Chapter 7
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% Just as a mountaineer climbs a mountain — because it is there, so
a good mathematics student studies new material because
it is there. — JAMES B. BRISTOL

7.1 Introduction

Differential Calculus is centred on the concept of the
derivative. The original motivation for the derivative was
the problem of defining tangent lines to the graphs of
functions and calculating the slope of such lines. Integral
Calculus is motivated by the problem of defining and
calculating the area of the region bounded by the graph of
the functions.

If a function f is differentiable in an interval I, i.e., its
derivative /' exists at each point of I, then a natural question
arises that given f'at each point of I, can we determine
the function? The functions that could possibly have given
function as a derivative are called anti derivatives (or G .W. Leibnitz
primitive) of the function. Further, the formula that gives (1646 -1716)
all these anti derivatives is called the indefinite integral of the function and such
process of finding anti derivatives is called integration. Such type of problems arise in
many practical situations. For instance, if we know the instantaneous velocity of an
object at any instant, then there arises a natural question, i.e., can we determine the
position of the object at any instant? There are several such practical and theoretical
situations where the process of integration is involved. The development of integral
calculus arises out of the efforts of solving the problems of the following types:

(a) the problem of finding a function whenever its derivative is given,
(b) the problem of finding the area bounded by the graph of a function under certain
conditions.

These two problems lead to the two forms of the integrals, e.g., indefinite and
definite integrals, which together constitute the Integral Calculus.
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There is a connection, known as the Fundamental Theorem of Calculus, between
indefinite integral and definite integral which makes the definite integral as a practical
tool for science and engineering. The definite integral is also used to solve many interesting
problems from various disciplines like economics, finance and probability.

In this Chapter, we shall confine ourselves to the study of indefinite and definite
integrals and their elementary properties including some techniques of integration.

7.2 Integration as an Inverse Process of Differentiation

Integration is the inverse process of differentiation. Instead of differentiating a function,
we are given the derivative of a function and asked to find its primitive, i.e., the original
function. Such a process is called integration or anti differentiation.

Let us consider the following examples:

(e know that di(sin x) [Jcos x (D
X
d x"
—(—) Ox? . (2
dx( [) x )
d
and —(e) Le* (D
dx

[Je observe that in ([), the function cos x is the derived function of sin x. [J e say
)
that sin x is an anti derivative (or an integral) of cos x. Similarly, in (2) and ([, - and

e* are the anti derivatives (or integrals) of x* and e, respectively. Again, we note that
for any real number C, treated as constant function, its derivative is [ero and hence, we
can write (), (2) and ([) as follows :
d . d x° d
— (sinx [C)=cos x , — (— [1C) =x*and — (¢* [IC)=¢"
Cdx ] dx [ ] dx ]
Thus, anti derivatives (or integrals) of the above cited functions are not unique.

Actually, there exist infinitely many anti derivatives of each of these functions which
can be obtained by choosing C arbitrarily from the set of real numbers. For this reason
C is customarily referred to as arbitrary constant. In fact, C is the parameter by
varying which one gets different anti derivatives (or integrals) of the given function.

. . . d .
More generally, if there is a function F such that = F(x) Uf (x), v x € I (interval),

then for any arbitrary real number C, (also called constant of integration)

%[F(x) [C] Of(x),x el
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Thus, [F 0JC, C € Rl0denotes a family of anti derivatives of f.

Remark Functions with same derivatives differ by a constant. To show this, let g and 4
be two functions having the same derivatives on an interval I.

Consider the function f [ g [0/ defined by f(x) Og(x) Dh(x), vx €1

d
Then d_]; OfOg” Oh’giving f'(x) Og’x) Oh'(x) vx €1
or f’(x) 00 ¥x € I by hypothesis,

i.e., the rate of change of f'with respect to x is [éro on I and hence f'is constant.

In view of the above remark, it is justified to infer that the family 'F T1C, C € R[J
provides all possible anti derivatives of f.

U e introduce a new symbol, namely, I Jf(x) dx which will represent the entire

class of anti derivatives read as the indefinite integral of /' with respect to x.

Symbolically, we write j f(x)dx OF (x) [IC.

d
Notation Given that d_i =/ (%), we write y [ _[ S (x)dx.

For the sake of convenience, we mention below the following symbols/ferms phrases
with their meanings as given in the Table (7.0).

Table7.1
Symbols/Terms/Phrases Meaning
j S (x)dx Integral of / with respect to x
SG)in [ f(x)dx Integrand
X in j f(x)dx Cariable of integration
Integrate Find the integral
An integral of f A function F such that
F'(x) Of (%)
Integration The process of finding the integral
Constant of Integration Any real number C, considered as
constant function
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Oe already know the formulae for the derivatives of many important functions.
From these formulae, we can write down immediately the corresponding formulae
(referred to as standard formulae) for the integrals of these functions, as listed below
which will be used to find integrals of other functions.

Derivatives

(1)

(i)

(iii)

(iv)

V)

(vi)

(vii)

(viii)

(ix)

(x)

(xi)

i anr[ _xn
dx\ n+[ -

Carticularly, we note that

%(x)=E 0

%(sin x)=cosx O
%([cosx)zsinx O
%(tan x)=sec’x [
%([cot x)=cosec’x [
%(secx)zsecxtanx O
% (Dcosec x) = cosec x cot x [
b e
aelteo =
%(tanmx)=[+[x2 0
—x([cotmx)=[+[x2 0

Integrals (Anti derivatives)

xn+u
jx”dx= +C,n= 1
n+ U
jdx=x+C

jcosxdxzsinx+C
jsinxdxz—cosx+C
jseczxdxztanx+C
jcoseczxdx=—cotx+C

sec x tanx dx =secx + C

J
jcosec x cotx dx = cosec x +C
J

dx — oo +C
\/; sin x
j\/dx_zz—cos[[x+c

[x

d.
j x2 =tan "x+C
[Hx

dx
J‘[+x2 T

cot'"'x+C
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(xii) i(sec[[x)z—[ J‘Lzsec[[x+c
xAalx? =T xalx? =10
d oo 0 dx o0
.o —(Ocosec™ x)|=———m— ———=—cosec x+C
(xiii) x( ) x /xz_[ O jx 2 _0
d X X X X
xiv) —(e)=e [ je dx=e"+C

dx

(xv) i(IOgDC[1=£[ j—[dleogExB—C
dx X X

d| a a*
N — =a" Tdx = +C
(xvi) dx (Iog aJ “ Ia ’ log a

In practice, we normally do not mention the interval over which the various
functions are defined. CJowever, in any specific problem one has to keep it in mind.

7.2.1 Geometrical interpretation of indefinite integral

Let f(x) 0 2x. Then j f(x)dx=x>+C. For different values of C, we get different

integrals. [Jut these integrals are very similar geometrically.

Thus, y [1x* [IC, where C is arbitrary constant, represents a family of integrals. [y
assigning different values to C, we get different members of the family. These together
constitute the indefinite integral. In this case, each integral represents a parabola with
its axis along yfaxis.

Clearly, for C [1[] we obtain y [1x?% a parabola with its vertex on the origin. The
curve y [1x? [1 [for C [1[Jis obtained by shifting the parabola y [1x? one unit along
ylaxis in positive direction. For C [1[1[] y [1x* [1[Jis obtained by shifting the parabola
v [lx* one unit along y(axis in the negative direction. Thus, for each positive value of C,
each parabola of the family has its vertex on the positive side of the ylaxis and for
negative values of C, each has its vertex along the negative side of the ylaxis. Some of
these have been shown in the Fig 7.[]

Let us consider the intersection of all these parabolas by a line x [a. In the Fig 7.0]
we have taken a [J [] The same is true when a ][] If the line x [J @ intersects the
parabolas y Ox?,y x> OOy Ox* 02,y Ox* OOy Ox* 02 at [, 0, 0, [, [, etc,,

d
respectively, then Ey at these points equals 2a. This indicates that the tangents to the

curves at these points are parallel. Thus, j2x dx=x" + C=F. (x) (say), implies that
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Fig 7.1
the tangents to all the curves y [IF_(x), C € R, at the points of intersection of the
curves by the line x Ja, (a € R), are parallel.

Further, the following equation (statement) jf(x) dx=F (x)+ C =y (say),

represents a family of curves. The different values of C will correspond to different
members of this family and these members can be obtained by shifting any one of the
curves parallel to itself. This is the geometrical interpretation of indefinite integral.

7.2.2 Some properties of indefinite integral
In this sub section, we shall derive some properties of indefinite integrals.
(D The process of differentiation and integration are inverses of each other in the
sense of the following results :

L reyar 7o
dx

and j S'(x)dx f(x) OC, where C is any arbitrary constant.
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Proof Let F be any anti derivative of £, i.e.,
d
— Fx) Uf(x)
dx

Then jf(x) dx [F(x) OC

Therefore % jf(x) dx ] % (F(x) CC)

d
O—F® Of(x)
dx
Similarly, we note that
d
1) 0= f(x)
dx

and hence jf'(x) dx [f(x) OC

where C is arbitrary constant called constant of integration.

Two indefinite integrals with the same derivative lead to the same family of
curves and so they are equivalent.
Proof Let fand g be two functions such that

d d
~Jreax o ~Jewax

or %Uf(x)dx—jg(x)dx] 00

Tence j S (x) dx — jg (x) dx (1 C, where C is any real number ([ hy?)
or [feax o [g@yav+C

So the families of curves {jf(x) dx+C,C e R}

and {jg(x) dx+Cy,Cy e R} are identical.

Clence, in this sense, j f(x) dx and j g(x) dx are equivalent.



200 MATCEMATICS

The equivalence of the families {If(x) dx DCDC[ER} and

{Ig (x)dx [1C,,C, € R} is customarily expressed by writing I f(x)dx DI gx)dx,

without mentioning the parameter.

iy [[£6) Dg@)]dr=[ f(x)dx Of gx) dx
Proof [y [roperty (I), we have

%Utf(x) g | /() Dg) ()

[In the otherhand, we find that

Ll rwa fewa] oL e L g ax

L) Dg(x) . (2
Thus, in view of [roperty (II), it follows by ([) and (2) that

[(fe)+g@)dr i [ £6x) dr + [ g ax.

(I0) For any real number £, _[k S)de=k _[f(x) dx

Proof Ly the [roperty (), di j k f(x)dx=Fk f(x).
X

Also % [k [r@ dx] 0 k% [rede ok f)

Therefore, using the [roperty (II), we have _[k Sx)de=k j S (x)dx

(O0) Toperties (III) and (IC0) can be generalised to a finite number of functions
S/, - [, and the real numbers, & , k,, ..., k_giving

? 2%

j[k[f[(x) +hy fy (X) + .+ k, f, (x)] dx

k[ der k[ f @) dx+ ok, [ f, () dx

To find an anti derivative of a given function, we search intuitively for a function
whose derivative is the given function. The search for the requisite function for finding
an anti derivative is known as integration by the method of inspection. [J e illustrate it
through some examples.
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Example 1 Orite an anti derivative for each of the following functions using the
method of inspection:

L
@) cos 2x i) Ok (i) —,x#0
X

Solution

(i) Oe look for a function whose derivative is cos 2x. Recall that

d
— sin 2x [12 cos 2x
dx

2 Dd . 2 4L sin 2x
or oS x[zdx (sin x)[dx 5
o . H.
Therefore, an anti derivative of cos 2x is 5 sin 2x
(i) e look for a function whose derivative is [x* [][x . Note that
d O O
E(x +x )[Dc2 Olx.

Therefore, an anti derivative of [x? [1[x 'is x'[Jx'.
(ii)) e know that

i(logx)=—[,x> [andiﬂog(_x)[z_[(_gz_;x< [
dx X dx —x x

Combining above, we get 4 (10g|x|) .
) e >

0 , o U
Therefore, j; dx =log |X| is one of the anti derivatives of T

Example 2 Find the following integrals:

2
X

o_ 5 O
W [ dx (i) [ +Ddr (i) [(2+2¢" [;[)dx

Solution
(i) Oe have

jx[z_[dxz jxdx— J‘xfz dx (by [roperty [)
x
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+0O -2+0
X X ‘ ‘
0 [ + C[J - [ N + CzJ 71C, C, are constants of integration

(0 -2+0
x2 -0 2
[7+Cu— — -C, 0—+—-0C -C,
52
O - +—UC, where C UC [IC, is another constant of integration.
x

From now onwards, we shall write only one constant of integration in the
final answer.

(i) Ce have
2

j(sz +Ddx= ij dx + jdx

2+[
xb oL
O +x+C O0—x"+x+C
2
Z40
U

O O
5 U 5 L
(iii) e have j(x2+2ex——)dx=jx2 dx+j2ex dx—j—dx
x X
£+[
x2
0——+2e" [log|x|[C
U
—+0
2
O

[%xz +2e" [10g|x| [cC

Example 3 Find the following integrals:
@) j(sin X+ cos x) dx (ii) jcosec x (cosec x + cot x) dx
[sin x
- dx
(i) '[ cos® x

Solution
(i) Oe have

j(sin X+ cos x) dx =jsinx dx + jcos X dx

[l Ocosx+sinx+C
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(i) Oe have
j(cosec x (cosec x [cot x) dx = jcoseczx dx + jcosec x cot x dx
[] Ccot x —cosec x + C

(i) e have

[-sin x O sin x
[—F—dr=[——dr- [—-ax
cos“x cos“x cos“x

0 jseczx dx — jtan x sec x dx
Otanx—secx +C

Example 4 Find the anti derivative F of fdefined by f'(x) [0 [x" 0] where F (0) O

Solution [ne anti derivative of f'(x) is x" [k since

i(x[—[x) 0”00
dx

Therefore, the anti derivative F is given by

F(x) Ox" OCx OC, where C is constant.

Given that F(D O which gives,
OO 000x 00C or C O

Cence, the required anti derivative is the unique function F defined by
F(x) Ox"Ox 00O

Remarks

(i) Oe see that if F is an anti derivative of f, then so is F [ C, where C is any
constant. Thus, if we know one anti derivative F of a function f, we can write
down an infinite number of anti derivatives of f' by adding any constant to F
expressed by F(x) TC, C € R. In applications, it is often necessary to satisfy an
additional condition which then determines a specific value of C giving unique
anti derivative of the given function.

(i) Sometimes, F is not expressible in terms of elementary functions vi[l, polynomial,
logarithmic, exponential, trigonometric functions and their inverses etc. [J e are

therefore blocked for finding j S (x) dx . For example, it is not possible to find

2

je_ * dx by inspection since we can not find a function whose derivative is e *
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(ii)) [ henthe variable of integration is denoted by a variable other than x, the integral

formulae are modified accordingly. For instance

0+ 0
0 Yy U g
dy = +C=—y +C
jy 7 0+ 0 [y

7.2.3 Comparison between differentiation and integration

Coth are operations on functions.
Coth satisfy the property of linearity, i.e.,

b 4 L 4
W) [k L0 +h fo@]=k £+ k- f, ()

() [[k /£ +k f, @]de=k [ £ () dx+k, [ £, () dx
ere k and k, are constants.

[Je have already seen that all functions are not differentiable. Similarly, all functions
are not integrable. [Je will learn more about nondifferentiable functions and
nonintegrable functions in higher classes.

The derivative of a function, when it exists, is a unique function. The integral of
a function is not so. [Jlowever, they are unique upto an additive constant, i.e., any
two integrals of a function differ by a constant.

[J hen a polynomial function Jis differentiated, the result is a polynomial whose
degree is [less than the degree of ][] hen a polynomial function Tis integrated,
the result is a polynomial whose degree is [Jmore than that of [

e can speak of the derivative at a point. [Je never speak of the integral at a
point, we speak of the integral of a function over an interval on which the integral
is defined as will be seen in Section 7.7.

The derivative of a function has a geometrical meaning, namely, the slope of the
tangent to the corresponding curve at a point. Similarly, the indefinite integral of
a function represents geometrically, a family of curves placed parallel to each
other having parallel tangents at the points of intersection of the curves of the
family with the lines orthogonal (perpendicular) to the axis representing the variable
of integration.

The derivative is used for finding some physical quantities like the velocity of a
moving particle, when the distance traversed at any time # is known. Similarly,
the integral is used in calculating the distance traversed when the velocity at time
t is known.

Differentiation is a process involving limits. So is integration, as will be seen in
Section 7.7.
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[T]1 The process of differentiation and integration are inverses of each other as
discussed in Section 7.2.2 (i).

| EXERCISE 7.1
Find an anti derivative (or integral) of the following functions by the method of inspection.
1. sin2x 2. cos [x 3. ex
4. (ax [1b)* 5. sin 2x O0e™

Find the following integrals in Exercises [Jto 2[t

U
6. [Cernnax 7 [FEO e 8 [@ +bxeo)de
X

2 n 2
X 0 x +[x" =L
9. j(zxz te )dx 10. j[\jx _ﬁJ dx 11. J‘de

[}
x +lx+L x'—xT+x—0
12 |—F——a 13 [T a4 [(—x0)Vxdx
'[ \/; '[ x -0 '[( )
15. [Va(x+2x+ D 16. [(2x—Tcosx+e")d
17. j(2x2—Esinx+[\/;)dx 18. jsecx(secx+tanx)dx
2
sec X 1
1. J——dr g0 [2MX gy
cosec” x cos? x

Choose the correct answer in Exercises 2[land 22.

e C
21. The anti derivative of (\/; + \/—J equals
X

0 O 2

(A) “x +2¢24C @) 2x +2¢4c
C o2
O O O O
i i [ i [ =
©) %xz +2x2+C (D) Exz +5x2 +C

O

L
22. If % f(x)=Tx —— such that £(2) [ (1 Then f(x) is
X

w wal2 O e D2
x- 8 x 8
x 8 x 8



ooa MATCEMATICS

7.3 Methods of Integration

In previous section, we discussed integrals of those functions which were readily
obtainable from derivatives of some functions. It was based on inspection, i.e., on the
search of a function F whose derivative is f which led us to the integral of /. Jowever,
this method, which depends on inspection, is not very suitable for many functions.
Cence, we need to develop additional techniques or methods for finding the integrals
by reducing them into standard forms. [rominent among them are methods based on:

[1 Integration by Substitution
2. Integration using [artial Fractions
[1 Integration by [arts
7.3.1 Integration by substitution
In this section, we consider the method of integration by substitution.

The given integral j S (x) dx can be transformed into another form by changing
the independent variable x to ¢ by substituting x Cg (¢).

Consider 10 [ f@)dx

Tt x Cg(f) so that % Tg(0).

[e write dx 0g'(t) dt

Thus 10 [f()dr=f(e@) gy dt

This change of variable formula is one of the important tools available to us in the
name of integration by substitution. It is often important to guess what will be the useful
substitution. [sually, we make a substitution for a function whose derivative also occurs
in the integrand as illustrated in the following examples.

Example 5 Integrate the following functions w.r.t. x:

@ sinmx (i) 2xsin (2 010)

_ tan" Jxsec®x ~ sin(tan” x)
(iii) NS (iv) T 12
Solution

(1) Oe know that derivative of mx is m. Thus, we make the substitution
mx [t so that mdx [ dt.

. e . 0 C
Therefore, jsm mx dx =—j51n tdt [1 ) —costJC I —cosmx IC
m m m
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(i) Derivative of x* [] []is 2x. Thus, we use the substitution x> [1 [1[]¢ so that
2x dx Tdt.

Therefore, j2x sin (x* +E)dx=jsintdt 0 Ocost [1C [lcos (x> 1D [1C

O

— .03 [
(iii) Derivative of /x is Ex 2=

2+/x

dx = dt giving dx [12¢ dt.

. Thus, we use the substitution

]
2Jx

J-tan[ x sec? \/; 2¢tan fsec’t dt
dx = j

\/;=tso that

Thus, 112 [tan't sec’t dt
e J
Again, we make another substitution tan ¢ Ju so that sec* t dt [ldu
O
Therefore, 2 jtan “tsec’tdt=2 ju[ du 02 u? +C
2 0 .
O - tan 7+ C (since u [Itan ¢)
2 4 .
[Etan X +C(smcet=x/;)
tan' +/x sec’ 2
[Jence, j ol \/;dx O —tan[\/;+C
Jx C

Alternatively, make the substitution tan~/x = ¢

(iv) Derivative of tan~ x= > Thus, we use the substitution

[Hx

dx

tan'" x []¢ so that O dt.

T x?

sin (tan~ x)
T x?

Now, we discuss some important integrals involving trigonometric functions and
their standard integrals using substitution technique. These will be used later without
reference.

Therefore , J dx = jsin tdt 11 [cos ¢t [IC cos(tan"'x) [1C

(i) jtan x dx =log|sec x|+ C

[le have

sin x
dx

jtanxdxzj

COS x



om MATCEMATICS

Cut cos x [ so that sin x dx [ Cdt
Then jmnxdx:_j%:_log|t|+cz_1og|cosx|+c
or [tan x dx =log|sec x| + C

(i) [cot x dx=log|sinx|+C

COS x

Oe have jcotxdxzjsinx dx

Cut sin x [0¢ so that cos x dx [ dt
dt
Then jCOthX=J7 O 10g|t|+C O 10g|sin x|+C

(iii) jsecxdx=log|secx+tanx|+C

[le have

sec x (sec x + tan x
jsecxdxzj ( )dx

sec x []tan x
Cut sec x [tan x (¢ so that sec x (tan x [Jsec x) dx [ dt

Therefore, jsec xdx = J‘% =log | t| 0C Olog |sec X+ tan x| +C

(iv) jcosec x dx =log |cosec x —cot x| +C

e have
cosec x (cosec x + cot x)

jcosec X dx= j
(cosec x +cot x)

Cut cosec x [Jcot x [J¢ so that Ccosec x (cosec x [Icot x) dx Cldt

So jcosec xdx= [j% = [og [7 = Tlog [cosec x + cotx [+ C
2 2
—cot

- Dog|cosec X —co x|+c
| cosec x —cot x |

[]log |cosec x —cot x| +C

Example 6 Find the following integrals:
. . O 2 . sin x [
sin x cos” x dx ——dx —dx
® -[ (it) '[ sin (x + a) (it -[ [+ tan x
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Solution
(i) Oe have

jsin[ x cos’x dx = jsinz x cos®x (sin x) dx
O j([[coszx) cosx (sin x) dx
Cut ¢ Ccos x so that dt [ Tsin x dx

Therefore,  [sin’x cos™x (sin x) dx 71— [(C00¢%) £ dt
&t
2 0

O-|@ Ot )ydt=—| ———|+C

f@ o) ([ [J

] ]
[——cos[x+—cos[x+C

] L

@) [utx Oa O¢ Then dx Odt. Therefore

sin (¢ —

j sin x dxzj a)dt

sin (x + a) sin ¢

dt

sintcosa —costsin a
o :
sin ¢t

fcosa jdt Usin a jcot tdt

U (cos a) t — (sin a) [log |sin t| + C[:I

U (cos a) (x + a) — (sin a) [log |sin (x+ a)| + C[:I
[Jxcosa+acosa—(sina)log |sin (x+ a)| —C.sina

sin x

Clence, _[ dX [1xcosa [sina log sin (x (a)[T]C,

sin (x + a)
where, C JTC_sin a Da cos a, is another arbitrary constant.

j dx _J cos x dx
(iif) [+ tan x COS X +sin x

¢ (cos x Osin x Clcos x [sin x) dx
5] .
COS X +sin x

RN
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cos x [sin x
05 Jd b JORESRE gy
COS x + sin x

J-cosx—smx

COS x +SsIn x

. CoS x —sin x
Now, consider 1= j —dx

COoS X +sin x
Cut cos x [Isin x (¢ so that (cos x [sin x) dx Odt

Therefore 1= J‘% =loglt| + C, [ log |cos x +sin x| + C,

Cutting it in (), we get

U .
jsz[&[—log|cosx+smx|+&
[Htanx 2 2 2 2

[ C, C,
[ 10g|cosx+smx| 2+7

[= o
O l\.)

. C. C
0= [—10g|cosx+smx|+C, C=—"C4=22
2 2 2 7

| EXERCISE 7.2|

Integrate the functions in Exercises [to [7:

2x (log x)2

4. sin x sin (cos x) 5. sin (ax + b) cos (ax + b)

- (0

O %2 : X " x+xlogx

6. Jax+b 7. xJx+2 8. x«/[+2x2

C

9. (x+2)yx?+x+0 10. x 11. N
X+

2
X

[}
12. (x =D x" 13. ———= 14

Q2+0k) " x(logx)"’

15. 16. o2x+0 17. —

O- [x? e



18.

21.

24.

27.

30.

33.

36

tan  x

e
T+ x2

tan® (2x [11)

2cos x — [$in x

[cos x + [8in x

«/sin 2x cos 2x

sin x
[Hcos x

[

[—tan x

(x+0) (x+log x)2

X

19.

22.

25.

28.

31.

34.

37.

e -1

¥+

sec? (7 (k)

[

cos®x (T tan x)*

coS X

/[ Hsin x
sin x

([+ cos x)2

«/tan X

sin x cos x

x sin (tanf [x[)

Hx®

Choose the correct answer in Exercises [8 and []

38

39

. j[[}£+[[xloge[[dx
X"+
(A) (¥ x70C
x\DH [C

(ONEEE

. j % equals

sin” x cos” x

(A) tanx Ocotx OC
(C) tanxcotx JC

equals

20.

23.

26.

29.

32.

35.
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COos \/;
NS

cotx log sin x

O
[H cot x

([+ log x)2

(0) (M x-noc
(D) log (@ +x" OC

(0) tanx Cecotx OC
(D) tan x Ocot 2x 01C

7.3.2 Integration using trigonometric identities
[J hen the integrand involves some trigonometric functions, we use some known identities
to find the integral as illustrated through the following example.

Example 7 Find (i) [cos’xdx (i) [sin2xcos xdx (i) [sin xdx
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Solution
(i) Recall the identity cos 2x [12 cos? x [1[] which gives

4 cos 2x

cos’x [
x 2

2 0 U (]
Therefore, _[cos xdx [ EJ([[COS 2x) dx [ 3 jdx + 5 jcos 2x dx
O i E sin 2x +C
2 C
(i) Recall the identity sin x cos y [ 3 [sin (x Oy) Osin (x Oy)0 (O hy?)

. Ore . .
Then jsm 2xcoskdx [ 5Usm [xdx’jsmxdx]
g g
[]—|——coslx+cosx|+C
2 0

g g
[——coslkxk+—cosx+C
1] 2

(i) From the identity sin Tk [Jsin x [JJsin"x, we find that
[$in x —sin [x
L

sin' x [
. |: |: . |: .
Theref sin xdx []—|sinxdx—— |sin [Xx dx
erefore, j [I [I

g g
[l =cosx+—cos [x+C
0 2

Alternatively, jsin[x dx = jsinzx sinxdx [ j([[coszx) sin x dx

[ut cos x [1¢ so that [Isin x dx [ dt

Therefore, jsin[x dx O —I(D— tz)dt O —Idt +J~t2 dt=—t+t—;+ C

g
O —cosx+—[cos[x+C

Remark It can be shown using trigonometric identities that both answers are equivalent.
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EXERCISE 7.3
Find the integrals of the functions in Exercises [Ito 22:
1. sin®* (2x [J0) 2. sin [k cos [k 3. cos 2x cos [k cos [k
4. sin"(2x + D) 5. sin“x cos"x 6. sinx sin 2x sin [x
. ) [-cosx CoS X
7. sin [X sin 8x 8§, ——— 9, ——
[+ cosx [+ cos x
.2
10. sin x 11. cos 2x 12. — %
[+ cosx
- cos x —sin x
13, Sos2xocos2ay, COSXTMRX s fand2x sec 2x
COS X — COS & [Hsin 2x
LS| ) -2
sin”- x +cos x 2x+2
16. tan'x 17. ———= g, TSR T
sin” x cos” x cos” x
O cos 2x )
19, ——— 200 ——————— 21. sin "(cosx)
sin x cos x (cos x +sin x)
U
22.
cos (x —a) cos (x — b)
Choose the correct answer in Exercises 2[Jand 2]
-2 2
23. jw dx is equal to
sin” x cos” x
(A) tanx Ocotx 0C (0) tan x Ccosec x 1C
(C) Otan x Dcotx 0JC (D) tanx Osecx OC
24. J ¢ (D+ x) dx equals
cos’(e*x)
(A) [cot (ex®) [1C () tan (xe*) [IC
(C) tan (e) [1C (D) cot(e) [1C

7.4 Integrals of Some Particular Functions

In this section, we mention below some important formulae of integrals and apply them
for integrating many other related standard integrals:
1

dx xX—a
=—-Ilo +C
M sz—az 2a & x+ta
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at+x

j dx =ilog
a*—x* 2a

Q) +C

a—x

1., x
———=—tan —+C
@ Jaya=

“) J‘%=log‘x+\/xz—a2 +C
dx . -

(5) jﬁ=sm 1§+C

(6) j—z‘b‘ : =log‘x+\/x2+a2 +C
X" ta

[Je now prove the above results:

U U

(1) Cehave Xt —d? :(x—a)(x+a)

[g{w}g{i E }

2a| (x—a)(x+a) 2a | x—a x+a

Therefore, J‘%Z_EU dx _J‘ dx }

—-a 2a | x—a x+a
O
[2—[log|(x—a)[—log|(x+a)EI+C
a

[—[log almil e

2a

xX+a

(2) Inview of ([) above, we have

_[_[{w} z[ 0 [}

0— +
(a+x)(a—x) 2ala—-x a+x

a’ Ox* 2a
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Therefore, J‘azi [—[U d +j dx }

Cx? 2a | a—x a+x
O
[2—[—logm—xEHogB1+x[[+C
a

a+x

O
—1lo +C
[2a g

a—Xx

The technique used in (1) will be explained in Section 7.L

(3) Cutx Uatan 0. Then dx Ua sec® 0 do.
J a sec’ 0d0]

dx
Therefore, j 2

X’ +a’ a* tan’ T+ a’

g g g
—J‘d[z—[+C=—tan*[£+C

a a a a
(4) Let x asecO. Then dx [(a secO tan6 do.
a sectanJd[

Therefore, j \/7 -[ m

0 jsec[a’[z log |sec[ [tan[] e

2

[ log S — —0+C.

D log| x +/x* —a’ —10g|a|+C[

[ log| x +~/x* —a®| IC, where C [IC Llog lal]
(5) Letx Ca sind. Then dx Ca cosd do.

=

Y
Q

Therefore j 0 J‘ acostldl’
’ Ji Ji—a*sint

o fanoonc osine 24 c
a
(6) Letx Uatan6. Then dx Ua sec?6 doO.

a sec’1dr]

Therefore, .[ m - '[ m

O jsec[d[[log |(secu+ tanL)| +C-
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+C,

[2
- log 2y x—2+[
a \Va

7 log|x ++x* +a*|—log|a|+C,

(1 log|x +Nx* +a? +C, where C [1C [log al]

Applying these standard formulae, we now obtain some more formulae which
are useful from applications point of view and can be applied directly to evaluate
other integrals.

dx .
To find the integral '[ax2+ bx+c’we write
[2 b c} H bJZ (c b? H
ax: Obx Dca| X" +—x+—|=a|| x+— | + ———
a a 2a a [a
b . b 2
Now, put x+2—=tso that dx [ dt and writing ——§=ik . Oe find the
a a

. & dt . . e b
integral reduced to the form P e depending upon the sign of ¢ 2
and hence can be evaluated.

dx . .
To find the integral of the type j— , proceeding as in (7), we
2
Vax“ +bx+c

obtain the integral using the standard formulae.

To find the integral of the type IM
8 P ) o ibxte

constants, we are to find real numbers A, [] such that

, Where p, g, a, b, c are

px Ug [Adi(ax2+bx+c) O00A (Qax+b) OC
X

To determine A and [, we equate from both sides the coefficients of x and the
constant terms. A and [] are thus obtained and hence the integral is reduced to
one of the known forms.
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(10) For the evaluation of the integral of the type J-—(px to & we proceed
2 b
vax® +bx+c

as in ([) and transform the integral into known standard forms.
Let us illustrate the above methods by some examples.

Example 8 Find the following integrals:

0 o2 i |2
1 o il ——

X’ -0 V2x—x*
Solution
X —
X+

8

dx dx 1
i) Leh = -1 +C by 7.0(D0
(i) Clehave sz L sz 2 0g a y 7.0(0)

&
(ii) J\/2x—x2_'[\/[—(x—[)2

(ut x 00 ¢ Then dx [dt.

Tsin” (£)+C by 7.L(D

Therefore, j dx O j dt
\/ 2x—x° \/ 7
Tsin (x OD)+C
Example 9 Find the following integrals :
dx y dx R
o lrhs o e e Ims

Solution
(1) Dehave x? [k + (110X Olx OO OO0 Qe D102 010

dx 0
So, B dx
© '[xz—[x+[[ J‘(x—[)2+22
Let x JOO¢ Then dx Odt
dx dt O, .t
=—tan —+C
Therefore, sz—[x+[[ O jt2+22 > > by 7.0(D0
|: 7[ -
[I—tan ——+C
2
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(i) The given integral is of the form 7.0](7). [J e write the denominator of the integrand,

) , Ox [T
W+ x—L O +—-—

U L
TV (72
oY x+—[ |5/ | (completing the square)
dx [ dx
s [ Dol

(=5 -(7)

1]
Cut x+—[=t, Then dx [ dt.

dx O dt
Therefore, jz— U=l—7—=
SR S
O
7
0 -5
O log = +C- by 7.031)C
[(X2x— t+—
O
el
Lo "o +C
X+—+—
0 0
(k-
—1lo +C
[[7 g T+ o
0 [(x—2 O L
—1lo +C +—log—
[[7 g x+0 T g[
0 (x—2 O L
—lo +C C.+—log—
[[7 g 0 ,where C 1 C Uog[
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Gi) Ceh I dx _I dx
il ave =
© \/sz - \/[(xz _296]
L
] & leting th
NG \/( [Jz ~ (completing the square)
x_ J— J— J—
t L

g
Cut x——[=f.Thendx O dt.

Therefore,

dx REN -
Nl e
t_

0 0
[T[k)g t+ tz—(—[J +C by 7.(D) ]

[

O = log + 40X

— X—— _Z
NiE 0
Example 10 Find the following integrals:

. j x+2 d . j x+ [
O e ® \/7@‘2

Solution

(i) Osing the formula 7.0J(0), we express
x[02 [Aj (2x +Dc+[)+[ DA(k+D+LC
Equating the coefficients of x and the constant terms from both sides, we get

C C
(A D0Oand A2 or ALl— and [ [ —

5
x+2 L+
Therefore, jm '[2x Okt O +5.[m
[—[I[+£Iz (say) - (D)
O 2
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Inl,put2x? (10x (1010t so that ([x [10) dx [1dt

Therefore, I [J‘%zlog|t|+C[

M log 2x* + [x+ 14 C . (2

q . I dx O dx

an g 5 =7

2 2x +x+0 2 x2+Dc+E

2
0 dx
[EJ

e dt o
I EEJ 7 [ 26 +C, By 7.0(0)0
t2+(j 2%
) 2
N 0 .
[] tan 2(x+EJ[C2 [] tan (2x+ D)DC2 .. (D

Osing (2) and (0) in (D), we get

j—2x+2 dxz—Elog‘zx2+[x+[‘+—[tan’[(2x+[)+c
2x° + e+ U 2

C, C
where, Co—+-—=%

o 2

This integral is of the form given in 7.7J([T). Let us express

d
x 000 Ad—(E—Dc—xz) OCOA (0002 OO
X

Equating the coefficients of x and the constant terms from both sides, we get

L
02A O0and OOA OO OO e, AD —5 and 0 00
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= 2x dx

Therefore, j all dx [__.[ .[
V= —x7 \/[ [k — \/[ - x7
[——[ I 0L - (D

2
In1, put 000 Ox? O, so that (D0 02x) dx Ddt.

I[j\/ij

02N 0=k —x" +C_ e

Therefore, N C

Now consider

I [J' dx ZJ' dx
N Y (RN T
Cut x (12 ¢, so that dx [dt.

[

Therefore, L0 j\/— =sin G, by 7.0(D0
2 -

O sin’[xJr2

+C, - (D
Substituting (2) and ([) in (), we obtain

ox+2
j%z_«/[[a [x? [sin [%+C,where c=c2_%
U-[k—x

|EXERCISE 7.4 |
Integrate the functions in Exercises [to 2[]
[x? 0 , 0
2, T B
x 4+ NENE (2—x)2 +L
O 5 s 6 x*
‘/[—2[)(2 T 2x" T o-x"
x—L x2 sec’x

8. ——— 9. T/——
x*-C x“+a" Vtan®x+ [
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(] N (]
10. ,—x2+2x+2 11. 02 + Ort L 12. Lkl
B oy e s
’ (x—[)(x—2) ’ \/8+[x—x2 . (x—a)(x—b)
Lx+L x+2 x=2
16. —,—2x2+x—[ 17. ,—xZ—E 18. —[+2x+[x2
[(x+7 x+2 x+2
19, ———— 20. — 21, ——
(x—[)(x—[) Tx—x? VX +2x+ T
x+LC (x+ 1

22, —5———— 23. .
x> —2x—1 N2 T+0T

Choose the correct answer in Exercises 2[Jand 2[]

24. J‘ZL equals
x°+2x+2

(A) xtan"(x 0D OC (0) tan"(x 0D OC
(C©) xODtan'x OC (D) tan''x OC
25. J‘Lequals
N —
(A) —EsinE[[ DCS_SJJFC (0) gsin[[[gx[_ [J+C
_ 0. fx-8
© —Esin[[[ch 8J+C (D) Esm [ - J+C

7.5 Integration by Partial Fractions

Recall that a rational function is defined as the ratio of two polynomials in the form

[(x)) , where [J(x) and [J(x) are polynomials in x and [J(x) # [ If the degree of [(x)
x

is less than the degree of [J(x), then the rational function is called proper, otherwise, it
is called improper. The improper rational functions can be reduced to the proper rational
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functions by long division process. Thus, if E(X)) is improper, then ™ =T(x)+ L)
x

((x) Ox)’

(x)
O(x

where T(x) is a polynomial in x and is a proper rational function. As we know
how to integrate polynomials, the integration of any rational function is reduced to the
integration of a proper rational function. The rational functions which we shall consider
here for integration purposes will be those whose denominators can be factorised into

, , () ()

linear and quadratic factors. Assume that we want to evaluate |— — dx, where
O(x) O(x)

is proper rational function. It is always possible to write the integrand as a sum of
simpler rational functions by a method called partial fraction decomposition. After this,
the integration can be carried out easily using the already known methods. The following
Table 7.2 indicates the types of simpler partial fractions that are to be associated with
various kind of rational functions.

Table 7.2
S.No. | Form of the rational function Form of the partial fraction
1. | X1 a0 B L, 0
(x[a) (x[b) x—a x-b
A O
5 px+q N .
(x[a)Z X—da (x_a)
3 pxt+qx+r A N O N C
’ (x Da)(x—b) (x—c) x—a x-b x-c
4. pxigx+r A n O —+ C
(x Da)? (x—b) x—a (x-a)" x-b
s X’ Hgxtr A mxOC
(x Da) (x* +bx +c) x—a xX*+bxtc
where x? [1bx [1c cannot be factorised further

In the above table, A, [Jand C are real numbers to be determined suitably.
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dx

Example 11 Find '[(x+[) x+2)

Solution The integrand is a proper rational function. Therefore, by using the form of
partial fraction [Table 7.2 (i)[)we write
0 A O
0 +
E+D(x+2) x+0 x+2

-

where, real numbers A and [] are to be determined suitably. This gives
O0A (x 02) OO0 (x D).
Equating the coefficients of x and the constant term, we get
A 000
and 2A 0000
Solving these equations, we get A [lland [J (J010]
Thus, the integrand is given by

U - U N 0
@+D@E+2) x+0 x+2

Theref: j dx Ej dx _J- dx
erefore, —(x+E)(x+2) _x+[ 12

O 10g|x+[[—log|x+2|+C

X+
+C
x+2
Remark The equation () above is an identity, i.e. a statement true for all (permissible)
values of x. Some authors use the symbol =[to indicate that the statement is an

identity and use the symbol [MTto indicate that the statement is an equation, i.e., to
indicate that the statement is true only for certain values of x.

7 log

2
. x“+0
Example 12 Find jz— dx
x"—Lk+L

2

Solution [ere the integrand PR is not proper rational function, so we divide
x J—

x2 [1 by x* [k [1[]and find that
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2 —0O —O
B Y VO P
Coxrl o Xexdl G-DG-D)

Let [x—[ - A N C
© -2 (-0 x-2 x-1[
So that Sy OO0A (x 0D OO0 (x TJ2)

Equating the coefficients of x and constant terms on both sides, we get A T[] 1]
and CAA 0J200 (0T Solving these equations, we get A (1] and [J [J 1]

x40 O [
Thus, - 0= +
x —[k+L x—2 x-L
2
x° 4[]
Therefore, ———dx O |dx-0O
sz—[x+[ '[ J‘x—
Ox OOlog x 02 M [Mlog [x OOMIC.
(x-2
Example 13 Find jz—dx
(x+D"(x+D

Solution The integrand is of the type as given in Table 7.2 (). [J e write

(x-2 A 0 C
2 u + 2t
x+D"(x+0D  x+0 x+0D)° x+L
So that MR OAEDDEODDOIOEODOC (xO0D?
DA O 0D 00 00D OC (2 02x 00)

Comparing coefficient of x2, x and constant term on both sides, we get
AOCUOOMADOODO2C OOand CA O[T OC 002, Solving these equations, we get

A= E[ = - and C= L Thus the integrand is given by
2 C

x—2 (1] 3 ] 3 [T
(x+[)2(x+[) S et D) 2(x+E)2 Tt D)

Therefore,

[
'[(x+[) (x+[) J‘x+[ 2 (x+[) __'[x+[

[E[[log|x[[|+ —E[[log|x+[|+c

U
2(x 00
U

= + [1C
2(x 00

—1lo
[[ g

x U0
x 00




ma MATCEMATICS

2

x
Example 14 Find Imdx

2

Solution Consider # and put x* [y.
(x*+Dx"+0)
2
Then 3 . 3 0 -
@ +DE"+D  +D0@+D
[ rit J U A + =
o E+DE+0)  y+ el
So that yOA@ODOOWEOD

Comparing coefficients of y and constant terms on both sides, we get A (11 [ [
and CA 000 O] which give

g C
All—— and [=—
g C

™ x? . 0 . 0
us, @+ +0) @ +D O6E+0)
2
d O¢ dc O d
Therefore, I% [——j 5 +—j 2x
@ +DE"+D O x?+0 DY x*+0

O g 0O
] ——tan Xx+—x—tan_ [£+ C
O o 2 2

o - 2
[]——tan~ Xx+— tan Zic
O O 2

In the above example, the substitution was made only for the partial fraction part
and not for the integration part. Now, we consider an example, where the integration
involves a combination of the substitution method and the partial fraction method.

(Csin ¢ —2) cos ¢ J
[—cos’¢— Lsin ¢

Example 15 Find I

Solution Let y [sin¢
Then dy Ocosd do
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Therefore, .[ (Dsin(]) _ 2) cos¢ do 1 jM

- cos*p — [Isind (= yH) =Ly
y—-2
—d
['[yz—[y+[ Y
y—-2
[jy—zzl(say)
(v-2)
N it yo2 AL b by Table 7.2 (2)1
ow, we write y Table 7.
(y-2) »=2 (-2
Therefore, 02 0A(y 02) 00

Comparing the coefficients of y and constant term, we get A [J Cand [0 [12A (172,
which gives A [0 Jand 0 0]

Therefore, the required integral is given by

0 0 dy dy
—0O0——I[d 0 o
TR P (e
[Dlog|y—2|+[[— - ]+C

y—=2
[[log|sin¢—2|+—[+c
2—sin ¢
U

U Clog (2 —sin ¢) + 2—¢ [1C (since, 2 Osin ¢ is always positive)
—sin

x2 + x+ldx

Example 16 Find .[—2
(x+2)(x"+D

Solution The integrand is a proper rational function. Decompose the rational function
into partial fraction [Table 2.2( D) rite

X2 +x+0 A  xOC
2 O T
E*+DE+2)  x+2 (x"+D

Therefore, X Ox DODA @ OD O(Ex OC) (x 12)
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Equating the coefficients of x?, x and of constant term of both sides, we get
ADOD0O0 20 0C O0Oand A J2C O Solving these equations, we get

A=—[, [=%andC=£
l 0 L

Thus, the integrand is given by

0
X x+l o0 +EX+E o0 +[[2x+[}
G+ (x+2)  Ox+2) ¥ +0 Cx+2) C\x?+0
2
x +x+U [
Theref: _ —
eretore, '[(xzDD)(x+2) J‘x+2 09 x? +[ '[x +[

0 0 ) o,
[—[log| x+2|+—[10g‘x +[‘+Etan x+C

EXERCISE 7.5 |
Integrate the rational functions in Exercises [to 2]
X C Lk -0
1. —————= 2. = 3.
x+D(x+2) x*—LC x-DEx-2)(x-D
X 2x - x?
4. 5. 3 6. ———
x-D(x-2)(x-0D X +k+2 x (C+2x)
X X [k+ 0
P S — 8. /= 9. T2 -
(" +0 (x L0 (=07 (x+2) ¥ —xt-x+l
10 2x -1 " L > x x4l
TP =D @x+D) " @+DE*-D XL
2 x—-_ C
13. (=x) () 14. (x+2) 15. 0L
U

16. (" +D) Mint: multiply numerator and denominator by x * " and put x” (¢ [J

COS x

. - - (Mint : Cut sin x D¢
17 (O0sin x) (2 Osin x) mt: Lutsim.x 7
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T+ ET+D) DT +D Tx(x-D
C
21. @ —0) (Mint : Cut e* ¢
Choose the correct answer in each of the Exercises 22 and 2]
2 2 qual
ey equals
(x=0)’ (x-2)°
(A) log +C (D) log +C
X — x—U
x—U :
(C) log (E) +C (D) 10g|(x—[)(x—2)|+C
23. j* equals
x(x=+D
(A) 10g|x|—5[10g () oc (D) 10g|x|+5[10g Cunale

0
(C) —log |x|+5[10g * D) OC (D) 510g|x|+10g (* D) 0C

7.6 Integration by Parts

In this section, we describe one more method of integration, that is found quite useful in
integrating products of functions.

If u and v are any two differentiable functions of a single variable x (say). Then, by
the product rule of differentiation, we have

d dv  du
— W) Ju—+v—
dx dx

Integrating both sides, we get
uv [ J‘uﬂ dx + J‘v@ dx
dx dx
dv du
or J‘uadx ] uv—jvgdx .. (D

d
Let u T f(x) and av g (x). Then

% [f"(x) and v [J _[g(x) dx
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Therefore, expression (0) can be rewritten as

[£00) gty ax 1 £ (o[ ) dx— 1] ) derf(x) dx
ie., [reg@dx 0 f@)[g @) de—[rf () [gx) dxl dx

If we take f'as the first function and g as the second function, then this formula
may be stated as follows:

“The integral of the product of two functions = (first function) x (integral
of the second function) — Integral of [(differential coefficient of the first function)
x (integral of the second function)]”

Example 17 Find jx cos x dx

Solution [Cut f'(x) Dx (first function) and g (x) Ccos x (second function).
Then, integration by parts gives

jx cosxdx T xjcosxdx—j[%(x) jcosxdx[dx

0 xsinx—jsinxdx Lxsinx [cosx [IC

Suppose, we take f(x) Ocos x and g(x) Ox. Then

jx cos x dx [] cos xjx dx — j[%(cos X) jx dxldx

2 2
7 (cos x) X, jsin o
2 2
Thus, it shows that the integral jx cos x dx is reduced to the comparatively more

complicated integral having more power of x. Therefore, the proper choice of the first
function and the second function is significant.

Remarks
(1) It is worth mentioning that integration by parts is not applicable to product of
functions in all cases. For instance, the method does not work for j\/; sin x dx .
The reason is that there does not exist any function whose derivative is

\/; sin x.

(i) Observe that while finding the integral of the second function, we did not add
any constant of integration. If we write the integral of the second function cos x
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as sin x [Jk, where k is any constant, then

jxcosxdx O x(sinx+k)—j(sinx+k)dx
7 x (sin x+ k) — [ (sin x dv — [ k dx

T x(sin x+k)—cos x — kx+C [ xsinx+cos x+C

This shows that adding a constant to the integral of the second function is
superfluous so far as the final result is concerned while applying the method of
integration by parts.

(ii)) [sually, if any function is a power of x or a polynomial in x, then we take it as the
first function. Jowever, in cases where other function is inverse trigonometric
function or logarithmic function, then we take them as first function.

Example 18 Find jlog x dx

Solution To start with, we are unable to guess a function whose derivative is log x. (e
take log x as the first function and the constant function [Jas the second function. Then,
the integral of the second function is x.

d
O logx.0) dx [ log x |Cdx — | 3— (log x) | Cdx[ dx
ence, j(ong x g j jdx( g )j
U
[(10gx)~x[j—xdxleogx—x+C.
X
Example 19 Find jx e“dx

Solution Take first function as x and second function as e*. The integral of the second
function is .

Therefore, jx e'dx [1xe" - j[' e'dx [xe e [IC.

xsin~x

Example 20 Find J\/[—z dx
X

Solution Let first function be sin '"x and second function be >
[x

First we find the integral of the second function, i.e., j =
(x

Cut ¢ (X2 Then df 01 [12x dx
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x dx

_xdx _ Uradt NN
Therefore, J‘E O 2.[\/; 0 [\/_ [—x

-
Uence, jf/s[n_l_x:dx 0 (sin*Ex)(_ \/[—xz)—j [_[xz (=~ xz)dx

N —~N=x?sin" x+x+C 0 x—~-x"sin" x+C
Alternatively, this integral can also be worked out by making substitution sin""x 16 and
then integrating by parts.

Example 21 Find jex sin x dx

Solution Take e* as the first function and sin x as second function. Then, integrating
by parts, we have

I= jex sin x dx =e"(—cos x) +jexcos X dx

O0e" cos x 01 (say) .. (D
Taking e*and cos x as the first and second functions, respectively, in I , we get

[ De'sinx— jexsin x dx
Substituting the value of I in (), we get
I 00e cosx Jersinx O or 21 Te* (sin x [lcos x)

X

[Jence, IO Ie" sinxdx=%(sin x—cosx) [1C

Alternatively, above integral can also be determined by taking sin x as the first function
and e* the second function.

7.6.1 Integral of the type jex Of (x) f" (x)Ldx
e have 10 [ 0fe) 0/ @) dx 0 [e f(x)dr D] e £/ dx
01+ [ @) dx, where I 0 [e* f (x) dx (D
Taking f(x) and e* as the first function and second function, respectively, in I and
integrating it by parts, we have I [1f(x) e*— j f'(x)e*dx+C

Substituting I _in (0), we get
10 /@)= [f'x)e'dr+[e*f(x)dx+C e f(x) 1C
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Thus, [e £+ Fedx = & fx)+C
Example 22 Find (i) jex (tan™ x + ) dx (ii) I(x( EDD))e dx
Solution

(i) e havel [jex (tan” x+ > ) dx

[ x

Consider f(x) Jtan

Thus, the given integrand is of the form e* [f (x) O/ '(x) ™

U
Therefore, 1= jex (tan™ x + >)dx [etan''x [IC
[+ x

(i) e have 1= '[(xxEDD))e =I %Eﬂ

- [
= Ie E x” = j [dx
(x UD)? x[[) x[[ (x[[)
x—[] 4 2
Consid x) =——, then Sx)=
onsider f(x) L (+ )
Thus, the given integrand is of the form e* If (x) Of'(x)™
2
+ [ U
Therefore, J ol Sedx= 1”4 C
(x+D X e
| EXERCISE 7.6
Integrate the functions in Exercises [Jto 22.
1. xsinx 2. xsin [k 3. X2 e 4. xlogx
5. xlog2x 6. x*logx 7. xsin'x 8. x tan"x
. xcos  x
9. xcos' x 10. (sin''x)? 11. > 12. x sec’x
L=x

13. tan"x 14. x (log x)? 15. (x> D logx



28 MATCEMATICS

xe* o CHsin x
: e ———
16. e* (sinx [cosx) 17. (Crx)’ 18. It cos x
19 X(EE [J 2, &D€ 21, e i
R w-He
. ¥ xz . ()C—Du . e smx

22. sin[( 2sz
[ x

Choose the correct answer in Exercises 2[Jand 2[]

23. .[xze" dx equals
0,
(A) _[ex +C (D) —e +C
C C
O 0
—e* +C —e* +C
© 5 (D) e

24, jex secx (CHtan x) dx equals

(A) efcosx OC (0O) e*secx OC
(C) ersinx OC (D) etanx 0OC

7.6.2 Integrals of some more types
Cere, we discuss some special types of standard integrals based on the technique of
integration by parts :

® j\/xz —a? dx (ii) j\/xz +a* dx (iii) j\/az —x? dx
() Let I=[Vx’—a’ dr

Taking constant function [Jas the second function and integrating by parts, we
have

0o 2
[0 xvVx?—a® — E—Xxdx

2 2
X —da

2 2 2
/ X —a +a
dx [x xz_az_j

OxANxt—a? - ﬁdx

2
J‘ X
/ 2 2
X —da
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0 )C\/)C2 —-a* —j\/)c2 —a* dx—azj%

dx
X xz—az —I—GZJW
or 21[x\/x2—a2—a2j%
2

or I=j x*—a? dx=§\/x2—a2 —a?log x+x*—a?

Similarly, integrating other two integrals by parts, taking constant function Tas the
second function, we get

2
(ii) I\/xz +azdx=%x\/x2 +a’ +a7log‘ x+vVxt+a?
2
(111) .[Vaz—xzdx=§x\]a2—x2 +a?sin‘1£+C
a

Alternatively, integrals (i), (ii) and (iii) can also be found by making trigonometric
substitution x [(Ja sec in (i), x [a tan® in (ii) and x Ja sin0 in (iii) respectively.

Example 23 Find j\/xz +2x+ L dx

Solution Note that

j\/xz +2x+Odx O j\/(x+E)2 + Odx

Cut x 000y, so that dx Ody. Then

j\/x2+2x+[dx O J‘\/y2+22 dy

0 5 0
0—= +0+—1lo
2y y > g

+C

+C

y+\/y2+E‘+C rusing 7.012 (i)
[EE(x+[)\/x2+2x+ O+ 2 log | x +CH~/x* +2x + [‘+C

Example 24 Find j [ 2x—x” dx

Solution Note that j -2x—x" dx= J\/ - (x+0)? dx
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Cut x OO0y so that dx Ody.

Thus j\/ -2x—x" dx [ J‘\/ -yt dy

0 0. .
Ny e sin [§+C ising 7.012 (iii)

[E[(x+[)\/[—2x—x2 +2sin[[xT+[J+C

|EXERCISE 7.7 |
Integrate the functions in Exercises (to ]

Lo Jo-x? 2. - w? 3o X+ x+ 0
4. NP+ x+l S NI-x-x* 6. x?+ k-1

’ 2
X
7o T x—x2 8. Jx?T+1x 9. D-I-?

Choose the correct answer in Exercises [ 1to [

10. j\/ “H x” dx is equal to

O
(A) %vaxz +510g(x+\/[+x2) +C

2 = 2 2
() E([+x2)2+c (C) Ex([+x2)2+c

2

(D) %\/[+x2 +5[x2 log | x +~/[H x?
11. ij2—8x+7 dx is equal to
(A) E[(x—[)\/xz—Sx+7+[log x—[+\/x2—8x+7‘+C

(D) E[(x+[)\/x2—8x+7+tlog X+ [+\/x2—8x+7‘+c

(o)) E[(x—[)\/xz—Sx+7—[\/510g x—[+\/x2—8x+7‘+C
U U

(D) E(x—[)\/xz—Sx+ —Elog x—[+\/x2—8x+7‘+C

+C
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7.7 Definite Integral

In the previous sections, we have studied about the indefinite integrals and discussed
few methods of finding them including integrals of some special functions. In this
section, we shall study what is called definite integral of a function. The definite integral

has a unique value. A definite integral is denoted by j ’ f(x) dx , where a is called the

lower limit of the integral and b is called the upper limit of the integral. The definite
integral is introduced either as the limit of a sum or if it has an anti derivative F in the
interval [4, bL) then its value is the difference between the values of F at the end
points, i.e., F(b) OF(a). Dere, we shall consider these two cases separately as discussed
below:

7.7.1 Definite integral as the limit of a sum

Let f be a continuous function defined on close interval [a, b[] Assume that all the
values taken by the function are non negative, so the graph of the function is a curve
above the xTaxis.

The definite integral j ’ f(x) dx is the area bounded by the curve y [0f{(x), the

ordinates x [a, x [1b and the xT@xis. To evaluate this area, consider the region TRS1]
between this curve, x[dxis and the ordinates x [Na and x 0b (Fig 7.2).

Y

/

XV/

Fig 7.2

Divide the interval La, bl into n equal subintervals denoted by [x , x [, x , x,[1...,
x  ,xLl.,x ,x[Jwherex [a,x Uallh,x, a2k, ..,x a Urhand

I3

b—a
x b a Linhor n:T' [Je note that as n —[c0, 1 — [
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The region RS under consideration is the sum of n subregions, where each
subregion is defined on subintervals [x  ,x Lr 052, [0, 7.

From Fig 7.2, we have

area of the rectangle (ACILC) [area of the region (ATIDCA) [area of the rectangle
(ADM) (D

OO X, — x, — [ i.e., h — [lall the three areas shown in (') become
nearly equal to each other. Now we form the following sums.

s Oh fx) 00 Of(x, )00 hZ:lf(xr) (2
and S, Q)+ f (o) + .t fo) =R () NG

ere,s and S denote the sum of areas of all lower rectangles and upper rectangles
raised over subintervals [x , x [for » [1[]2, [] [], n, respectively.

In view of the inequality () for an arbitrary subinterval [x_, x [,;we have

s [larea of the region LRS[LILILIS .. (D

As n — oo strips become narrower and narrower, it is assumed that the limiting
values of (2) and (0) are the same in both cases and the common limiting value is the
required area under the curve.

Symbolically, we write

. . b
lim§S, llggosn [larea of the region [RS[1[1[] jaf(x)dx (D

n—»0

It follows that this area is also the limiting value of any area which is between that
of the rectangles below the curve and that of the rectangles above the curve. For
the sake of convenience, we shall take rectangles with height equal to that of the
curve at the left hand edge of each subinterval. Thus, we rewrite (0) as

[ feoax lim b f @)+ f(a+h)+..+ fla+(n ) Al

o [ fdx 0k o) iiilgo;[g(a)+f(a+h)+...+f(a+(n ORT (D)

b Ua

n

— lasn—> w

where h [
The above expression ([) is known as the definition of definite integral as the /imit
of sum.

Remark The value of the definite integral of a function over any particular interval
depends on the function and the interval, but not on the variable of integration that we
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choose to represent the independent variable. If the independent variable is denoted by

b
tor u instead of x, we simply write the integral as j ’ f(t)dt or j f (1) du instead of

b
_[a S (x)dx . Cence, the variable of integration is called a dummy variable.

2
Example 25 Find j[ (x* +0) dx as the limit of a sum.

Solution [y definition

j”f(x)dx (b D) lim = (f(a)+ f(a+h)+ .t f(a+(n O)VAL
a n—)oon

bla
where, h O
n
. 200 2
In this example, a [11] b (12, f(x) Ux* ([} h= =—
non

Therefore,

(n "D

JR6 40 0 2lim = O+ fC 4 fO) bt fEE

5 20m S04 (G0 +(_(2n—52)2+t}

n—o n n

0
7 2 lim — E([+[+ +[)+ QP+ +..+(2n 2%
S —

0 2 lim — Ez+—([2+22+ A(n 0D

n~)oon n

0 21im Zm 4 2=0n @D,
n—wo p n ]
n—wo n [ n

Hn—>0

L[
0 2lm I+= ([——[) (2[—) 02 [[+E [?
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2
Example 26 Evaluate I[ex dx as the limit of a sum.

Solution Ty definition

R 0 20 22
I[ex de 0QRODlm —|e +e"+e" +...+e "

n—»0 n

2
Osing the sum to n terms of a G.[J, where a (I [] r=¢e” , we have

12

2n
) C Denll _ O] e
J‘exde2hm—L2 [ 21lim ¢
O ol

n—o n n—»00 n =
e"—L el
2(e* h_
0—2 M penp msing lim ¥—=2 —r
2 =0 h
. e"[]
aml 2|2
n
|EXERCISE 7.8 |
Evaluate the following definite integrals as limit of sums.
b o o
1. I X dx 2. I[(x+Ddx 3. szzdx
O O X O X
4. I[(xz—x)dx 5. I_[e dx 6. I[(x+ez ) dx
X =/ ()
7.8 Fundamental Theorem of Calculus 1 yeI.

7.8.1 Area function
[e have defined Ib f(x)dx as the area of

the region bounded by the curve y [ f(x),
the ordinates x [la and x [1b and x[axis. Let x

be a given point in [a, o] Then Ix f(xX)dx X<
a 0

represents the area of the light shaded region ; Fig 7.3
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in Fig 7.0[Mere it is assumed that f(x) T Jfor x € [a, b[Jthe assertion made below is
equally true for other functions as well[J The area of this shaded region depends upon
the value of x.

In other words, the area of this shaded region is a function of x. [l e denote this
function of x by A(x). (e call the function A(x) as Area function and is given by

A= [ fx)dx NG

[ased on this definition, the two basic fundamental theorems have been given.
Cowever, we only state them as their proofs are beyond the scope of this text book.
7.8.2 First fundamental theorem of integral calculus
Theorem 1 Let f'be a continuous function on the closed interval [a, b[and let A (x) be
the area function. Then A'(x) = f(x), for all x € [a, b].

7.8.3 Second fundamental theorem of integral calculus

[Je state below an important theorem which enables us to evaluate definite integrals
by making use of anti derivative.

Theorem 2 Let f be continuous function defined on the closed interval (a4, bCand F be
b
an anti derivative of /. Then ja f(x)dx O[F(x)]2= F (b) - F(a).

Remarks

b
(i) Inwords, the Theorem 2 tells us that ja f(x) dx C(value of the anti derivative F
of fat the upper limit » [value of the same anti derivative at the lower limit a).

(i) This theorem is very useful, because it gives us a method of calculating the
definite integral more easily, without calculating the limit of a sum.

(iii) The crucial operation in evaluating a definite integral is that of finding a function
whose derivative is equal to the integrand. This strengthens the relationship
between differentiation and integration.

(iv) In j ’ f(x) dx , the function fneeds to be well defined and continuous in (@, b

O
. . . . u S
For instance, the consideration of definite integral J , x(x* ()2 dx iserroneous

O
since the function f expressed by f(x) [ x(x* )2 is not defined in a portion

U0 0x O Oof the closed interval (102, [T
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b
Steps for calculating j f(x)dx.

(i) Find the indefinite integral j S (x) dx . Let this be F(x). There is no need to keep
integration constant C because if we consider F(x) [IC instead of F(x), we get
b
[ f(x) dx =(F (x)+ CL} = F(b) + CLTIF(a) + CL=F(b) TF(a).

Thus, the arbitrary constant disappears in evaluating the value of the definite
integral.

(i) Evaluate F(b) [1F(a) [1 [F (x)E'; , which is the value of j ’ f(x)dx.

[Je now consider some examples

Example 27 Evaluate the following integrals:

Q) [, de P e L
((0x2)?
2 xdx ) o n
(iii) j[m (iv) j[[SIIl 2tcos2tdt
Solution

)
(@) Let I=j2[x2 dx . Since sz dx=x—[=F(x)a

Therefore, by the second fundamental theorem, we get

27 8 [T
IDF()OF(Q2Q)=—[-=—
OFF@=—=0==7

Jx

@) LetI= j [[—[ dx . [1 e first find the anti derivative of the integrand.
((00x2)?

O

= 2
[ut [(00x2 =¢. Then [Etx/zdx=dt or \/de: [_[dt

Jx 2jdt E[E}[z [ _F (x)

! s ) s [
(FMx?)
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Therefore, by the second fundamental theorem of calculus, we have

i

[

ul

((0x2) ||

(2[00 afo o]
0| (d27) M08 oo 22 [T

I0FD [F(ng[

2 xdx

(iii) Letlzj[z;:E5Z;I§3

X B [[+ 2
(x+D(x+2) x+0 x+2

Osing partial fraction, we get

j xdx

S0 (x+0) (x+2)

O [10g| x+[|+2log|x+2|=F(x)

Therefore, by the second fundamental theorem of calculus, we have
I OF(2) OF(D OMlog 002 log MNMlog 2 (02 log [T]

2
J00log O0log 2 12 log [0 log (2—7J

(iv) Let I= j [Esin[2t cos2t dt . Consider jsin[2t cos2tdt

C
Cut sin 2¢ Clu so that 2 cos 2¢ dt Uldu or cos 2t dt [ 5 du
So jsin[2t cos2tdt ] —[ju[du
2

0 0.
O 3 Ht[[zgsm[2t=F () say

Therefore, by the second fundamental theorem of integral calculus

I [F(E[) F (1) =§[Bin[g [sin[[[zé
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|EXERCISE 7.9
Evaluate the definite integrals in Exercises [Jto 2]
1. J_[[(x+E)dx 2. Jztgdx 3. Jé([x[[Dcz+[x+[)dx
4. J:usin2xdx 5. jgcos2xdx 6. J‘Eexdx 7. jz[tanxdx
8. J%cosecxdx 9. ji\/% 10. J‘E[j_b;z 11. _[ztxzd)i[
12. choszxdx J-ztxxchc[ _[[[éz;tr[[dx 15. _[[[xexzdx

2 [xz EE 2 0 T, . 2X 2 X
16. J[m 17. J[(2sec X+x +2)dx 18. J[(sm 2[005 2)dx

20k +1[ 0. L Tmx
19. J[x2+[dx 20. j[(xe +sm—[)dx

Choose the correct answer in Exercises 2[]land 22.

21. JHF[ dx equals

2

U hx
A F 2 o = oy
() = () = (© - ™ -
22 -[uumfzxz equals
T T T T
(a) = ) 5 ©) 5 (D) —

7.9 Evaluation of Definite Integrals by Substitution

In the previous sections, we have discussed several methods for finding the indefinite
integral. [ne of the important methods for finding the indefinite integral is the method
of substitution.
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b
To evaluate j f(x) dx , by substitution, the steps could be as follows:

[1 Consider the integral without limits and substitute, y [Jf(x) or x [g(y) to reduce
the given integral to a known form.

2. Integrate the new integrand with respect to the new variable without mentioning
the constant of integration.

[1 Resubstitute for the new variable and write the answer in terms of the original

variable.

[1 Find the values of answers obtained in ([) at the given limits of integral and find
the difference of the values at the upper and lower limits.

In order to quicken this method, we can proceed as follows: After
performing steps [] and 2, there is no need of step [ Cere, the integral will be kept
in the new variable itself, and the limits of the integral will accordingly be changed,
so that we can perform the last step.

Let us illustrate this by examples.

E O _of. 0
xample 28 Evaluate j{[x x +Ldx.

Solution Cut ¢ Cx" O then df U [x" dx.

Therefore,

[lence,

O D
[ N+ mdx O [Vedt [%tz [%(xE+D2

0 2
j_[[x[\/x[+ Odx [ _D
2

[ —

g

2

[ —

g

(xu+[)2}

i

aa

([E+[)5[ S(ERE [)21

oo
22 _r2

L

}[%(2\/5#[—\/5

Alternatively, first we transform the integral and then evaluate the transformed integral

with new limits.
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Let t Ux" [ Then dt [ x" dx.

Note that, when x 000 ¢ OUand whenx O ¢ 2
Thus, as x varies from [I[to [] ¢ varies from [Ito 2

2
Therefore ji[xtxfx[+[dx 0 j[\/; dt
2

200 215 | 2 )

S| =522 0| 2y =—=

dx

Otanx
2
U x

Example 29 Evaluate j

Solution Let ¢ (tan "'k, then dt = dx . The new limits are, when x [J[] ¢ [l [and

T x?

b . . T
when x [J[] tzE. Thus, as x varies from [to [] # varies from [Ito =

T

Ctan'x E[ |- Of w2 n’
Therefore j[ g dXEjEtd{E [ [5 [_E[[ =y
|EXERCISE 7.10 |
Evaluate the integrals in Exercises [Jto 8 using substitution.
0ox z O oo 2x
d. 2 [si - . d.
-[Ex2+[ x 2. j[,/smd)cos bdd 3 j[sm [Drsz x
2 o4
a0 [ Txdx+2 (utx c200) 5. [P
- U [ cos” x
2 dx O d 20 O N
_[ O — 7. J 2—x 8. j [—[—zJez dx
Ox+0OCx X"+ 2x+C \lx 2x
Choose the correct answer in Exercises [Jand [T]
L
— O
9. The value of the integral j E w dx is
- X
O
(A) O () O (©) O (D) O

10. Iff() 0 [ tsintdr, then f'(x) is

(A) cosx Oxsinx (0) xsinx
(C) x cosx (D) sinx Cx cosx
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7.10 Some Properties of Definite Integrals

e list below some important properties of definite integrals. These will be useful in
evaluating the definite integrals more easily.

P [ fde=[" 1@ di
P : j:f(x)dxz [j:f(x)dx.lnparticular, j:f(x)dxz[
P ['r@dv=["f@dc+ [ fx)dx
b b
P, : jaf(x)dxzjaf(a+b—x)dx
P,: jzf(x)dx=j;f(a—x)dx

(Note that [ is a particular case of [1)
P: [ rde=[" fde+ [ f(2a-x)dx
P : jiaf(x)dx=2jzf(x)dx,iff(2a—x)=f(x) and
Oif f(2a Ox) O Of(x)
P () | feyde=2] [ f(x)dx, if fis an even function, i.e., if £("Ix) Cf (x).

(i1) j_aaf(x) dx =1, if fis an odd function, i.e., if f(Cx) OCf (x).

e give the proofs of these properties one by one.
Proof of P It follows directly by making the substitution x [ /7.
Proof of P, Let F be anti derivative of /. Then, by the second fundamental theorem of

calculus, we have j:f(x)dsz(b) F(a)= OF ()~ F () =~ " f(x)dx

[Jere, we observe that, if a (15, then j: f(x)de=10,
Proof of P, Let F be anti derivative of /. Then

j:f(x) dx (F(b) [F(a) (0
[“reydx oF@©) 0 Q)

and jb f(x)dx DF(b) OF(c) (D
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Adding (2) and (), we get [ f(0)dx+ [ f(x)dx=F(B) F(@)= [ f(x)dx
This proves the property L.

Proof of P, Lets[la [1b [Ix. Then dt [1[dx. [Thenx [la, ¢t b and whenx [1b, ¢ [a.
Therefore

[Preyax o -[ " fla+brnar
O ftavn nyde oy )

b
[jaf(a+b[x)dxby[

Proof of P, [ut# [a [x. Then df [1[dx. [T henx L[] # [la and when x [a, ¢ [J[1 Now
proceed as in [,

Proof of P_ [ising [, we have jiaf(x) dx =jzf(x) dx+jjaf(x) dx.

Let t = 2a —x in the second integral on the right hand side. Then
dt [ Odx. D henx Ua, t Ua and when x [2a, ¢t (1] Also x [2a [t.
Therefore, the second integral becomes

jj“f (x)dv 00 a[ fQaCoydi 0 [ fQatnde [ fQax)dx

cence [ f@dx o [ peyde+ [ f2a-) dx

Proof of P, Using [, we have jiaf(x) dx = j zf(x) dx +j zf(2a —x)dx ..(D
Now, if f(2a Tx) Of(x), then (0) becomes

ji f(x)dx [ j[ S(x)dx+] [ S(x)dy=2] [ £(x) dx,
and if f(2a Ox) O0Of(x), then (0) becomes

[“reyax o [ reyd-[ reax=1
Proof of P, [ising [], we have
[ reoyae 0] fede+|” f(x)dx. Then

Let ¢ [0 Ox in the first integral on the right hand side.
dt 0 0dx. Ohen x [0 Oa, t [Ja and when
x 00 ¢ 0O0Alsox O0¢
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Therefore j F(x)dx [0 Eja[ f(Cyde+] [ £(x) dx

D[ dc [T fedr by ) (O
(i) Now, if fis an even function, then (k) [ f(x) and so ([) becomes

j_aaf(x)dx =j[“f(x)dx+j[“f(x)dx= 2f zf(x)dx
(i) If fis an odd function, then f([k) CJCIf(x) and so () becomes

[ rdv=—[ " fdv+ [ frdx=1

Example 30 Evaluate ji‘ x Ox ‘dx

Solution [Je note that x” Llx > Con [} [Tland x" Ox < Oon [ [TJand that
x" x> Uon [1] 211 So by [| we write

j_zt‘ x Ox ‘dx O j_[[(x[ [x) dx+j[[[(x[ [x) dx+j[2(x[ Ox) dx

2
S td [ oo [T Dy d
)C[ )C2 : )C2 )C[ : )C[ )C2 ’
] e IS [y VIS [y o Rl
02 2 O |02
oo O O

0 [(—E [EEJJF(E[ [—9+([[2) [(—E [%J

Example 31 Evaluate I sin® x dx

=il
O

Solution [Je observe that sin® x is an even function. Therefore, by [L (i), we get

T

L n
J © sin’xdx O 2.[ “sin? x dx
[n 0

0
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2.[ ([ cos2x) dx O j E([— cos 2x)dx
O 2 0

O xD—Dsian u[[ [—[sm j[[——[E
2 . o 2 2 02

n xsin
Example 32 Evaluate J‘[[x—;cdx
Hcos” x

. © xsinx
Solution Let I [ j[D—z dx . Then, by [], we have
cos” x

(m—x)sin (m—x) dx
- '[ "4 cos? (1 — x)

j (m— x)smxdx [njn sin x dx O

THcos? x " Hcos®x

S107 j sin x dx
o " Hcos’x

n smxdx
or o prencdr
" Hcos®x

[t cos x (¢ so that sin x dx [dt. D hen x 0] ¢ U Oand when x O, ¢ OO0
Therefore, (by [) we get

O -0 dt el dt
10— : —j ;
2 Y0 [t 290t

L
7 is even function)
S Ht

O [tan[Et]E =7 [tan[[[[tan_[ [] =7 {E[ [[} =7T—[2

0.0 O
Example 33 Evaluate j sin xcos x dx

o . .
Solution Let I [ j_[sm[xcos[x dx . Let f{x) [Isin" x cos" x. Then

f(Ox) Osin" (Ox) cos ' (Cx) O Osin" x cos 'x [ 0f (x), i.e., fis an odd function.
Therefore, by [, (ii), I L[]



INTEGRALS RN

kd .
Example 34 Evaluate j # dx
sin x +coS x
sin' x
Solution Let I [J j —dx .. (D
“sin x+cos x
Then, by [
. T
L sin~ (-~ —x) 0
103 - 2 ——dx [j[—cos L& ..
sin U(E _ x) +COS U(E _ x) COS x+Smn x

Adding (D) and (2), we get

5 sin x+cos x

r—\V_rb\u

21[] dx = jdx

wl;l

" sin" x+cos x

[Cence 1 [E[

T dx
Example 35 Evaluate jn[ ——
- [(H++/tan x

TE

cos x dx
Solution LetI O I

dx E
D+\/tanx '[ \/cosx+\/s1nx -0

coS E+E—x dx
I
T T b
cos| —+——x|+,[sin +——x

j sm X

dx . (2

* sinx +\/cosx @

Adding (0) and (2), we get
210 j;[dX=[x]Tf =

u] O

ola

Then, by [ I j

—la

[E]

r—\l;l

. Oence I=

!_\|F1
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Example 36 Evaluate jglog sin x dx

T

Solution Let I [ jg log sin x dx
Then, by (]
FEEN G S
0 j[ log sm(2 dex—j[ log cos x dx
Adding the two values of I, we get

T

211 jg(log sin x +logcos x ) dx

Y

0 j E(log sin x cos x +log2 —log 2) dx (by adding and subtracting log 2)

0 J‘Ezlog sin 2x dx—J‘Ezlog2 dx (O hy?)

Cut 2x ¢ in the first integral. Then 2 dx Cdt, when x 0] ¢ [0 Jand when x = g ,

t Um.

emn .
Therefore 210 —j log sint dt _z log2
240 2
2 % . T ) .
0 EJE log smtdt—510g2 by [ as sin (r [17) [Isin 7)
0 JE log sin x dx —g log 2 (by changing variable ¢ to x)

T
nl-—log?2
> g

T 0
Tence jglog sin x dx [%logl
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| EXERCISE 7.11 |

Oy using the properties of definite integrals, evaluate the integrals in Exercises [to [T]

10.

12.

15.

18.

19.

[}
N Y « A
5 J-g +/sin x dx 3 J'g sin? x dx
. N . O [}
U {/sinx ++/cosx C

sin? x +cos? x

Hola

2
cos” x dx

J

I 0 3
2 X s [ ke 6. [ |x—Clax

7 sin x+cos x - 2

O r 2
j[x([—x)ndx 8. J‘Etlog (CHtanx)dx 9. j[x\/2—xdx
JE(2 log sin x — log sin 2x) dx 11. J En sin® x dx

2

b3 z 2n
| xdx 13. [ 2 sin’xdx 14. [ Tcos xdx

U Hsin x Oz 0

2

Jx

dx 16. j;log([+cosx)dx 17. jz\/_Jr—xdx
x+vNa—x

Y .
jg sin x — cos x
U [+sinx cos x

j [[|x - [I dx
Show that [ [ f()g(x)dv=2] [ £(x) dx, if fand g are defined as f(x) |f(a "x)

and g(x) Og(a Ox) 00O

Choose the correct answer in Exercises 2[Jand 2[]

20.

21.

T

The value of an (x +xcosx+tan x+0)dx is
2

A) O (o) 2 (O (D) O
The value of J Elog [mJ dx is
= U+ Ocosx

C
(A) 2 (0 = © o« (D) 2
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Example 37 Find JC

Miscellaneous Examples

0S [ +/[+sin [k dx

Solution Cut ¢ O sin Lk, so that df [ Ucos Lk dx

Therefore jcos

Example 38 Find .[(

xu—x)D

O
- I~
[xA/[Hsin [k dszjtzdt

O

02 = 0 >
1=x=(#)? +C 0 —(C#sin [x)? +C
0 o L

i

dx

i
X

Sy

Solution [Je have J(xu——ux)u dx = I—x dx
x

0
Cut [——[z[[x[[=
X

O
t, so that —[dx =dt
X

0

L
Therefore JM

]
x
Example 39 Find J(

Solution []e have

Now express

o b
s=Cfa 0 5l el
0 O O (1] by
x"dx
x—[)(x2+[)
x" O
— O (x+D——
(x-D(*+0D) 4D x'—x*+x-L
O
Jx+D)+—m—
(D) (x-D(x*+D
O A [(x+C

0 +
(x=DE*+D  (x-D (*+D

O

0
j+C

O

- (0

)
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So OOA @200 O(fTx OC) (x 0D
(A D) 2 O(C D) x DADC
Equating coefficients on both sides, we get A 00 C OO0 O 0Dand A OC 0OT]

which give A = = ,[=C= [£ . Substituting values of A, TJand C in (2), we get
2 2
U U 0 x U

G-0(2+) 26-D 2(P+) 22+
Again, substituting (0) in (0), we have

-

x" G0+ 0O 0 x O
(x=D) (x* +x+0D) 2(x-0) 2(*+D 2(x*+D)

Therefore

i

2
U U U

.[ xz dx=X—+x+—log|x—[| C—log (x* +) U—tan" 'x+C
(x=Dx"+x+0D) 2 2 g 2

U
Example 40 Find j {log (logx) +W} dx

Solution Let I= J‘{log (logx) +ﬁ} dx
ogx

[

(log x)*
In the first integral, let us take [Jas the second function. Then integrating it by
parts, we get

) [log (log.x) dx + | dx

1[xlog(logx)—j - xdx+j

xlogx (log x)*
dx dx
O xlog (logx)_'[logx+'[(logx)2 . (D

dx . . .
, take [Jas the second function and integrate it by parts,

Again, consider -[1
ogx

dx X O O
we have I@_Logx DJX{D(logx)z (;j} dx} )
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Cutting (2) in (D), we get

X dx dx X
I=xlog (logx)— — + [ xlog (logx) ————+C
g (log) log x J‘(logx)z J‘(logx)2 g (logx) log x

Example 41 Find j [\/COUC + tanx] dx

Solution []e have

10 j [\/cotx +\/tanx} dx = J\/tanx([+ cotx) dx

Cut tan x [1#, so that sec®x dx [12¢ dt

2
or dx [ tdi
[Ht
O 2t
t| [(H—
Then I[I [ tzJ([+tE)
2o [[+ Ej dt [[+ EJ dt
D2 [ g [ p L
t +10 t2+£ U
tz f—; +2

C U
Cut t—; Oy, so that [["' t_zJ dt Tdy. Then

(-]
t_,
1C 2f%=«/5tanuul+c N

» +(+2) V2 V2

2
[\/Etan[[ il +C O~2 tan " tanx— +C
2t n/2tan x

sin 2xcos 2x dx
N [cos (2x)

Solution Let 1= j w dx

N cos 2x

Example 42 Find j
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[t cos? (2x) [1¢ so that [sin 2x cos 2x dx [1[dt

O O
Therefore I=0— = D— sin [ t)+ C=- —Dsm u{—Dcos2 Zx} +C

f@

Example 43 Evaluate j 2 | x sin (7 x) |dx
-0

xsinm x for —[Kx <[

Solution Cere f(x) 0 [x sin mx [T . C
—xsmnxfor[SxSE

O O
= - C .
Therefore j 2[ Xsinmx dx [ j xsinmx dx +j [2— X sinT x dx

[ . ~ .
[] j x smnxdx—jéx sinT x dx

Integrating both integrals on righthand side, we get

O . | . —
5. Jxcosmx sinm —Xcosmx sinmx |2
J‘chsmnxde{ al L zx} _[x o zx}
- o o -0 b T 0
2 0 O L
n=-|-5-=|==+=
n o n] mon
x dx

Example 44 Evaluate "
P j[azcoszx+bzsin2x

Solution Let1 1 [ X =[" (r—) & (using 1)
olution Le = ; usin
Tatcostx+b*sinx Y U a? cos?(m—x)+ b sin?(n—x) g
dx n x dx
[TCJ[ ) 2 _,[[ 2 2 2 2
cos® x +b?sin’ x a“cos” x+b"sin” x
dx
[nj[ 2 -1

cos® x +b*sin’ x

dx

a’cos’ x +b*sin® x

Thus  210%[ —
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T

A dx s 3 dx
or 10— ==.202 using []
2'[Uazcos2x+b2sin2x 2 Iuazcos2x+b2sin2x( et
T n
- j 0 dx N j 2 dx
O © a* cos® x +b*sin® x = a® cos® x +b*sin® x
O
rn 2 z 2
n J- O secxdx J- 5 cosec xdx
- S a’+b*tan*x Y x a’cot’ x+b?
- O
ooodt -d
mE - puttanx =tand cotx =u
j[a2+b2t2 '[[ 2 2+b2:|( )
bt O O 2
0 l{tanm—} O l{tanmﬂ} o= tanIé +tan 2| o
ab al|, ab b, ab a bl 2ab
Miscellaneous Exercise on Chapter 7
Integrate the functions in Exercises [to 2[]
. — 2 - 3 L Winemutr020
. . . — 77— Wint:[utx [ —
x—x Nx+a+x+b e ax — 2 t
D D , D 0 |
4. — =T 5. T O [Jint: T o0- & —~ ,putx L1
X (x"+0)" x2 +x" x2 +x" x[£[+x[J
X sin x eElogx _e[logx
6. ——>—— 7. —— < 8. ————
(x+D(x*+0) sin (x—a) gllogx _ p2logx
0 cos x 10 sin® — cos® x 1 U
" J=sin?x " [-2sin® x cos® x © cos(x+a)cos (x+b)
x e’ O
12. 13. —————— 14, —5—————
0 x° ((+e)(2+e7) (x"+D " +0)
15. cos'x elogsin 16. e'loe (x" 10) 17.  f' (ax Ob) f(ax O D)™
U sin” vx —cos™"x
18 x e [ [1J

’ \/sin[xsin(x+oc) ©sin”x +cosTWx
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20 ~/x 21 2+sin2xex 55 X 4x+L
© o\ © [Hcos2x T x+DT(x+2)
[2 2
- x”+0log(x*+D—-2logx
23. tan" ? 24, Llos : )-2logx]
+x

Evaluate the definite integrals in Exercises 2[to [T]

n . —sinx o =z 2
’5. J‘ e[ de 26. Iu sinx cosx 5o _[[2 cos” x dx

T . .
= [-cosx Y cos x+sinx cos® x+ [sin® x

Y .
J-E sinx +cosx

I T % sinx+cosx
U [+ [1Jsin 2x

mdngj*/_*/_ 30.

Y

31. j Esin 2xtan” (sinx) dx 32.

J‘n X tan x dc

Usecx+tanx
O
[ - -2 -y
[rove the following (Exercises [Tlto [T)

2 2 O x
34. j 2—=—+10g— 35. j xe'de=L
Cxf(x+D) O C -
0 =
36. j x ' cos xdx=1] 37. jzsinuxdx=g
_ 0 L
r O
38. j[[2tan[xdx=[—log2 39. j[sin_[xdng—[

40. Evaluate j [ez‘D‘dx as a limit of a sum.
[}

Choose the correct answers in Exercises [[to [1]

41. j is equal to
et +e
(A) tan' (e¥) OC (0) tan'"(e*) OC
(C) log (er Te™ OC (D) log(er Oe™) OC

2
42. J‘sz dx is equal to
(sinx +cosx)

L1l .
A ———+C () loglsinx+cosx [+ C
sin x +cos x
(C) logEinx—cosx F+C (D) -

(sin x + cos x)*

[N



43.

44.
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I£f(a 0b Cx) Of @), then [ x f(x) dx is equal to

a+b
2

a+b
2

b—a
2

b b
(A) j CSb-x)dx (1) j S (b+x)d

a+b

b b
(© —= [, f(x)dx (D) —=[ f(x)dx

2x -0

The value of j[[tan[( > j dx 1s

[(Hx—x

(A) [ () [ (C) [T (D) —

Summary

¢ Integration is the inverse process of differentiation. In the differential calculus,

we are given a function and we have to find the derivative or differential of
this function, but in the integral calculus, we are to find a function whose
differential is given. Thus, integration is a process which is the inverse of
differentiation.

d
Let i F(x) = f(x). Then we write Jf(X) dx=F (x) +C . These integrals
X

are called indefinite integrals or general integrals, C is called constant of
integration. All these integrals differ by a constant.

From the geometric point of view, an indefinite integral is collection of family
of curves, each of which is obtained by translating one of the curves parallel
to itself upwards or downwards along the ylaxis.

Some properties of indefinite integrals are as follows:

0 @)+ g e = [ £ () dr+ g (x) dx

2. For any real number £, _[k S (x)dx = k.[f(x) dx

More generally, if f, f,, f, ... , f, are functions and k , k,, ... ,k are real
numbers. Then

[T £+l fy () + o e f, () dx
Tk [ £ detky [ f(0 dx+ ok, [ f (0 dx
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€ Some standard integrals

n+0l

@) ["dx="——+C 000 Carticularly, [dv=x+C
(i) jcosxdx=sinx+C (iif) jsinxdx=Dcosx+C
(iv) jseczxdx=tanx+C (v) Jcoseczxdxchotx+C

(vi) jsec xtanx dx =secx+C

i) | ¢ dr = O LG \(vii) j—”b“—sin-[“c
Vil COSeC X Cotx ax = LICOseC X Vil D -
VI=x

dx -0 dx
i = =-c0s x+C =tan  x+C
i | o ® J—
dx _
(xi) JDHZ =—cot” x+C (xii) jexdx=ex+C
X a* dx _
(s [a'dv=g-—+C (i) [ —sec x4 C
084 xvx? =0
U
(xv) JL =—cosec” x+C (xvi) _[— dx=log [x [+C
xvx* -0 X
€ Integration by partial fractions
Recall that a rational function is ratio of two polynomials of the form _[((x)) ,
L(x

where [(x) and [J(x) are polynomials in x and [ (x) # [] If degree of the
polynomial [(x) is greater than the degree of the polynomial [J (x), then we

may divide [(x) by [ (x) so that ) =T (x)+@, where T(x) is a
O(x) O(x)

polynomial in x and degree of [ (x) is less than the degree of [I(x). T (x)

X)

O(x

being polynomial can be easily integrated. can be integrated by
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x
expressing o ) as the sum of partial fractions of the following type:
x
_ pxtq 0 2 asp
(x—a) (x—b) x—a x-b
px+q A O
P 0 + 7
(x—a) x—a (x—a)
2
px +gx+r A O C
0 + +
C G G-hG-0 T x—a x-b x-c
2
px +2qx+r . A U 4 C
(x—a)” (x-b) x—a (x—a)” x-b
px’ gt o A, xOC
(x—a) (x* +bx+c) x—a x*+bx+c

where x2 [1bx []c can not be factorised further.

€ Integration by substitution
A change in the variable of integration often reduces an integral to one of the
fundamental integrals. The method in which we change the variable to some
other variable is called the method of substitution. [ hen the integrand involves
some trigonometric functions, we use some well known identities to find the
integrals. [sing substitution technique, we obtain the following standard
integrals.

@) Itanxdx=10g|secx|+C (i) Icotxdx=10g|sinx|+C
(iif) Isecxdx=10g|secx+tanx|+c

(iv) jcosecx dx =log | cosecx —cotx | +C

€ Integrals of some special functions

dx O x—a
i =—1Io +C
@® J‘xz—az 2a 2 x+a
dx O a+x dx O _gx
5 | ——=—1 +C =—tan  =+C
(i) J‘az—xz 2a M a—x i) J‘x2+az a n a




INTEGRALS o

=sin [—+C

X+\/X —Cl

(iv) j — =log +C (V) .[\/7

dx _ 2 2
(vi) J‘W—IOgDC-F x“+a +C

€ Integration by parts
For given functions /" and f, we have

jf[<x>~f2<x>dx=f[<x>jﬁ(x)dx—j[%fax)-jmmdx}dx, ie., the

integral of the product of two functions [ first function []integral of the
second function Cintegral of [differential coefficient of the first function [J
integral of the second function] Care must be taken in choosing the first
function and the second function. [bviously, we must take that function as
the second function whose integral is well known to us.

¢ [ )+ () =[e f(x) dr+C
€ Some special types of integrals
2

6] .[ X’ —a’ dx=§\/x2 ~a’ —%log

2

x+Nx’ —a’
(ii) .[ X’ +a’ dx=§\/x2+a2 +a710g x+Vx* +a’
2

0 [T eI T

a

+C

+C

dx dx
iv) Integrals of the types | —————or | ——=———————=can be
) s P '[ax2+bx+c '[\/ax2+bx+c

transformed into standard form by expressing

2 2

ax* Obx Oc O a{xz +2x+£}=c{[x+i) J{E_b_zJ]
a a 2a a 7]
px+qdx ,[ px+q dx

ax +bx+c Nax® +bx +c can be

(v) Integrals of the types ,[
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transformed into standard form by expressing

px+q =A%(ax2 +bx+c)+1=A (2ax+b)+ [ ,where Aand [Jare
determined by comparing coefficients on both sides.

¢ [le have defined I: f(x) dx as the area of the region bounded by the curve

v Of(x), a <x < b, the x[axis and the ordinates x [Ja and x [1b. Let x be a

given point in [a, 5[] Then I: f(x) dx represents the Area function A (x).

This concept of area function leads to the Fundamental Theorems of Integral
Calculus.
€ First fundamental theorem of integral calculus

Let the area function be defined by A(x) [ j : f(x)dx for all x > a, where

the function fis assumed to be continuous on [&, b[LJThen A’ (x) CIf (x) for all
x € la, b[]

€ Second fundamental theorem of integral calculus
Let f'be a continuous function of x defined on the closed interval [a, bTand

. d . .
let F be another function such that a F(x)= f(x) for all x in the domain of

b b
f, then jaf(x)dx=[F(x)+c]a =F(b)—F(a).

This is called the definite integral of f over the range (4, b[Jwhere a and b
are called the limits of integration, a being the lower limit and b the
upper limit.

J
0‘0



