate
f(x) with respect to x to mean find f'(x).

The following rules were established as a part of algebra of derivatives
M w v=u Vv

(2) (uv)'=u'v uv' (eibnit or product rule)

!/
1, _ ’ .
0 [Ej _wy zuv , wherever v # 0 (uotient rule).

v v
The following table gives a list of derivatives of certain standard functions
Table 5.3
f(x) X" sin x CoS X tan x
f'(x) nx"! cos X —sinx | sec? x

Whenever we defined derivative, we had put a caution provided the limit exists.
ow the natural question is what if itdoesn  t The question is quite pertinent and so is

its answer. If lirnM does not exist, we say that fis not differentiable at c.
h—0

In other words, we say that a function fis differentiable at a point ¢ in its domain if both

g LEHN=D 41 iy S D=1

are finite and equal. A function is said
h—0" h h—0"

to be differentiable in an interval a, b ifit is differentiable at every point of a, b. As
in case of continuity, at the end points a and b, we take the right hand limit and left hand
limit, which are nothing but left hand derivative and right hand derivative of the function
at a and b respectively. imilarly, a function is said to be differentiable in an interval
(a, b) if it is differentiable at every point of (a, b).
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Theorem 3 Ifa function fis differentiable at a point ¢, then it is also continuous at that
point.

Proofince fis differentiable at ¢, we have

lim f()(f) _f(C) — f’(C)

x—c X—c
ut for x # ¢, we have

10— f(e) = f(X)—f(C)'(x_c)
x—c
Therefore liil}(j)x «fle = 1iin {w.(x—c)}
or im(NmeE) £ c zlim{—f(x)_f(c)]lim(x—c)
X—c X—>c x—c xX—c x—c
=f"(c).0=0

or lim £ (x) =£(c)

ence f'is continuous at x = c.
Corollary 1 very differentiable function is continuous.

We remark that the converse of the above statement is not true. Indeed we have
seen that the function defined by f(x) = x is a continuous function. Consider the left
hand limit

SO+ -fO) b
h—0" h h
The right hand limit
fim LOFD=SO) 1 _,
h—0" h h

SO+~ f(0)
h

ince the above left and right hand limits at 0 are not equal, },123

does not exist and hence f is not differentiable at 0. Thus f'is not a differentiable
function.
5.3.1 Derivatives of composite functions

To study derivative of composite functions, we start with an illustrative example. ay,
we want to find the derivative of f, where

J)=2x 1)
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One way is to expand (2x 1) using binomial theorem and find the derivative as
a polynomial function as illustrated below.

d d
af(x) - [@2x+1) ]

=i(122+ Iy + x+
dx

=2x*2 x
=@2x1°?
ow, observe that fx)=(hog) (x
where g(x)=2x land A(x)=x.ut ¢=g(x)=2x 1. Then f(x)=~h(f)=¢.Thus
df dh dt

- _ 2 — 2 - 2 - =
= @xD=QxDi2=F.2

The advantage with such observation is that it simplifies the calculation in finding
the derivative of, say, (2x 1) '®. We may formalise this observation in the following
theorem called the chain rule.

Theorem 4 (Chain Rule) et fbe a real valued function which is a composite of two

. . . dt dv .
functions u and v i.e., f=vou.uppose ¢=u(x)and if both - and ?‘; exist, we have

daf _dv dt
dx dt dx

We skip the proof of this theorem. Chain rule may be extended as follows. uppose
fis areal valued function which is a composite of three functions u, vand w i.e.,

f=wou)ov.Ift=v(x)and s = u(f), then

dx dt dx ds dt dx
provided all the derivatives in the statement exist. eader is invited to formulate chain
rule for composite of more functions.
Example 21 Find the derivative of the function given by f(x) = sin (x?).
Solution Observe that the given function is a composite of two functions. Indeed, if
t = u(x) = x? and v(f) = sin ¢, then

f(x) = ou) (x)=v(ux)) = v(x?) = sin x?
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ut = u(x)=x Observe that % =cost and ? =2Xx exist. ence, by chain rule
t

X
d
L/ = ﬂ~£=cost~2x
dx dt dx

It is normal practice to express the final result only in terms of x. Thus
d
4 = cost-2x=2xcosx’
dx

Alternatively, We can also directly proceed as follows

. dy d .
=sin (x?) = — =— (sin x*
y (x?) i dx( )

= cos X2 % (x?) = 2x cos x?

Example 22 Find the derivative of tan (2x ).

Solution et f(x)=tan (2x ), wu(x)=2x and v(¢f) =tan¢. Then
vou) @) =v(ux)=v2x )=tan (2 x )= f(x)

dv
Thus fis a composite of two functions. ut #=u(x)=2x . Then o =sec’ ¢ and

dat =2 exist. ence, by chain rule
dx

£=ﬂ~£= 2sec’ (2x+)
dx dt dx
Example 23 ifferentiate sin (cos ( x?)) with respect to x.
Solution The function f(x) = sin (cos (x?)) is a composition f(x) = (w o v o u) (x) of the
three functions u, v and w, where u(x) = x?, v(¢) = cos ¢ and w(s) = sin s. ut

t=u(x) =x*and s = v(¢) = cos t. Observe that aw = coss,é =—sin¢ and At =2x
ds dt dx

exist for all real x. ence by a generalisation of chain rule, we have

————— (cos s) . (—sin¢) . (2x) = — 2x sin x* . cos (cos x?)
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Alternatively, we can proceed as follows
y = sin (cos x?)

—y:— 1 2} — 2 i 2
Therefore b gy SO (cos x?) = cos (cos x?) It (cos x?)

= cos (cos x?) (— sin x?) 4 (x?)
dx

= — sin x? cos (cos x?) (2x)
= — 2x sin x? cos (cos x?)

| EXERCISE 5.2 |
ifferentiate the functions with respect to x in xercises 1 to .
1. sin (x? 5) 2. cos (sin x) 3. sin (ax b)
sin (ax +b) )
4. sec (tan (4/x)) 5. cos (cx+d) 6. cos x .sin? (x%)

7. 2+Jcot(x?) 8. cos(v/x)

9. rove that the function fgiven by

fx)=x-1,xeR
is not differentiable at x = 1.
10. rove that the greatest integer function defined by

fx)=x,0 x

1s not differentiable at x =1 and x = 2.

5.3.2 Derivatives of implicit functions

ntil now we have been differentiating various functions given in the form y = f(x).
ut it is not necessary that functions are always expressed in this form. For example,
consider one of the following relationships between x and y

x—y-n=0
x sin xy—y=0
In the first case, we can solve for y and rewrite the relationship as y = x — . In
the second case, it does not seem that there is an easy way to solve for y. evertheless,
there is no doubt about the dependence of y on x in either of the cases. When a
relationship between x and y is expressed in a way that it is easy to solve for y and
write y = f(x), we say that y is given as an explicit function of x. In the latter case it
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is implicit that y is a function of x and we say that the relationship of the second type,
above, gives function implicitly. In this subsection, we learn to differentiate implicit
functions.

Ly
Example 24 Find — ifx—y=m.
X

d.
Solution One way is to solve for y and rewrite the above as
y=x-m
dy
ut then — =1
dx
Alternatively, directly differentiating the relationship w.r.t., x, we have
d dmn
L =y = £2
dx (r=2) dx

dn ) )
ecall that I means to differentiate the constant function taking value w
by

everywhere w.r.t., x. Thus

d . d.
a(x)—a(J’) =0

which implies that

Example 25 Find il—‘lxy, ify sin y=cos x.

Solution We differentiate the relationship directly with respect to x, i.e.,

dy d . d
—_— + —_— S
(siny) = —(cosx)

which implies using chain rule

d d
—y+cosy~—y =—ginx
dx dx
This i Q ___sinx
1S BIVES dx I+cosy
where y22n 1) =
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5.3.3 Derivatives of inverse trigonometric functions
We remark that inverse trigonometric functions are continuous functions, but we will
not prove this. ow we use chain rule to find derivatives of these functions.

Example 26 Find the derivative of f given by f(x) = sin™' x assuming it exists.

Solution et y=sin™ x. Then, x = sin y.

ifferentiating both sides w.r.t. x, we get
1= _dy
cos y

hich implies that @ _ 1
which implies tha — = =
P dx  cosy cos(sin”'x)

Observe that this is defined only for cos y # 0, i.e., sin™' x # —g, g Jle,x#—1,1,

ie,xe(-1,1).
To make this result a bit more attractive, we carry out the following manipulation.
ecall that for x € (— 1, 1), sin (sin™ x) = x and hence

cos?y=1—(sin y)>=1—(sin (sin'x))* =1 — x?
Also, since y € (—ggj , cos y is positive and hence cos y = /] — 2

Thus, forx € (- 1, 1),
dy 1 1

dx cosy J1—x2

Example 27 Find the derivative of f given by f(x) = tan™' x assuming it exists.

Solution et y = tan™ x. Then, x = tan y.

ifferentiating both sides w.r.t. x, we get

dy
1= 2 —
sec*y
which implies that
Q 1 1 3 1 1
dx  sec’ y 1+ tan’ y l+(tan (tan_l x))2 1+x

2
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Finding of the derivatives of other inverse trigonometric functions is left as exercise.

The following table gives the derivatives of the remaining inverse trigonometric functions

(Table 5.)
Table 5.4
f(x) cosx cotlx sec'x cosec lx
= -1 1 —
f'e 1-x* 1+x° %2 =1 xNx* -1
omain of f' | (-1, 1) R (—o0, 1) U (1, ®) | (-o0,—1) U (1, )

Find & in the following

10.

11.

12.

13.

14.

15.

X
2x + y=sinx

EXERCISE 5.3

2. 2x+ y=siny 3. ax + bhy> =cos y
xyty*=tanx y S.x2+xy »*=100 6. x +tx¥ xP y=1

2x
siny + cosxy =k 8. sinx +cos’y=1 9. y=sin’' ( J

y=tan1( x—xz J’
1- x

1 1
——=<x<—F=

Na

1+x?
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5.4 Exponential and Logarithmic Functions

Till now we have learnt some aspects of different classes of functions like polynomial
functions, rational functions and trigonometric functions. In this section, we shall
learn about a new class of (related) Y
functions called exponential functions and

logarithmic functions. It needs to be
emphasied that many statements made
in this section are motivational and precise
proofs of these are well beyond the scope

of this text.
The Fig 5. gives a sketch of o
y=f@=x,y=f(x)=xLy=f(x)=x {~/})

and y =f (x) =x . Observe that the curves _//

get steeper as the power of x increases. x’«
teeper the curve, faster is the rate of
growth. What this means is that for a fixed v

increment in the value of x( 1), the Fig 5.9

increment in the value of y = f (x) increases as n increases for n = 1, 2, , . It is
conceivable that such a statement is true for all positive values of n, where f (x) = x".
ssentially, this means that the graph of y = f (x) leans more towards the y-axis as n
increases. For example, consider f, (x) = x'* and f,,(x) = x"°. If x increases from 1 to
2, f,, increases from 1 to 2'° whereas f,, increases from 1 to 2'°. Thus, for the same
increment in x, f,, grow faster than f, .

%
-

pshot of the above discussion is that the growth of polynomial functions is dependent
on the degree of the polynomial function — higher the degree, greater is the growth.
The next natural question is Is there a function which grows faster than any polynomial
function. The answer is in affirmative and an example of such a function is

y =f(x) =10~
Our claim is that this function f'grows faster than f (x) = x" for any positive integer 7.

For example, we can prove that 10* grows faster than f,  (x) = x'. For large values

(x) = (10)'° =10 whereas f(10) = 1¢'0 = 10",

Clearly f(x) is much greater than f,  (x). It is not difficult to prove that for all
x 10 ,f(x) f,, ). utwe will not attempt to give a proof of this here. imilarly, by
choosing large values of x, one can verify that f(x) grows faster than f, (x) for any
positive integer 7.

of x like x = 10, note that f,

100
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Definition 3 The exponential function with positive base b 1 is the function

y=fx)=">n
The graph of y = 10~ is given in the Fig 5..
It is advised that the reader plots this graph for particular values of b like 2, and .
Following are some of the salient features of the exponential functions

(1) omain of the exponential functionis R, the set of all real numbers.
(2) ange of the exponential function is the set of all positive real numbers.

() The point (0, 1) is always on the graph of the exponential function (this is a
restatement of the fact that »° = 1 for any real b 1).

() xponential function is ever increasing i.e., as we move from left to right, the
graph rises above.

(5) Forvery large negative values of x, the exponential function is very close to 0. In
other words, in the second quadrant, the graph approaches x-axis (but never
meets it).

xponential function with base 10 is called the common exponential function. In
the Appendix A.1. of Class XI, it was observed that the sum of the series

1 1
I+—+—+..
12

is a number between 2 and and is denoted by e. sing this e as the base we obtain an
extremely important exponential function y = e*.

This is called natural exponential function.

It would be interesting to know if the inverse of the exponential function exists and
has nice interpretation. This search motivates the following definition.

Definition 4 et b 1 be a real number. Then we say logarithm of a to base b is x if
b =a.

ogarithm of a to base b is denoted by log, a. Thus log, a = x if b* = a. et us
work with a few explicit examples to get a feel for this. We know 2 = . In terms of
logarithms, we may rewrite this as log, = . imilarly, 10 = 10000 is equivalent to
saying log,, 10000 = . Also, 25 =5 = 25%is equivalent to saying log, 25 = or
log, 25=2.

On a slightly more mature note, fixinga base b 1, we may look at logarithm as
a function from positive real numbers to all real numbers. This function, called the
logarithmic function, is defined by

log, R - R
x—> log x=y ifb¥=x
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As before if the base b =10, we say it X _y=log,x
is common logarithms and if b = e, then ~_y=log.x
we say it is natural logarithms. Often /;/ ;

. . . 5 1 0810
natural logarithm is denoted by /n. In this e
chapter, log x denotes the logarithm Ry

function to base e, i.e., In x will be written X'e

X
0
/
as simply log x. The Fig 5.10 gives the plots ’71
of logarithm function to base 2, e and 10.
ome of the important observations /
about the logarithm function to any base A
b 1 are listed below Fig 5.10

(1) We cannot make a meaningful definition of logarithm of non-positive numbers
and hence the domain of log functionis R .

(2) The range of log function is the set of all real numbers.
() The point (1, 0) is always on the graph of the log function.
() Thelog function is ever increasing, Y (=€)

i.e., as we move from left to right
the graph rises above.

(5) For x very near to ero, the value
of log x can be made lesser than
any given real number. In other
words in the fourth quadrant the

graph approaches y-axis (but never o T
meets it). o |

() Fig5.11 gives the plotof y=e*and v,
y = In x. It is of interest to observe Y
that the two curves are the mirror Fig 5.11

images of each other reflected in the line y = x.
Two properties of log functions are proved below
(1) There is a standard change of base rule to obtain log_p in terms of log, p. et

log, p = a, log, p =P and log, a = y. This means a“ = p, b’ = p and b* = a.
ubstituting the third equation in the first one, we have

(by = b7 =p
sing this in the second equation, we get

bP=p=>b"
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which implies B=ayora= B . ut then
Y

lo _ log, p
&P log,a

(2) Another interesting property of the log function is its effect on products. et
log, pq = a.. Then b* = pq. If log, p = B and log, g =y, then b = p and b" = q.
ut then b* = pg = bPb" = bP 7

which impliesa = vy, i.e.,
log, pg =log, p + log, ¢

A particularly interesting and important consequence of this is when p =¢. In
this case the above may be rewritten as

log, p> = log, p +log, p=2logp
An easy generalisation of this (left as an exercise) is

log, p" =nlog p
for any positive integer x. In fact this is true for any real number #, but we will
not attempt to prove this. On the similar lines the reader is invited to verify

x
logb; =log, x — log, y

Example 28 Is it true that x = e~ for all real x

Solution First, observe that the domain of log function is set of all positive real numbers.
o the above equation is not true for non-positive real numbers. ow, let ~ y = e*e* If
v 0, we may take logarithm which gives us log y=1log(e"¢*)=logx.loge=1logx. Thus
y=ux.ence x=¢"°&*is true only for positive values of x.

One of the striking properties of the natural exponential function in differential
calculus is that it doesn t change during the process of differentiation. This is captured
in the following theorem whose proof we skip.

Theorem 5%

d
(1) The derivative of e* w.r.t., x is e* i.e., i (e") = e
X

= | =

d
(2) The derivative of log x w.r.t., x is 1 ie., i (logx) =
X

* Please see supplementary material on Page 286.
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Example 29 ifferentiate the following w.r.t. x
i) e~ (i1) sin (logx),x 0 (iii)) cos ' (eY) (iv) ecs”

Solution

(i) et y=e " sing chain rule, we have

d -
2 ex~i (—x)=—e~
dx dx
(i) et y=sin (logx).sing chain rule, we have
dy d cos (log x)
— = cos (logx)-— (logx) =———=—=
n (log x)-—~— (log.x)
(i) et y=cos™ (e). sing chain rule, we have
dy _ -1 d —e*

B 2'_(6)(): 2
dx  \J1-(e")? dx 1-e™

(iv) et y=e™ ~ sing chain rule, we have

COSX

Q: COS X : _ :
¢ -(—sinx)=—(sinx) e

| EXERCISE 5.4/

ifferentiate the following w.r.t. x

e’ '

1. - 2. esin’x 3. &
sin x
4. sin (tan™ e™) 5. log (cos &) 6. ¢ +e .. tet
cos X
7. \/e‘/;, x>0 8. log(logx),x 1 9. logx’ x>0

10. cos(logx e),x 0

5.5. Logarithmic Differentiation

In this section, we will learn to differentiate certain special class of functions given in
the form

y=f0) = u(@) o

y taking logarithm (to base ¢) the above may be rewritten as

logy=v(x) log u(x)
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sing chain rule we may differentiate this to get

a1 '(x) -
L @ v(x) D) u'(x) V(x)-log u(x)
which implies that
ay v ()
e J{u(x) u'(x)+Vv'(x) log[u(x)]}

The main point to be noted in this method is that f(x) and u(x) must always be
positive as otherwise their logarithms are not defined. This process of differentiation is
known as logarithms differentiation and is illustrated by the following examples

. . ()C—)( )C2 ‘B
Example 30 ifferentiate ,[~——————— Wt x.
5x°+ x+
2
Solution et y= M
G5x"+ x+

Taking logarithm on both sides, we have

1
logy= Elog(x—) log( x2) —log( x> x5)
ow, differentiating both sides w.r.t. x, we get

lﬂ l 1 N 2x 3 X+
(x=)  x*+5 x*+ x+

y dx 2
dy Yy 1 2x X+
or = 5 T3 T2
dc 2| (x-) x"+5 x4+ x+

1 /(x—)(xz-l) 1 2 ox x4
2V 5%+ x+ | (x5 X+ 2+ ox+

Example 31 ifferentiate a* w.r.t. x, where a is a positive constant.

Solution et y = a*. Then

logy=xloga
ifferentiating both sides w.r.t. x, we have
ldy
v dx =loga
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or 2 log a
dx 7%

d .
Thus —(a") =a*loga

dx

d X d xloga xloga d

. £ - —(e =e —(xloga

Alternatively dx(a) dx( ) dx( ga)

=¢2e Jog a= a* log a.
Example 32 ifferentiate  x*"*, x 0 w.r.t. x.
Solution et y = x*"* Taking logarithm on both sides, we have

log y = sin x log x

heref 1 Q— in i(lo )+1o i(sinx)
Therefore v dx S xdx g X gxdx
Lt
or ydx = (smx);+ 0g X COSX
b _ {Siﬂ+cosxlo x}
or e y . g
sinx | SINX
=X [—+cosxlogx}
X
= ¥ sinx + x*™ - cosx log x
. oody . o
Example 33 Find E,lfy" X x'=a’
Solution Given that y* » x"=a’.
utting u=), v=xandw=x,wegetu v w=a’
Th i @4_@4_@—0 (1)
erefore FRRRFTRI

ow, u=y". Taking logarithm on both sides, we have

logu=xlogy
ifferentiating both sides w.r.t. x, we have
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1 du d d
—— = x—(logy) +log y—(x
o dx( gy) gydx()
= xl~ﬂ+logy-l
y dx
du X dy x| X dy
== —u|——+lo = ——+lo
0 R (y It gJ’J ¥ L} I gY | ...(Q2)
Also v=x
Taking logarithm on both sides, we have
logv=ylogx
ifferentiating both sides w.r.t. x, we have
1 dv d dy
—— = y—(logx)+logx—
v dx ydx( gx)+log dx
= y-l+logx~@
X dx
dv y dy}
— = v|=+logx—
© dx v[x S
[y dy}
= x’|—=+logx—
[x g It .. 0
Again w=Xx"

Taking logarithm on both sides, we have
logw=xlogx.
ifferentiating both sides w.r.t. x, we have

1 dw d d
—— = x—(logx)+logx-—(x
w dx dx( &) & dx()
1
= x-—+logx-1
x
i d_w_ 11
1.€. dx w(l log x)

=x (1 log x) .. 0
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From (1), (2), (), (), we have

o xdy (y dyj
——+lo +x7| =+logx— =
Y ( gyJ . g dx x(1 log x)=0

y dx
dy
or (x .y ! xy.logx)a=—x"(1 log x)—y.x"'—ylogy
dy —log y+y x4 log ) x
Therefore e .y 42 logx
| EXERCISE 5.5 |
ifferentiate the functions given in xercises 1 to 11 w.r.t. .
(x-1D(x-2)
1. cosx.cos2x.cos x 2.
\/(x—) (x9( x5
3. (log x)cos~ 4. xv—2sinx
oy, )
5. x+)?2.(x) .(x9) 6. |x+—| +x ¥
X
7. (log x)* xlog~ 8. (sinx)* sin \/;

2
x +1
xXCOSX +

9. xr (sin x)o 10.

x -1
1

11. (xcosx) (xsinx)*

o dy o ,
Find aof the functions given in xercises 12 to 15.

12. » y'=1 13. y'=x

14. (cos x) = (cos y) 15. xy=e+

16. Find the derivative of the function given by f(x)=(1 x)(1 x»)(1 x)(1 x)

and hence find f'(1).

17. ifferentiate ( x*—5x )( x x ) in three ways mentioned below
(i) byusing productrule
(i) by expanding the product to obtain a single polynomial.
(ii)) by logarithmic differentiation.
o they all give the same answer
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18. Ifu, vand w are functions of x, then show that

D d o
I u. v. w) g VW oue W v
in two ways - first by repeated application of product rule, second by logarithmic

differentiation.

5.6 Derivatives of Functions in Parametric Forms

ometimes the relation between two variables is neither explicit nor implicit, but some
link of a third variable with each of the two variables, separately, establishes a relation
between the first two variables. In such a situation, we say that the relation between
them is expressed via a third variable. The third variable is called the parameter. More
precisely, a relation expressed between two variables x and y in the form
x=f(t), y = g(¢) is said to be parametric form with ¢ as a parameter.

In order to find derivative of function in such form, we have by chain rule.

dy _ dy dx
dt  dx dt
dy
PR
or d_i = % (whenever% # Oj
dt
d
Thus i —‘)( sY _ g0 and——f(r)j provided £1() %0
dx '(t) dt

Example 34 Find %, ifx=acos0,y=asin0.
X

Solution Given that

x=acos0,y=asin 0
Therefore & =—asin 6, @ =acos 0
do do
dy
ence Q _ 4o _ aco.se =—cot0

dcx dx —gsin@
do
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Example 35 Find ZJ;, ifx=af, y="2at.
Solution Given that x = af?, y = 2at

dx _ dy _
0 dr =2at and & 2a

dy
_dr_2a 1
de dx  2at ¢

dt

Therefore

Example 36 Find ny, ifx=a (0 sin 0),y=a(l-cos0).

Solution We h e _ 1 0 L 0
olution We have de—a( cos 0), 40 = g (sin 0)
d
& 49 asin® 0
- = =———=tan—
Therefore de ~ dx  a(l+cos0) )
do

d
It may be noted here that dii is expressed in terms of parameter only

without directly involving the main variables x and y.

d 2 2 2
Example 37 Find _y’if X +y =a -
dx

Solution et x=acos 0,y =asin 0. Then

22 2 2
x +y = (acos 0) +(asin 0)
2 2

a (cos’0+(sin*0)=a

2 2 2
ence, x=acos 0,y =asin 0 is parametric equation of x +y =a
dx S dy -
ow — =— qcos’OsinBand — = asin’0 cos O

do do
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dy
dy 4o sm TBs 0 y
—:—:—:—tane:— _—
Therefore e ﬁ “eos 50 .
do

ad we proceeded in implicit way, it would have been quite tedious.

EXERCISE 5.6

If x and y are connected parametrically by the equations given in xercises 1 to 10,

without eliminating the parameter, Find ZJ; .

1. x=2at,y=at 2. x=acos0,y=bcos0

3. x=sint, y=cos 2t 4. x= t,y=7

5. x=cos 6 —cos 20, y=sin 6 —sin 20

sin ¢ e cos ¢
Jcos2t’ \Jcos 2t

6. x=a@®-sinB),y=a(l cos 0) 7. x

t
8. X=a[005f+10gtan5jy=asint 9. x=asecO,y=>btan0

10. x=a(cos® 08inB), y=a (sin 6 — 0cos 0)
11. If x=\/asmflt,y=\ja°°sflt, showthat%z—Z
x X

5.7 Second Order Derivative
et y =f(x). Then

@, 1
oA - ()
Iff"(x) is differentiable, we may differentiate (1) again w.r.t. x. Then, the left hand

side becomes I [EyJ which is called the second order derivative of y w.r.t. x and

2
is denoted by % . The second order derivative of f(x) is denoted by f"(x). It is also
X
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denoted by *yory”ory,ify=f(x). We remark that higher order derivatives may be
defined similarly.

2
Example 38 Find % ,if y=x tan x.
X

Solution Given that y=x tan x. Then

d
Ey= x> sec *x
dzy d 2
Theref X _ % (sad+ 2y
erefore i i
= x 2sec x.secxtanx= x 2sec 2xtanx

dzy
Example 39 If y=Asinx cos x, then prove that F+y=0.

x

Solution We have

y .
——=Acosx— sin x

dx
d*y
and W (Acosx— sin x)
x
=—Asinx— cos x=-y
d’y
ence el y=0

2
Example 40 If y= e* 2 e*, prove that d—f—5Q+Oy =
dx dx

Solution Given that y= e* 2 e*. Then

d
Ey: e2x er = (e2x ex)
d’y
Therefore —5 =121 e*= (2 e~ eY
dx
d_zy -5 Q (2 2x X
ence 2 Y e e

—0(e¥ ey ( e 2en)=0
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2
Example 41 If y = sin”! x, show that (1 — x?) d—f—xﬂ =0.
dx dx
Solution We have y = sin'x. Then
&y __ 1
dx (1-x%)
or a- xz) =1
d 2 dy)
“Ja-x .= |=0
© dx( =% dx
d*y d
or VA =x%)- 2 y y ( (l—xz))=0
d*y d 2x
or (1_x2) i} y _0
' dv g\
2 dly dy
ence (1-x )W_xa_o

Alternatively, Given that y = sin™! x, we have

1
_ ; 2).2
yl 1_x2 , L.C., (1 X )yl =1
o (1=x%). 23y, + 7 (0-2x)=0
ence (I =x)y,—xy, =0
| EXERCISE 5.7 |

Find the second order derivatives of the functions given in xercises 1 to 10.

1. x2 x 2 2. x? 3. x.cosx

4. logx 5. x logx 6. e*sin 5x

7. e*cos x 8. tan'x 9. log(logx)
10. sin(logx) ’

d
11. Ify=15cosx— sin x, prove that gf+y=0
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2
12. Ify=cos™ x, Find % in terms of y alone.
X

13. Ify= cos (log x) sin(log x),showthatx’y, xy, y=0

d’ d
14. Ify=Ae™ e, show that —;V —(m+n) =4 mny =0
dx dx

d2
15. Ify=500e* 00 e * show that —d;V= v
X

16. Ife’(x 1)=1, show that d—zy—(ﬂjz
. e (x 1)=1, show tha 2 e

17. Ify = (tan"'x)’, show that (x* 1) *y, 2 x(x* 1) y, =2

5.8 Mean Value Theorem

In this section, we will state two fundamental results in Calculus without proof. We
shall also learn the geometric interpretation of these theorems.

Theorem 6 (olle s Theorem) et f a, b — R be continuous on a, b and
differentiable on (a, b), such that f(a) = f(b), where a and b are some real numbers.
Then there exists some ¢ in (a, b) such that '(c) = 0.

InFig5.12 and 5.1, graphs of a few typical differentiable functions satisfying the
hypothesis of olle s theorem are given.

A

Fig 5.12 Fig 5.13

Observe what happens to the slope of the tangent to the curve at various points
between a and b. In each of the graphs, the slope becomes ero at least at one point.
That is precisely the claim of the olle s theorem as the slope of the tangent at any
point on the graph of y = f(x) is nothing but the derivative of f(x) at that point.
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Theorem 7 (Mean alue Theorem) et f a, b — R be a continuous function on
a, b and differentiable on ( a, b). Then there exists some c in (a, b) such that

b)—f(a
oL ®-1@
b-a
Observe that the Mean alue Theorem (MT) is an extension of olle s theorem.

et us now understand a geometric interpretation of the MT. The graph of a function
y=f(x) is given in the Fig 5.1. We have already interpreted f’(c) as the slope of the
tangent to the curve y = f(x) at (c, f(c)). From the Fig 5.1 it is clear that M
—a

is the slope of the secant drawn between (a, f(a)) and (b, f(b)). The MT states that
there is a point ¢ in (a, b) such that the slope of the tangent at (c, f{c)) is same as the
slope of the secant between (a, f(a)) and (b, f(b)). In other words, there is a point ¢ in
(a, b) such that the tangent at (¢, f(c)) is parallel to the secant between (a, f(a)) and

(b, f(b)).

L
ra

//4 (6, f ()
///
Q — (/)

g OJ, a ¢ b

Fig 5.14
Example 42 erify olle s theorem for the function y=x> 2, a=-2and b=2.

Solution The function y =x? 2 is continuous in -2, 2 and differentiable in ( — 2, 2).
Also f(— 2) = f( 2) = and hence the value of f(x) at — 2 and 2 coincide. olle s
theorem states that there is a point ¢ € (-2, 2), where f{(c) =0. ince f1x) = 2x, we
get ¢ = 0. Thus at ¢ =0, we have f({c)=0and c=0 € (- 2, 2).

Example 43 erify Mean alue Theorem for the function ~ f(x) =x* in the interval 2, .

Solution The function f(x) = x? is continuous in 2, and differentiable in (2, ) as its
derivative f(x) = 2xis defined in (2, ).
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ow, f(2)= and f()=1.ence
fB)-fla) 1 -
b—a 2—

MT states that there is a point ¢ € (2, ) such that f{c)=.ut f"x)=2x which
implies c=. Thusat c¢= € (2,),wehave f1{c)=.

| EXERCISE 5.8 |

erify olle s theorem for the function f(x) =x* 2 x—, xe —,2.

2. xamineifolle stheorem is applicable to any of the following functions. Can
you say some thing about the converse of olle s theorem from these example

(1) f(x)= xfor x €5, (i) f(x)= xfor xe —2,2
(i) f(x)=x*—1forxel,2
3. Iff -5,5 — Ris a differentiable function and if f"(x) does not vanish
anywhere, then prove that f(— 5) # f(5).

4. erify Mean alue Theorem, if  f(x) =x*— x— in the interval a, b, where
a=landb=.

5. erify Mean alue Theorem, if  f(x) =x —5x*— xin the interval a, b, where
a=1land b=. Findall ¢ e (1,) for which f'(c)=0.

6. xamine the applicability of Mean alue Theorem for all three functions given in
the above exercise 2.

Miscellaneous Examples
Example 44 ifferentiate w.r.t. x, the following function
1 2
(i) V2x+ +——— (i) e *+cos 'x (iii) log (logx)
2x% +
Solution

i) et y=~2x+ +

1 1 1
—= 2+ 2+ X+ 2
N2x% +
ote that this function is defined at all real numbers x> _2 . Therefore

1 1
L los el wr @] vrerL oo
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1
- S@x+ 02 f@ e 2eox
B 2 3 X
2\/2x+ (2x2+ )E

2
This is defined for all real numbers X > ——.
(i) et y= e 4cos 'x
This is defined at every real number in 1] . Therefore
dy sec’ x 1

a:e 'd (secx)+k\/7
_ e (2secxi (secx)] + [

N—

: 1
_ 2secx (secx tanx) e* " + (— J

: 1
_ 2sec’ xtanx ™ " + (—

V1-x?

Observe that the derivative of the given function is valid only in 110 — { } as

the derivative of cos™ x exists only in (- 1, 1) and the function itself is not
defined at 0.

log (log x)
log

The function is defined for all real numbers x 1. Therefore

@) et y=Ilog (logx)= (by change of base formula).

dy 1 d
— = —— —(log (logx
& Tog ax oelog)
= ! ! —(logx)
loglog x dx
1

xloglog x
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Example 45 ifferentiate the following w.r.t.  x.

: x+1
() cos'(sinx) (i) tan” ( S X j (iii) sin”' ( 2 J
1+ cosx I+
Solution
(i) et f(x)=cos '(sinx).Observe that this function is defined for all real numbers.
We may rewrite this function as
f(x) = cos™! (sin x)
= cos”! {cos (E - ) }
2
T
=——X
2
Thus f'x) =-1.
() et f(x)=tan"! (1 S j Observe that this function is defined for all real
+cosx
numbers, where cos x # — 1 i.e., at all odd multiplies of 7. We may rewrite this
function as
o) = tan™) ( sin x j
I+ cosx
2 sin (xj CcoS (xj
_ tan”! 2 2
2cos’
L 2
o (2]
=tan |tan| —||(=—
L 2 2
X
Observe that we could cancel €os (Ej in both numerator and denominator as it
1
is not equal to ero. Thus f'(x) = >
2x +1
(@ii)) et f(x)=sin"! ( J . To find the domain of this function we need to find all
1+ 7

x+1

x such that —1<

—<1. ince the quantity in the middle is always positive,

1+



COTIT A IFFTIAITI

x+1

we need to find all x such that

—-<1, 1.e.,all x such that 2*' <1 . We

1+

. . 1 S .
may rewrite this as 2 < o 2 * which is true for all x. ence the function

is defined at every real number. y putting 2 * = tan 0, this function may be
rewritten as

[ Ax+1
fi) = sin | 2 }
I+

ol o2r2 }
Sin —2
L1+(27)

—

. 4| 2tan6 }
sin” | —————
1+tan“ 0

sin“!'sin2 0
=20=2tan"! (2
1 d ..
Thus f(x) = 2'—'5(2 )

1+(27)

2
= -(2%)log2
1+

~ 2""'og2

X

1+
Example 46 Find f'(x) if f(x) = (sinx)*"* forall 0 x .

Solution The function y = (sin x)*"* is defined for all positive real numbers. Taking
logarithms, we have

log y = log (sin x)** = sin x log (sin x)
1 dy

d . .
Then J dx =i (sin x log (sin x))

. . 1 .
=cos x log (sinx) sin x. ‘—~i(smx)
sinx dx

=cos x log (sin x) cos x
=(1 log(sin x))cosx
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Thus —i = p((1 log(sin x))cosx)=(1 log(sin x)) ( sinx)* cos x

d
Example 47 For a positive constant a find d_y’ where
X

t+1 ]a
y=a !, and x= t+;

Solution Observe that both y and x are defined for all real ¢ # 0. Clearly

1
iz i( ”1) —a ti(t+lj-10ga
dt t

dr dr'\a !
) 1
=a ! l—t—2 loga

imilarl d a{t+l}a_l d(”lj
mular I - T -
Y dt A

el (4

dx
E;tOonlyift;t 1. Thus for ¢# 1,

d_dr _
S oy
dt a t+; —?

Example 48 ifferentiate sin 2 x w.r.t. e~

Solution et u (x) = sin? x and v (x) = e***. We want to find au = du_dx . Clearly

dv dv dx

du . dv . .
—— =2sin x cos x and —— = e®* (— sin x) = — (sin x) e**~
dx dx
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du 2sinxcosx  2cosx

Thus dv  —sinx e e«

Miscellaneous Exercise on Chapter 5

ifferentiate w.r.t. x the function in xercises 1 to 11.

1. (x¥*= x5) 2. sin x cos X
3. (Sx)es? x 4. sin'(x 4/x),0<x<1
1 X
COoS  —
5, —2 2 x2
2x+

_1{\/1+sinx+\/1—sinx} T
cot - - R X =
\/1+smx—\/1—smx 2

7. (log x)°ex, x 1

8. cos(acosx bsinx), for some constant ¢ and b.

. 4 i i
9. (sinx—cosx) Sinv-cosn — o
10. x* x* a° a“ for some fixeda Oand x 0

11. xxz_ +(x—- )xz,forx

12. Find 2 ify =12 (1 = cos ), x= 10 (t—sin 1), —%<t <X
dx 27 T2

13. Find %,ify=sin‘x sin ' \1—x%,0<x<0

14. If xo/1+y+y/l+x=0,for,—1 x 1, prove that
dy 1
dx (1+x)2

15. If (x—a)* ( y—b)*=c? for some ¢ 0, prove that

d*y

is a constant independent of a and b.
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16.

17.

18.

19.

20.

21.

22.

23.

MATMATIC

chosz(a+y)'

Ifcosy=xcos (a y), with cos a # 1, prove that -
dx sina

2
Ifx=a(cost tsinf)andy=a(sint—¢cost), find %
X

Iff(x)= x ,show that f"(x) exists for all real x and find it.

sing mathematical induction prove that di(x” ) =nx"" for all positive
X
integers 7.
sing the fact that sin (A )=sinA cos cosAsin and the differentiation,
obtain the sum formula for cosines.
oes there exist a function which is continuous everywhere but not differentiable
at exactly two points ustify your answer.
f(x) glx) A(x) f'(x) g'(x) h(x)
If y=| ! m n ,provethat—y= ) m n
dx
a b ¢ a b c
_ . nd’y dy
Ify= pacos"x —1 <x<1, show that (l—x )——x——a y=0.
dx’ dx
Summary

@ Areal valued function is continuous at a point in its domain if the limit of the

function at that point equals the value of the function at that point. A function
is continuous if it is continuous on the whole of its domain.

¢ um, difference, product and quotient of continuous functions are continuous.

i.e., if fand g are continuous functions, then

(f g (x)=f(kx) g(x)is continuous.
(. 2) (x) = f(x) . g(x) is continuous.

(i} (x) Z% (wherever g(x) # 0) is continuous.

@ very differentiable function is continuous, but the converse is not true.
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@ Chain rule is rule to differentiate composites of functions. If f=v o u, t=u (x)

and if both ﬁ and ﬂ exist then
dx t

af _dv dt
dx dt dx
€ Following are some of the standard derivatives (in appropriate domains)
i(sin’1 x)= 1 i(cos_1 x)=— 1
dx ll— 5 dx ll— 5
d ( 1 1 d 1 _1
—\tan x)z —(cot x) =
dx 1+ x? dx 14 x>
i(sec_1 ) = ; i(cosec_1 x) = _—1
dx xA1-x* o xA1-x?
d ( x) . d 1
—\e' )=e —(logx)=—
dx dx( 8 ) X

@ ogarithmic differentiation is a powerful technique to differentiate functions
of the form f(x) = u (x) *®. ere both  f(x) and u (x) need to be positive for
this technique to make sense.

@ Rolle’s Theorem If f a, b — Ris continuous on a, b and differentiable
on (a, b) such that f(a) = f(b), then there exists some ¢ in (a, b) such that

f'(c)=0.

® Mean Value Theorem If f a, b — R is continuous on a, b and
differentiable on (a, b). Then there exists some c in (a, b) such that

fr(c) — f(b)_f(a)

b—a

J
0‘0



