अध्याय 4

गतिमान आवेश और चुंबकत्व

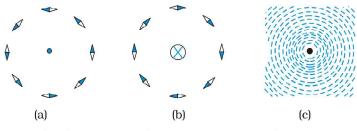
4.1 भूमिका

2000 वर्ष से भी पहले विद्युत तथा चुंबकत्व दोनों ही के बारे में लोगों को ज्ञान था। फिर भी लगभग 200 वर्ष पूर्व, 1820 में* यह स्पष्ट अनुभव किया गया कि इन दोनों में अटूट संबंध है। 1820 की ग्रीष्म ऋतु में, डच भौतिकविज्ञानी हैंस क्रिश्चियन ऑस्टेंड ने, अपने एक भाषण के दौरान प्रयोग प्रदर्शित करते हुए देखा कि एक सीधे तार में विद्युत धारा प्रवाहित करने पर पास रखी हुई चुंबकीय सुई में सुस्पष्ट विक्षेप प्राप्त होता है। उन्होंने इस परिघटना पर शोध आरंभ किया। उन्होंने पाया कि चुंबकीय सुई तार के अभिलंबवत तल में तार की स्थिति के केंद्रत: वृत्त की स्पर्श रेखा के समांतर संरेखित होती है। इस स्थिति को चित्र 4.1(a) में दर्शाया गया है। पर यह देखने के लिए तार में पर्याप्त धारा प्रवाहित होनी चाहिए और चुंबकीय सुई तार के काफी निकट रखी होनी चाहिए ताकि पृथ्वी के चुंबकीय क्षेत्र की उपेक्षा की जा सके। यदि तार में धारा की दिशा विपरीत कर दी जाए तो चुंबकीय सुई भी घूम कर विपरीत दिशा में संरेखित हो जाती है [चित्र 4.1(b) देखिए]। तार में धारा का परिमाण बढ़ाने या सुई को तार के निकट लाने से चुंबकीय सुई का विक्षेप बढ़ जाता है। तार के चारों ओर यदि लौह चूर्ण छिड़कें तो इसके कण तार के चारों ओर संकेंद्री वृत्तों में व्यवस्थित हो जाते हैं [चित्र 4.1(c) देखिए]। इस परिघटना से ऑर्स्टेंड ने निष्कर्ष निकाला कि *गतिमान आवेश* (धारा) अपने चारों ओर एक चुंबकीय क्षेत्र उत्पन्न करते हैं।

इसके पश्चात प्रयोगों की गति तीव्र हो गई। सन 1864 में विद्युत तथा चुंबकत्व के सर्वमान्य नियमों को जेम्स मैक्सवेल ने एकीकृत करके नए नियम बनाए और यह स्पष्ट अनुभव किया कि

^{*} अध्याय–1 में पृष्ठ 3 पर बॉक्स देखिए।

प्रकाश वास्तव में विद्युत चुंबकीय तरंगें हैं। हर्ट्ज़ ने रेडियो तरंगों की खोज की तथा 19वीं शताब्दी के अंत तक सर जे.सी. बोस तथा मार्कोनी ने इन तरंगों को उत्पन्न किया। 20वीं शताब्दी में विज्ञान तथा प्रौद्योगिकी में आश्चर्यजनक प्रगति हुई है। यह प्रगति विद्युत चुंबकत्व के हमारे बढ़ते ज्ञान तथा विद्युत चुंबकीय तरंगों को उत्पन्न, प्रबर्धित, प्रेषित तथा संसूचित करने वाली युक्तियों की खोज के कारण हुई है।



चित्र 4.1 एक सीधे लंबे धारावाही तार के कारण उत्पन्न चुंबकीय क्षेत्र। तार, कागज़ के तल पर अभिलंबवत है। तार के चारों ओर चुंबकीय सुइयों की एक मुद्रिका बनाई गई है। चुंबकीय सुइयों का अभिविन्यास– (a) जब धारा कागज़ के तल से बाहर की ओर प्रवाहित होती है।

(b) जब धारा कागज के तल से अंदर की ओर प्रवाहित होती है। (c) लौह चूर्ण कणों का तार के चारों ओर अभिविन्यास। सुइयों के काले सिरे उत्तरी ध्रुव प्रदर्शित करते हैं। यहाँ भू–चुंबकत्व के प्रभाव की उपेक्षा की गई है।

इस अध्याय में हम यह देखेंगे कि चुंबकीय क्षेत्र किस प्रकार आवेशित कणों; जैसे–इलेक्ट्रॉन, प्रोटॉन तथा विद्युत धारावाही तारों पर बल आरोपित करते हैं। हम यह भी सीखेंगे कि विद्युत धाराएँ किस प्रकार चुंबकीय क्षेत्र उत्पन्न करती हैं। हम यह देखेंगे कि साइक्लोट्रॉन में किस प्रकार कणों को अति उच्च ऊर्जाओं तक त्वरित किया जा सकता है। हम गैल्वेनोमीटर द्वारा विद्युतधाराओं एवं वोल्टताओं के संसूचन के विषय में भी अध्ययन करेंगे।

इस अध्याय तथा आगे आने वाले चुंबकत्व के अध्यायों में हम निम्नलिखित परिपाटी को अपनाएँगे। कागज के तल से बाहर की ओर निर्गत विद्युत धारा अथवा क्षेत्र (विद्युत अथवा चुंबकीय) को एक बिंदु (⊙) द्वारा व्यक्त किया जाता है। कागज के तल में भीतर की ओर जाती विद्युत धारा अथवा विद्युत क्षेत्र को एक क्रॉस (⊗)* द्वारा व्यक्त किया जाता है। चित्र 4.1(a) तथा 4.1(b) क्रमश: इन दो स्थितियों के तदनुरूपी हैं।

4.2 चुंबकीय बल

4.2.1 स्रोत और क्षेत्र

किसी चुंबकीय क्षेत्र **B** की अभिधारणा को प्रस्तावित करने से पहले हम संक्षेप में यह दोहराएँगे कि हमने अध्याय 1 के अंतर्गत विद्युत क्षेत्र **E** के विषय में क्या सीखा है। हमने यह देखा है कि दो आवेशों के बीच अन्योन्य क्रिया पर दो चरणों में विचार किया जा सकता है। आवेश *Q* जोकि विद्युत क्षेत्र का स्रोत है, एक विद्युत क्षेत्र **E** उत्पन्न करता है–

हैंस क्रिश्चियन ऑस्टेंड (1777– 1851) डेनमार्क के भौतिकविज्ञानी एवं रसायनज्ञ, कॉपेनहेगन में प्रोफ़ेसर थे। उन्होंने यह देखा कि किसी चुंबकीय सुई को जब एक ऐसे तार के पास रखा जाता है जिसमें विद्युत धारा प्रवाहित हो रही हो तो उसमें विक्षेप होता है। इस खोज ने वैद्युत एवं चुंबकीय प्रक्रमों के बीच संबंध का पहला आनुभविक प्रमाण प्रस्तुत किया।

कोई डाट (बिंदु) आपकी ओर संकेत करते तीर की नोंक जैसा प्रतीत होता है तथा क्रॉस किसी तीर की पंखयुक्त पूँछ जैसा प्रतीत होता है।

🍢 भौतिकी

हेंड्रिक ऐंटून लोरेंज़ (1853 -1928) लोरेंज़ डेनमार्क के सैद्धांतिक भौतिकविज्ञानी, लिडेन में प्रोफ़ेसर थे। उन्होंने विद्युत, चुंबकत्व तथा यांत्रिकी में संबंध की खोज की। प्रकाश उत्सर्जकों पर चुंबकीय क्षेत्र के प्रेक्षित प्रभावों (जीमान प्रभाव) की व्याख्या करने के लिए इन्होंने परमाणु में वैद्युत आवेशों के अस्तित्व होने को अभिगृहीत किया। इसके लिए इन्हें 1902 में नोबेल पुरस्कार प्रदान किया गया। इन्होंने कुछ जटिल उलझन भरे गणितीय तर्कों के आधार पर कुछ रूपांतरण समीकरणों का एक समुच्चय व्युत्पन्न किया जिसे उनके सम्मान में लोरेंज़ रूपांतरण समीकरण कहते हैं। समीकरणों को व्युत्पन्न करते समय इन्हें इस तथ्य के बारे में यह ज्ञात नहीं था कि ये समीकरण काल तथा दिकुस्थान की नयी अभिधारणा पर अवलंबित हैं।

$\mathbf{E} = \mathbf{Q} \ \hat{\mathbf{r}} / (4\pi\varepsilon_0)r^2$ (4.1) यहाँ $\hat{\mathbf{r}}$, \mathbf{r} के अनुदिश एकांक सदिश है तथा क्षेत्र \mathbf{E} एक सदिश क्षेत्र है। कोई आवेश *q* इस क्षेत्र से अन्योन्य क्रिया करके एक बल \mathbf{F} का अनुभव करता है

$$\mathbf{F} = q \mathbf{E} = q Q \hat{\mathbf{r}} / (4\pi\varepsilon_0) r^2$$
(4.2)

जैसा कि अध्याय 1 में निर्दिष्ट किया जा चुका है कि विद्युत क्षेत्र **E** मात्र शिल्प तथ्य ही नहीं है, परंतु इसकी भौतिक भूमिका भी है। यह ऊर्जा तथा संवेग संप्रेषित कर सकता है तथा यह तत्क्षण ही स्थापित नहीं हो जाता वरन इसके फैलने में परिमित समय लगता है। क्षेत्र की अभिधारणा को फैराडे द्वारा विशेष महत्त्व दिया गया तथा मैक्सवेल ने विद्युत तथा चुंबकत्व को एकीकृत करने में इस अभिधारणा को समावेशित किया। दिक्स्थान में प्रत्येक बिंदु पर निर्भर होने के साथ-साथ यह समय के साथ भी परिवर्तित हो सकता है, अर्थात यह समय का फलन है। इस अध्याय में हम अपनी चर्चा में, यह मानेंगे कि समय के साथ क्षेत्र में परिवर्तन नहीं होता।

किसी विशेष बिंदु पर विद्युत क्षेत्र एक अथवा अधिक आवेशों के कारण हो सकता है। यदि एक से अधिक आवेश हैं तो उनके कारण उत्पन्न क्षेत्र सदिश रूप से संयोजित हो जाते हैं। आप पहले अध्याय में यह सीख ही चुके हैं कि इसे अध्यारोपण का सिद्धांत कहते हैं। एक बार यदि क्षेत्र ज्ञात है तो परीक्षण आवेश पर बल को समीकरण (4.2) द्वारा ज्ञात किया जा सकता है।

जिस प्रकार स्थिर आवेश विद्युत क्षेत्र उत्पन्न करते हैं, विद्युत धाराएँ अथवा गतिमान आवेश (विद्युत क्षेत्र के साथ–साथ) चुंबकीय क्षेत्र उत्पन्न करते हैं जिसे **B**(**r**) द्वारा निर्दिष्ट किया जाता है तथा यह भी एक सदिश क्षेत्र है। इसके विद्युत क्षेत्र के समरूप बहुत से मूल गुण हैं। इसे दिक्स्थान के हर बिंदु पर परिभाषित किया जाता है (और साथ ही समय पर निर्भर कर सकता है)। प्रयोगों द्वारा यह पाया गया है कि यह अध्यारोपण के सिद्धांत का पालन करता है। अध्यारोपण का सिद्धांत इस प्रकार है–बहुत से स्रोतों का चुंबकीय क्षेत्र प्रत्येक व्यष्टिगत स्रोत के चुंबकीय क्षेत्रों का सदिश योग होता है।

4.2.2 चुंबकीय क्षेत्र, लोरेंज बल

मान लीजिए विद्युत क्षेत्र **E** (**r**) तथा चुंबकीय क्षेत्र **B** (**r**) दोनों की उपस्थिति में कोई बिंदु आवेश q (वेग **v** से गतिमान तथा किसी दिए गए समय t पर

r पर स्थित) विद्यमान है। किसी आवेश q पर इन दोनों क्षेत्रों द्वारा आरोपित बल को इस प्रकार व्यक्त किया जा सकता है—

$$\mathbf{F} = q \left[\mathbf{E} \left(\mathbf{r} \right) + \mathbf{v} \times \mathbf{B} \left(\mathbf{r} \right) \right] = \mathbf{F}_{\text{fatis}} + \mathbf{F}_{\text{sign}}$$
(4.3)

इस बल को सर्वप्रथम एच.ए. लोरेंज ने ऐम्पियर तथा अन्य वैज्ञानिकों द्वारा विस्तृत पैमाने पर किए गए प्रयोगों के आधार पर व्यक्त किया था। इस बल को अब *लोरेंज बल* कहते हैं। विद्युत क्षेत्र के कारण लगने वाले बल के बारे में तो आप विस्तार से अध्ययन कर ही चुके हैं। यदि हम चुंबकीय क्षेत्र के साथ अन्योन्य क्रिया पर ध्यान दें तो हमें निम्नलिखित विशेषताएँ मिलती हैं–

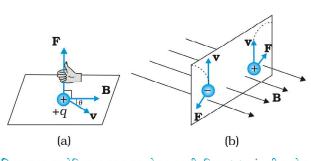
 (i) यह q, v तथा B (कण के आवेश, वेग तथा चुंबकीय क्षेत्र) पर निर्भर करता है। ऋणावेश पर लगने वाला बल धनावेश पर लगने वाले बल के विपरीत होता है।

(ii) चुंबकीय बल q [v × B] वेग तथा चुंबकीय क्षेत्र का एक सदिश गुणनफल होता है। सदिश गुणनफल चुंबकीय क्षेत्र के कारण बल को समाप्त (शून्य) कर देता है। यह तब होता है जब

बल, वेग तथा चुंबकीय क्षेत्र दोनों के लंबवत होता है (किसी दिशा में)। जब वेग तथा चुंबकीय क्षेत्र की दिशा एक दूसरे के समांतर या प्रतिसमांतर होती है। इसकी दिशा सदिश गुणनफल (क्रास गुणनफल) के लिए चित्र 4.2 में दर्शाए अनुसार पेंच नियम अथवा दक्षिण हस्त नियम द्वारा प्राप्त होती है।

(iii) यदि आवेश गतिमान नहीं है (तब |v|= 0) तो चुंबकीय बल शून्य होता है। केवल गतिमान आवेश ही बल का अनुभव करता है।

चुंबकीय क्षेत्र के लिए व्यंजक चुंबकीय क्षेत्र के मात्रक की परिभाषा देने में हमारी सहायता करता है। यदि बल के समीकरण में हल q, **F** तथा **v** सभी का मान एकांक मानें तो **F** = q [**v** × **B**] = $q v B \sin \theta \hat{\mathbf{n}}$, यहाँ θ वेग **v** तथा चुंबकीय क्षेत्र **B** के बीच का कोण है [चित्र 4.2 (a) देखिए]। चुंबकीय क्षेत्र *B* का परिमाण 1 SI मात्रक होता है, जबकि किसी एकांक आवेश (1 C), जो कि **B** के लंबवत 1m/s वेग **v** से गतिमान है, पर लगा बल 1 न्युटन हो।



चित्र 4.2 आवेशित कण पर लगे बल की दिशा (a) चुंबकीय क्षेत्र B से ∂ कोण बनाते हुए v वेग से गतिमान कोई धनावेशित कण बल का अनुभव करता है जिसकी दिशा दक्षिण हस्त नियम द्वारा प्राप्त होती है। (b) चुंबकीय क्षेत्र की उपस्थिति में गतिशील आवेशित कण के विक्षेप q की दिशा –q के विक्षेप की दिशा के विपरीत होती है।

विमीय रीति से हम जानते हैं कि [B] = [F/qv] तथा **B** का मात्रक न्यूटन सेकंड/कूलॉम मीटर है। इस मात्रक को टेस्ला (T) कहते हैं जिसे निकोला टेस्ला (1856–1943) के नाम पर रखा गया है। टेस्ला एक बड़ा मात्रक है। अत: एक अपेक्षाकृत छोटे मात्रक *गाउस* (=10⁻⁴ टेस्ला) का प्राय: उपयोग किया जाता है। विश्व के चुंबकीय क्षेत्र के विस्तृत परिसर को सारणी 4.1 में दर्शाया गया है

सारणी 4.1 विविध भौतिक परिस्थितियों में चुंबकीय क्षेत्रों के परिमाणों की कोटि	
भौतिक परिस्थिति	B का परिमाण (टेस्ला, T में)
न्यूट्रॉन तारे का पृष्ठ	10 ⁸
प्रयोगशाला में प्रातिनिधिक उच्च क्षेत्र	1
छोटे छड़ चुंबक के समीप	10^{-2}
पृथ्वी के पृष्ठ पर	10^{-5}
मानव तंत्रिका तंतु	10^{-10}
अंतरातारकीय दिक्स्थान	10^{-12}

4.2.3 विद्युत धारावाही चालक पर चुंबकीय बल

हम किसी एकल गतिमान आवेश पर चुंबकीय क्षेत्र द्वारा आरोपित बल के विश्लेषण का विस्तार विद्युत धारावाही सीधी छड़ के लिए कर सकते हैं। लंबाई *l* तथा एकसमान अनुप्रस्थ काट *A* की किसी छड़ पर विचार करते हैं। हम किसी चालक (जिसमें इलेक्ट्रॉन गतिशील वाहक हैं) की भौंति एक ही प्रकार के गतिशील वाहक मानेंगे। मान लीजिए इन गतिशील आवेश वाहकों का संख्या घनत्व *n* है तब चालक में कुल गतिशील आवेश वाहकों की संख्या *nlA* हुई। इस चालक छड़ में अपरिवर्ती विद्युत धारा *I* के लिए हम यह मान सकते हैं कि प्रत्येक गतिशील वाहक का अपवाह वेग **v**_A है

🍢 भौतिकी

(अध्याय 3 देखिए)। किसी बाह्य चुंबकीय क्षेत्र B की उपस्थिति में इन वाहकों पर बल

 $\mathbf{F} = (nlA)q \, \mathbf{v}_d \times \mathbf{B}$

यहाँ q किसी वाहक के आवेश का मान है। अब यहाँ $nq \mathbf{v}_{d}$ विद्युत धारा घनत्व **j** तथा $|(nq \mathbf{v}_{d})|A$ विद्युत धारा I है (विद्युत धारा तथा विद्युत धारा घनत्व पर चर्चा के लिए अध्याय 3 देखिए।) इस प्रकार

$$\mathbf{F} = [(nq \mathbf{v}_d) | A] \times \mathbf{B} = [\mathbf{j} | A] \times \mathbf{B}$$
$$= I\mathbf{l} \times \mathbf{B}$$

(4.4)

यहाँ **l** एक सदिश है जिसका परिमाण *l* है जो कि छड़ की लंबाई है, तथा इसकी दिशा विद्युत धारा *I* के सर्वसम है। ध्यान दीजिए विद्युत धारा सदिश नहीं है। समीकरण (4.4) के अंतिम चरण में हमने सदिश चिह्न को **j** से **l** पर स्थानांतरित कर दिया है।

समीकरण (4.4) सीधी छड़ पर लागू होती है। इस समीकरण में **B** बाह्य चुंबकीय क्षेत्र है। यह विद्युत धारावाही छड़ द्वारा उत्पन्न क्षेत्र नहीं है। यदि तार की यादृच्छिक आकृति है, तो हम इस पर लॉरेंज बल का परिकलन, इसे रेखिक पट्टियों d**l** का समूह मानकर तथा संकलन द्वारा कर सकते हैं

$$\mathbf{F} = \sum_{i} I \mathrm{d} \boldsymbol{l}_{i} \times \mathbf{B}$$

अधिकांश प्रकरणों में संकलन को समाकलन में परिवर्तित कर लेते हैं।

विद्युतशीलता (परावैद्युतांक) तथा चुंबकशीलता (पारगम्यता)

गुरुत्वाकर्षण के सार्वत्रिक नियम में हम यह कहते हैं कि दो बिंदु द्रव्यमान एक दूसरे पर बल आरोपित करते हैं जो उन द्रव्यमानों, m_1 , m_2 के गुणनफल के अनुक्रमानुपाती तथा उनके बीच के दूरी r के वर्ग के व्युत्क्रमानुपाती होता है। इसे हम इस प्रकार $F = Gm_1m_2/r^2$ व्यक्त करते हैं, यहाँ G गुरुत्वाकर्षण का सार्वत्रिक नियतांक है। इसी प्रकार स्थिरवैद्युतिकी में कूलॉम के नियम में, हम दो विद्युत आवेशों q_1 , q_2 जिनके बीच r पृथकन है, लगने वाले बल को $F = kq_1q_2/r^2$ द्वारा व्यक्त करते हैं, यहाँ k एक अनुक्रमानुपाती स्थिरांक है। SI मात्रकों में, $k \, 1/4\pi\varepsilon$ है, यहाँ ε माध्यम की विद्युतशीलता है। इसी प्रकार चुंबकत्व में भी हमें एक अन्य नियतांक प्राप्त होता है। SI मात्रकों में यह नियतांक $\mu/4\pi$ है, यहाँ μ माध्यम की चुंबकशीलता है।

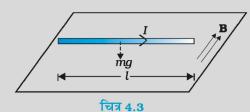
यद्यपि G, ε तथा μ अनुक्रमानुपाती नियतांक के रूप में प्रकट होते हैं, परंतु गुरुत्वाकर्षण बल तथा विद्युत चुंबकीय बल में एक अंतर है। जबकि गुरुत्वाकर्षण बल दो वस्तुओं के बीच के माध्यम की प्रकृति पर निर्भर नहीं करता, विद्युत चुंबकीय बल, दो आवेशों अथवा चुंबकों के बीच के माध्यम पर निर्भर करता है। अत: G एक सार्वत्रिक स्थिरांक है, ε तथा μ माध्यम पर निर्भर करते हैं। इनके विभिन्न माध्यमों के लिए भिन्न-भिन्न मान हैं। गुणनफल $\varepsilon \mu$ का विद्युत चुंबकीय विकिरणों की चाल v से एक संबंध $\varepsilon \mu = 1 / v^2$ है।

विद्युत परावैद्युतांक ε एक भौतिक राशि है जो यह स्पष्ट करती है कि कोई विद्युत क्षेत्र माध्यम को तथा माध्यम द्वारा किस प्रकार प्रभावित होता है। इसका निर्धारण अनुप्रयुक्त क्षेत्र के प्रत्युत्तर में माध्य के ध्रुवित होने के गुण, जिसके द्वारा यह किसी पदार्थ के भीतर के क्षेत्र को आंशिक रूप से निरसित करता है, से किया जाता है। इसी प्रकार चुंबकीय पारगम्यता μ किसी पदार्थ की चुंबकीय क्षेत्रों में चुंबकन अर्जित करने की सामर्थ्य होती है। इसकी माप चुंबकीय क्षेत्रों द्वारा पदार्थ को वेधन करने की सीमा से की जाती है।

> **उदाहरण 4.1** 200 g द्रव्यमान तथा 1.5 m लंबाई के किसी सीधे तार से 2 A विद्युत धारा प्रवाहित हो रही है। यह किसी एकसमान क्षैतिज **B** चुंबकीय क्षेत्र द्वारा वायु के बीच में निलंबित है (चित्र 4.3)। चुंबकीय क्षेत्र का परिमाण ज्ञात कीजिए।

उदाहरण 4.

उदाहरण 4.1



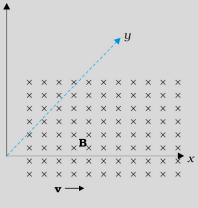
हल समीकरण (4.4) के अनुसार, तार बीच–वायु में निलंबित है इसके निलंबित रहने के लिए इस पर एक उपरिमुखी बल **F** जिसका परिमाण ILB लगना चाहिए जो इसके भार mg को संतुलित कर सके। अत:

$$m g = I lB$$
$$B = \frac{m g}{Il}$$

$$=\frac{0.2 \times 9.81}{2 \times 1.5} = 0.65 \text{ T}$$

ध्यान दीजिए, यहाँ पर m/l अर्थात तार का प्रति एकांक लंबाई द्रव्यमान बताना पर्याप्त है। पृथ्वी के चुंबकीय क्षेत्र का मान लगभग $4 imes 10^{-5} \, {
m T}$ है जिसकी हमने यहाँ उपेक्षा की है।

उदाहरण 4.2 यदि चुंबकीय क्षेत्र धनात्मक *y*-अक्ष के समान्तर है तथा आवेशित कण धनात्मक *x*-अक्ष के अनुदिश गतिमान है (चित्र 4.4 देखिए), तो लोरेंज बल किस ओर लगेगा जबकि गतिमान कण (a) इलेक्ट्रॉन (ऋण आवेश) (b) प्रोटॉन (धन आवेश) है।



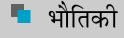
चित्र 4.4

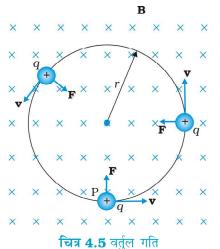
हल कण के वेग **v** की दिशा *x*-अक्ष के अनुदिश है जबकि चुंबकीय क्षेत्र **B** की दिशा *y*-अक्ष के अनुदिश है, अत: लोरेंज बल **v** × **B** की दिशा *z*-अक्ष के अनुदिश (पेंच नियम अथवा दक्षिण हस्त अंगुष्ठ नियम) है। अत: (a) इलेक्ट्रॉन के लिए यह बल -z अक्ष के अनुदिश तथा (b) धनावेश (प्रोटॉन) के लिए यह +z अक्ष के अनुदिश है।

4.3 चुंबकीय क्षेत्र में गति

अब हम और अधिक विस्तार से चुंबकीय क्षेत्र में गतिशील आवेश के विषय में अध्ययन करेंगे। हमने यांत्रिकी (कक्षा 11 की पाठ्यपुस्तक का अध्याय 6 देखिए) में यह सीखा है कि यदि किसी बल का कण की गति की दिशा में (अथवा उसके विपरीत) कोई अवयव है तो वह बल उस कण

उदाहरण 4.2

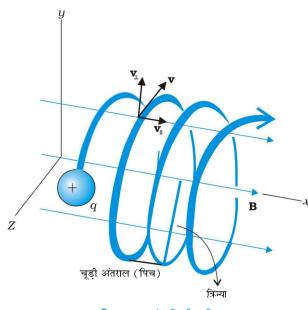




पर कार्य करता है। चुंबकीय क्षेत्र में आवेश की गति के प्रकरण में, चुंबकीय बल कण के वेग की दिशा के लंबवत होता है। अत: कोई कार्य नहीं होता तथा वेग के परिमाण में भी कोई परिवर्तन नहीं होता (यद्यपि संवेग की दिशा में परिवर्तन हो सकता है। [ध्यान दीजिए, यह विद्युत क्षेत्र के कारण बल, **qE**, से भिन्न है, जिसका गति के समांतर (अथवा प्रतिसमांतर) अवयव हो सकता है और इस प्रकार संवेग के साथ-साथ ऊर्जा को भी स्थानांतरित कर सकता है।]

हम किसी एकसमान चुंबकीय क्षेत्र में आवेशित कण की गति पर विचार करेंगे। पहले उस स्थिति पर विचार कीजिए जिसमें वेग **v** चुंबकीय क्षेत्र **B** के लंबवत है। लंबवत बल **q v × B** अभिकेंद्र बल की भाँति कार्य करता है तथा चुंबकीय क्षेत्र के लंबवत वर्तुल गति उत्पन्न करता है। यदि **v** तथा **B** एक दूसरे के लंबवत हैं, तो कण (अर्थात किसी वृत्त के अनुदिश) वर्तुल गति करेगा (चित्र 4.5)।

यदि वेग **v** का कोई अवयव है, **B** के अनुदिश तो यह अवयव अपरिवर्तित रहता



ω

कोर जवपद ह, **D** के जनुरिश तो पह जवपद जनरपाता रहता है, क्योंकि चुंबकीय क्षेत्र के अनुदिश गति को चुंबकीय क्षेत्र प्रभावित नहीं करेगा। **B** के लंबवत किसी तल में गति, पहले की भाँति, वर्तुल गति ही है जिससे यह अवयव *कुंडलिनी गति* उत्पन्न करता है (चित्र 4.6)।

आपने पिछली कक्षाओं में यह सीख लिया है (देखिए अध्याय 4 कक्षा 11) कि यदि किसी कण के वृत्ताकार पथ की त्रिज्या r है तो उस कण पर एक बल $m v^2 / r$ वृत्त के केंद्र की ओर तथा पथ के लंबवत कार्य करता है जिसे अभिकेंद्र बल कहते हैं। यदि वेग \mathbf{v} चुंबकीय क्षेत्र \mathbf{B} के लंबवत है, तो चुंबकीय बल वेग \mathbf{v} तथा चुंबकीय क्षेत्र \mathbf{B} के लंबवत होता है तथा अभिकेंद्र बल की भाँति इसका परिमाण q v B होता है। दोनों अभिकेंद्र बल के व्यंजकों को समीकरण के रूप में लिखने पर

$$m v^2 / r = q v B,$$

$$r = m v / aB$$
(4.5)

$$= mv / qB \tag{4.5}$$

जितना अधिक संवेग होगा उतनी ही अधिक निर्मित वृत्त की

त्रिज्या होगी तथा निर्मित वृत्त भी बड़ा होगा। यदि कोणीय आवृत्ति ω है तो $v = \omega r$ अत:

$$= 2\pi v = q B/m$$
 [4.6(a)]

कोणीय आवृत्ति @वेग अथवा ऊर्जा पर निर्भर नहीं करती। यहाँ vघूर्णन की आवृत्ति है। vके ऊर्जा पर निर्भर न करने का साइक्लोट्रॉन के डिजाइन में एक महत्वपूर्ण अनुप्रयोग है (अनुभाग 4.4.2 देखिए)।

एक परिक्रमा पूरी करने में लगा समय $T = 2\pi/\omega = 1/\nu$, यदि चुंबकीय क्षेत्र के समांतर वेग का कोई अवयव (v_{μ} द्वारा निर्दिष्ट) है, कण का पथ कुंडलिनी (सर्पिलाकार) जैसा होगा। एक घूर्णन में कण द्वारा चुंबकीय क्षेत्र के अनुदिश चली गई दूरी को पिच या चूड़ी अंतराल कहते हैं। समीकरण [4.6 (a)] का उपयोग करने पर हमें प्राप्त होता है।

$$p = v_{||}T = 2\pi m v_{||} / q B$$
 [4.6(b)]
गति के वत्तीय अवयव की त्रिज्या को *कंडलिनी की त्रिज्या* कहते हैं।

138

उदाहरण

4.3

3 3 2 3 10 - 4 T के चुंबकीय क्षेत्र के लंबवत 3 \times 10^7 \text{ m/s} की चाल से गतिमान किसी इलेक्ट्रॉन (द्रव्यमान 9 \times 10^{-31} \text{ kg} तथा आवेश 1.6 \times 10^{-19} \text{ C}) के पथ की क्रिज्या क्या है? इसकी क्या आवृत्ति होगी? इसकी ऊर्जा KeV में परिकलित कीजिए। (1 \text{ eV} = 1.6 \times 10^{-19} \text{ J}) हल समीकरण (4.5) का उपयोग करने पर हम पाते हैं $r = m v / (qB) = 9 \times 10^{-31} \text{ kg} \times 3 \times 10^7 \text{ m s}^{-1} / (1.6 \times 10^{-19} \text{ C} \times 6 \times 10^{-4} \text{ T})$ $= 26 \times 10^{-2} \text{ m} = 26 \text{ cm}$ $v = v / (2 \pi r) = 2 \times 10^6 \text{ s}^{-1} = 2 \times 10^6 \text{ Hz} = 2 \text{ MHz}.$ $E = (\frac{1}{2}) mv^2 = (\frac{1}{2}) 9 \times 10^{-31} \text{ kg} \times 9 \times 10^{14} \text{ m}^2/\text{s}^2 = 40.5 \times 10^{-17} \text{ J}$ $\approx 4 \times 10^{-16} \text{ J} = 2.5 \text{ KeV}$

आवेशित कणों की कुंडलिनी गति तथा उत्तर ध्रुवीय ज्योति

ध्रुवीय क्षेत्रों जैसे अलास्का तथा उत्तरी कनाडा में आकाश में वर्णों का अत्यंत वैभवशाली दृश्य दिखाई देता है। नृत्य करते हरे गुलाबी प्रकरणों का दृष्टिगोचर होना जितना मनोहारी व चित्ताकर्षक है उतना ही उलझन पूर्ण भी है। भौतिकी में अब इस प्राकृतिक परिघटना का स्पष्टीकरण प्राप्त हो गया है जिसका इस अध्याय के अंतर्गत हम अध्ययन कर रहे हैं उससे संबंध रखता है।

मान लीजिए द्रव्यमान *m* तथा आवेश *q* का कोई कण आरंभिक वेग **v** से किसी चुंबकीय क्षेत्र **B** में प्रवेश करता है। मान लीजिए इस वेग का चुंबकीय क्षेत्र के समांतर अवयव **v**_p तथा इस क्षेत्र के अभिलंबवत अवयव **v**_n है। आवेशित कण पर चुंबकीय क्षेत्र के अनुदिश कोई बल नहीं है। वेग **v**_p से निरंतर चुंबकीय क्षेत्र के समांतर गतिमान रहता है। कण पर कार्यरत वेग के अभिलंबवत अवयव के कारण इस पर लोरेंज बल (**v**_n × **B**) कार्य करता है जिसकी दिशा **v**_n तथा **B** दोनों के लंबवत होती है। जैसा कि अनुभाग 4.3.1 में देख चुके हैं, इस प्रकार कण में वर्तुल गति करने की प्रवृत्ति उत्पन्न हो जाती है तथा वह वर्तुल गति चुंबकीय क्षेत्र के लंबवत तल में होती है। जब यह गति चुंबकीय क्षेत्र के समांतर कण की गति से युग्मित हो जाती है तो परिणामी प्रक्षेप पथ रेखाओं के चुंबकीय क्षेत्र के अनुदिश कुंडलिनी होता है जैसा कि यहाँ चित्र (*a*) में दर्शाया गया है। यदि क्षेत्र रेखाएँ मुड़ भी जाती हैं तो भी कुंडलिनी पथ पर गतिशील कण पाश में फँसकर चुंबकीय क्षेत्र के चारों ओर गति करने के लिए निर्देशित होता है। चूँकि लोरेंज बल प्रत्येक बिंदु पर वेग के लंबवत है, क्षेत्र कण पर कोई कार्य नहीं करता तथा वेग का परिमाण समान रहता है।



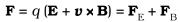
सौर प्रज्वाल के समय सूर्य से विशाल संख्या में इलेक्ट्रॉन तथा प्रोटॉन बाहर उत्सर्जित होते हैं। उनमें से कुछ पृथ्वी के चुंबकीय क्षेत्र के पाश में फॅंस जाते हैं तथा क्षेत्र रेखाओं के अनुदिश कुंडलिनी पथ पर गति करते हैं। पृथ्वी के चुंबकीय क्षेत्र की क्षेत्र रेखाएँ चुंबकीय धुवों पर बहुत पास-पास आ जाती हैं [देखिए चित्र (b)] अत: धुवों के निकट आवेशों का घनत्व बढ़ जाता है। ये आवेशित कण वायुमंडल के अणुओं से तथा परमाणुओं से टकराते हैं। उत्तेजित ऑक्सीजन परमाणु हरा प्रकाश उत्सर्जित करते हैं तथा उत्तेजित नाइट्रोजन परमाणु गुलाबी प्रकाश उत्सर्जित करते हैं। भौतिकी में इस परिघटना को उत्तर ध्रुवीय ज्योति कहते हैं।

🍢 भौतिकी

4.4 संयुक्त विद्युत तथा चुंबकीय क्षेत्रों में गति

4.4.1 वेग वरणकर्ता

आप जानते हैं कि विद्युत तथा चुंबकीय दोनों क्षेत्रों की उपस्थिति में **v** वेग से गतिमान q आवेश के कण पर समीकरण (4.3) के अनुसार एक बल कार्य करता है जिसे इस प्रकार व्यक्त करते हैं:



हम यहाँ चित्र 4.7 में दर्शाए अनुसार एक सरल स्थिति पर विचार करेंगे जिसमें विद्युत क्षेत्र तथा चुंबकीय क्षेत्र एक दूसरे के लंबवत हैं तथा कण का वेग इन दोनों क्षेत्रों के लंबवत है। तब

$$\mathbf{E} = E \, \hat{\mathbf{j}}, \, \mathbf{B} = B \, \hat{\mathbf{k}}, \, \mathbf{v} = v \, \hat{\mathbf{i}}$$

 $\mathbf{F}_E = q \mathbf{E} = q E \, \hat{\mathbf{j}}, \, \mathbf{F}_B = q \mathbf{v} \times \mathbf{B}, = q \left(v \, \hat{\mathbf{i}} \times B \hat{\mathbf{k}} \right) = -q B \, \hat{\mathbf{j}}$
अत: $\mathbf{F} = q \left(E - v B \right) \, \hat{\mathbf{j}}$

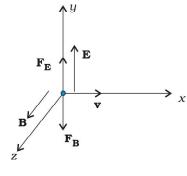
इस प्रकार चित्र में दर्शाए अनुसार विद्युत बल तथा चुंबकीय बल एक दूसरे के विपरीत दिशा में हैं। मान लीजिए हम **E** तथा **B** के मानों को इस प्रकार समायोजित करते हैं कि इन बलों के परिमाण समान हो जाएँ तो आवेश पर कुल बल शून्य हो जाएगा तथा आवेश इन क्षेत्रों में बिना विक्षेपित हुए गमन करेगा। यह तब होगा जब

$$qE = qvB$$
 अथवा $v = \frac{E}{B}$ (4.7)

इस शर्त का उपयोग विभिन्न गति से गतिमान आवेशों (चाहे उनके आवेश तथा द्रव्यमान कुछ भी हों) के पुंज से किसी विशेष वेग के आवेशित कणों को चुनने में किया जाता है। अत: क्रॉसित चुंबकीय व विद्युत क्षेत्र *वेग वरणकर्ता* के समान कार्य करते हैं। केवल *E/B* की चाल वाले कण ही इस क्रॉसित क्षेत्रों वाले स्थान से बिना विक्षेपित हुए गुज़रते हैं। इस विधि का उपयोग सन 1897 में जे. जे. थामसन ने इलेक्ट्रॉन का आवेश-द्रव्यमान अनुपात (*e/m*) मापने में किया था। इस सिद्धांत का उपयोग द्रव्यमान स्पेक्ट्रोमीटर में भी किया जाता है। यह ऐसी युक्ति है जो आवेशित कणों को, प्राय: आयनों, उनके आवेश-द्रव्यमान अनुपात के अनुसार पृथक करती है।

4.4.2 साइक्लोट्रॉन

साइक्लोट्रॉन आवेशित कणों अथवा आयनों का उच्च ऊर्जाओं तक त्वरित करने वाला यंत्र है। इसका आविष्कर नाभिकीय संरचना के अन्वेषण के लिए सन् 1934 में ई.ओ. लोरेंज तथा एम. एस. लिविंग्स्टॉन ने किया था। आवेशित कणों की ऊर्जा में वृद्धि करने के लिए साइक्लोट्रॉन में संयुक्त रूप में विद्युत क्षेत्र तथा चुंबकीय क्षेत्र दोनों का उपयोग किया जाता है। चूँकि ये दोनों क्षेत्र एक दूसरे के लंबवत लगाए जाते हैं, इन्हें क्रॉसित क्षेत्र कहते हैं। साइक्लोट्रॉन में इस तथ्य का उपयोग किया जाता है कि "चुंबकीय क्षेत्र में परिक्रमण करने वाले आवेशित कणों की परिक्रमण की आवृत्ति कण की ऊर्जा पर निर्भर नहीं करती।" कण अधिकांश समय तक दो अर्धवृत्ताकार चक्रिका जैसे धातु के पात्रों, D1 तथा D2 के बीच गति करते हैं। इन धातु के पात्रों को 'डीज' (Dees) कहते हैं क्योंकि ये अंग्रेजी के वर्णमाला के अक्षर 'D' जैसे दिखाई देते हैं। चित्र 4.8 में साइक्लोट्रॉन का व्यवस्था आरेख दर्शाया गया है। धातु के बॉक्सों के भीतर कण परिरक्षित रहते हैं तथा इन पर विद्युत क्षेत्र कार्य नहीं करता। तथापि कण पर चुंबकीय क्षेत्र कार्य करता है जिसके कारण वह एक 'डी' के अंदर वर्तुल गति करता है। प्रत्येक बार जब कण एक 'डी' से दूसरी 'डी' में जाता है तो हर बार उस पर विद्युत क्षेत्र कार्य करता है। प्रत्यावर्ती रूप से विद्युत क्षेत्र का चिह्न परिवर्तित होता रहता है तथा इसका कण की वर्तुल गति के साथ सामंजस्य होता है। इससे यह सुनिश्चित होता है। जैसे-जैसे कर्ज विद्युत क्षेत्र द्वारा त्वारित होता है। हर बार त्वरण से कण की ऊर्जा में वृद्धि होती है। जैसे-जैसे कर्ज



चित्र 4.7

साइक्लोट्रॉन अन्योन्यक्रिया प्रदर्शन ______http://www.phy.ntnu.edu.tw/ntnujava/index.php?topic=33.0

मू में भौतिक

में वृद्धि होती जाती है उसके वृत्ताकार पथ की त्रिज्या में भी वृद्धि होती है। अत: कण का पथ सर्पिलाकार होता है।

इस सारे संयोजन को निर्वातित किया जाता है ताकि आयनों तथा वायु के अणुओं के बीच संघट्ट न्यूनतम हो जाए। डीज़ पर एक उच्च प्रत्यावर्ती वोल्टता अनुप्रयुक्त की जाती है। चित्र 4.8 में दर्शाए गए आरेख में धनायन अथवा धनावेशित कण (कण प्रोटॉन) केंद्र P पर मुक्त किए जाते हैं। ये किसी एक 'डी' में अर्धवृत्ताकर पथ पर गमन करते हुए *T*/2 समय अंतराल में डीज़ के बीच के रिक्त स्थान में आते हैं। यहाँ *T* परिक्रमण काल है जिसका मान समीकरण (4.6) के अनुसार

$$T = \frac{1}{v_c} = \frac{2\pi m}{qB}$$

अथवा $v_c = \frac{qB}{2\pi m}$ (4.8)

प्रत्यक्ष तर्कों के आधार पर इस आवृत्ति को *साइक्लोट्रॉन आवृत्ति* कहते हैं तथा इसे _{Vc} द्वारा निर्दिष्ट किया जाता है।

साइक्लोट्रॉन में अनुप्रयुक्त वोल्टता की आवृत्ति v_a को इस प्रकार समायोजित किया जाता है कि जितने समय में आयन अपना आधा परिक्रमण पूरा करता है उतने ही समय में डीज की धुवता परिवर्तित हो जाती है। इसके लिए आवश्यक शर्त $v_a = v_c$ को अनुनाद की शर्त कहते हैं। स्रोत का कला का समायोजन इस प्रकार किया जाता है कि जब धनायन D_1 के छोर पर पहुँचता है तो उस समय D_2 निम्न विभव पर होता है तथा आयन इस रिक्त स्थान में त्वरित होते हैं। डीज के भीतर कण ऐसे क्षेत्र में गमन करते हैं जहाँ विद्युत क्षेत्र नहीं होता। हर बार कण एक डी से दूसरी डी पर

जाने में कण की ऊर्जा में qV की वृद्धि होती है (यहाँ V डीज़ के बीच उस समय की वोल्टता है।) समीकरण (4.5) से यह स्पष्ट है कि कणों के पथों की त्रिज्या में हर बार, गतिज ऊर्जाओं में वृद्धि होने के कारण वृद्धि होती जाती है। आयन डीज़ के बीच बारंबार उस समय तक त्वरित होते रहते हैं जब तक कि वे लगभग डीज़ के बराबर त्रिज्या पाने के लिए आवश्यक ऊर्जा प्राप्त नहीं कर लेते। उस समय फिर से चुंबकीय क्षेत्र द्वारा विक्षेपित होकर निर्गम झिरी द्वारा निकाय से बाहर निकल जाते हैं। समीकरण (4.5) से, हमें प्राप्त होता है–

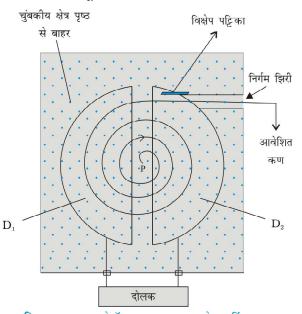
$$v = \frac{qBR}{m} \tag{4.9}$$

यहाँ R निर्गम पर प्रक्षेप की त्रिज्या है तथा यह डीज़ की त्रिज्या के बराबर है।

अत: आयनों की गतिज ऊर्जा

$$\frac{1}{2}mv^2 = \frac{q^2 B^2 R^2}{2m} \tag{4.10}$$

साइक्लोट्रॉन का प्रचालन इस तथ्य पर आधारित है कि किसी आयन के एक परिक्रमण का समय आयन की चाल अथवा कक्षा की त्रिज्या पर निर्भर नहीं है। साइक्लोट्रॉन का उपयोग इसमें त्वरित ऊर्जायुक्त कणों द्वारा नाभिक पर बमबारी करके परिणामी नाभिकीय अभिक्रियाओं का अध्ययन करने के लिए किया जाता है। इसका उपयोग ठोसों में आयनों को रोपित करके उनके गुणों में सुधार करने और यहाँ तक कि नए पदार्थों को संश्लेषित करने में भी किया जाता



चित्र 4.8 साइक्लोट्रॉन का व्यवस्था आरेख। बिंदु P पर आवेशित कणों अथवा आयनों का स्रोत है। ये आवेशित कण या आयन एकसमान लंबवत चुंबकीय क्षेत्र B के कारण D_1 तथा D_2 डीज़ के भीतर वृत्ताकार पथ पर गमन करते हैं। एक प्रत्यावर्ती वोल्टता स्रोत इन आवेशित कणों को उच्च चालों तक त्वरित करता है। अंतत: आवेशित कण बाहरी द्वार से निकाल दिए जाते हैं।



उदाहरण 4.4

है। इसका उपयोग रेडियोएक्टिव पदार्थों को उत्पन्न करने में किया जाता है। इन रेडियोएक्टिव पदार्थों को अस्पतालों में रोगी के निदान तथा उपचार में किया जाता है।

भारत में त्वरक

भारत त्वरक-आधारित अनुसंधान के क्षेत्र में प्रवेश करने वाला अग्रणी देश है। डॉ. मेघनाद साहा की दूरदर्शिता के कारण सन् 1953 में कोलकाता के साहा नाभिकीय भौतिकी संस्थान ने 37" साइक्लोट्रॉन स्थापित कर लिया था। इसके पश्चात तो शीघ्र ही भारत के विभिन्न संस्थानों; जैसे–टाटा भौमिक अनुसंधान संस्थान (TIFR), मुंबई; अलीगढ़ मुस्लिम विश्वविद्यालय, अलीगढ़; बोस इंस्टीट्यूट, कोलकाता तथा आंध्रा विश्वविद्यालय, वाल्टेयर में कोकरोफ्ट-वाल्टन प्रकार के कई त्वरक स्थापित हो गए।

साठ के दशक में तो कई वान डे ग्राफ त्वरक स्थापित हुए– 5.5 MV टर्मिनल मशीन भाभा परमाणु अनुसंधान केंद्र (BARC), मुंबई (1963); 2 MV टर्मिनल मशीन भारतीय प्रौद्योगिकी संस्थान, कानपुर; 400 kV टर्मिनल मशीन बनारस हिंदू विश्वविद्यालय, वाराणसी तथा पंजाबी विश्वविद्यालय, पटियाला। अमेरिका के रोशेस्टर विश्वविद्यालय द्वारा प्रदान किए गए 66 cm साइक्लोट्रॉन को पंजाब विश्वविद्यालय, चंडीगढ़ में स्थापित किया गया। एक लघु इलेक्ट्रॉन त्वरक पूना विश्वविद्यालय, पुणे में भी स्थापित किया गया।

सत्तर तथा अस्सी के दशकों में एक प्रमुख सूत्रपात परिवर्ती ऊर्जा साइक्लोट्रॉन केंद्र (VECC), कोलकाता द्वारा पूर्णत: भारतीय संसाधनों का उपयोग करके परिवर्ती ऊर्जा साइक्लोट्रॉन निर्मित करके किया गया; भाभा परमाणु अनुसंधान केंद्र (BARC) मुंबई ने 2 MV टैंडेम वान डे ग्राफ त्वरक विकसित एवं निर्मित किया तथा टाटा भौमिक अनुसंधान संस्थान में14 MV टैंडेम पेल्लेट्रॉन त्वरक स्थापित किया गया।

इसके पश्चात शीघ्र ही विश्वविद्यालय अनुदान आयोग (UGC), नयी दिल्ली ने अंतर विश्वविद्यालय सुविधा के रूप में अंतरविश्वविद्यालय त्वरक केंद्र (IUAC), नयी दिल्ली में एक 15 MV टैंडेम पेल्लेट्रॉन; भौतिकी संस्थान, भुवनेश्वर में एक 3 MV टैंडेम पेल्लेट्रॉन; अन्वेषण, भन्वेषण व अनुसंधान का परमाणु खनिज निदेशालय, हैदराबाद तथा इंदिरा गांधी परमाणु अनुसंधान केंद्र, कलपक्कम में दो 1.7 MV टैण्डेट्रॉन स्थापित कराए। TIFR तथा IUAC दोनों ही अपनी सुविधाएँ, अतिचालक LINAC मॉड्यूल जिनका उपयोग आयनों को उच्च ऊर्जाओं तक त्वरित करने में किया जाता है, के साथ आगे बढ़ा रहे हैं।

इन त्वरकों के अतिरिक्त परमाणु ऊर्जा विभाग ने भी बहुत से इलेक्ट्रॉन त्वरक विकसित किए हैं। राजा रामन्ना अग्रवर्ती प्रौद्योगिकी केंद्र, इंदौर में एक 2 GeV सिंक्रोट्रॉन विकिरण स्रोत निर्मित किया जा रहा है।

परमाणु ऊर्जा विभाग भविष्य में विकल्प के रूप में शक्ति उत्पादन तथा विखंडनीय पदार्थ के प्रजनन के लिए त्वरक प्रचालित संयंत्रों पर विचार कर रहा है।

4.5 विद्युत धारा अवयव के कारण चुंबकीय क्षेत्र, बायो-सावर्ट नियम

जितने चुंबकीय क्षेत्र हमें ज्ञात हैं वे सभी विद्युत धाराओं (अथवा गतिशील आवेशों) तथा कणों के

नैज चुंबकीय आघूर्णों के कारण उत्पन्न हुए हैं। यहाँ अब हम विद्युत धारा तथा उसके द्वारा उत्पन्न चुंबकीय क्षेत्र के बीच संबंध के बारे में अध्ययन करेंगे। यह संबंध बायो सावर्ट नियम द्वारा प्राप्त होता है। चित्र 4.9 में एक परिमित विद्युत धारा चालक XY दर्शाया गया है, जिसमें विद्युत धारा I प्रवाहित हो रही है। चालक के अतिअल्प अवयव $\mathrm{d}l$ पर विचार कीजिए। मान लीजिए हमें इस अवयव द्वारा इससे **r** दुरी पर स्थित किसी बिंदु P पर चुंबकीय क्षेत्र d**B** का मान निर्धारित करना है। मान लीजिए विस्थापन सदिश ${f r}$ तथा dl के बीच hetaकोण बनता है। तब बायो-सावर्ट नियम के अनुसार चुंबकीय क्षेत्र $d\mathbf{B}$ का परिमाण विद्युत धारा I. लंबाई अवयव $|d\mathbf{l}|$ के अनुक्रमानुपाती तथा दुरी r के वर्ग के व्युत्क्रमानुपाती है। इस क्षेत्र की दिशा* dl तथा r के तलों के लंबवत होगी। अत: सदिश संकेत पद्धति में

$$d\mathbf{B} \propto \frac{I \, d\mathbf{l} \times \mathbf{r}}{r^3}$$
$$= \frac{\mu_0}{4\pi} \frac{I \, d\mathbf{l} \times \mathbf{r}}{r^3} \qquad [4.11(a)]$$

यहाँ $\mu_0/4\pi$ अनुक्रमानुपातिक नियतांक है। उपरोक्त समीकरण तब लागू होता है जबकि माध्यम निर्वात होता है।

इस क्षेत्र का परिमाण

$$\left| \mathrm{d}\mathbf{B} \right| = \frac{\mu_0}{4\pi} \frac{I \,\mathrm{d}l \sin\theta}{r^2} \tag{4.11(b)}$$

यहाँ हमने सदिश–गुणनफल के गुणधर्म $|d\boldsymbol{l} imes \mathbf{r}| = dlr \sin \theta$ का उपयोग किया है। चुंबकीय क्षेत्र

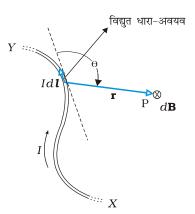
के लिए समीकरण [4.11(a)] मूल समीकरण है। अनुक्रमानुपाती नियतांक $rac{\mu_0}{4\pi}$ का यथार्थ मान है-

$$\frac{\mu_0}{4\pi} = 10^{-7} \,\mathrm{Tm/A}$$
 [4.11(c)]

राशि μ₀ को मुक्त आकाश (या निर्वात) की *चुंबकशीलता नियतांक* कहते हैं।

चुंबकीय क्षेत्र के बायो-सावर्ट नियम और स्थिरवैद्युतिकी के कूलॉम नियम में कुछ समानताएँ हैं तथा कुछ असमानताएँ। इसमें से कुछ निम्न प्रकार हैं-

(i) दोनों दीर्घ-परासी हैं, क्योंकि दोनों ही स्रोत से परीक्षण बिंदु तक की दूरी के वर्ग के व्युत्क्रमानुपाती होते हैं। दोनों ही क्षेत्रों पर अध्यारोपण सिद्धांत लागू होता है [इस संबंध में यह ध्यान दीजिए कि *स्रोत I dl* में चुंबकीय क्षेत्र रै*खिक* है जैसे कि अपने स्रोत, विद्युत आवेश में स्थिर वैद्युत क्षेत्र रैखिक है।]



चित्र 4.9 बायो-सावर्ट नियम का निदर्श चित्र। विद्युतधारा-अवयव I dl, r दूरी पर स्थित बिंदु पर क्षेत्र dB उत्पन्न करता है। ⊗ चिह्न यह इंगित करता है कि क्षेत्र कागज के तल के अभिलंबवत नीचे की ओर प्रभावी है।

^{*} dl×r की दिशा दक्षिण हस्त पेंच नियम द्वारा भी प्राप्त होती है। dl तथा r के तलों को देखिए। कल्पना कीजिए कि आप पहले सदिश से दूसरे सदिश की ओर गमन कर रहे हैं। यदि गति वामावर्त है तो परिणामी आपकी ओर संकेत करेगा। यदि यह दक्षिणावर्त है तो परिणामी आपसे दूर की ओर होगा।

) भौतिकी

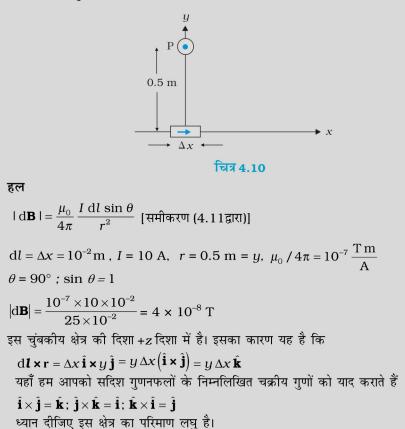
- (ii) स्थिरवैद्युत क्षेत्र आदिश स्रोत, जैसे वैद्युत आवेश, द्वारा उत्पन्न होता है जबकि चुंबकीय क्षेत्र एक सदिश स्रोत जैसे, I dl द्वारा उत्पन्न होता है।
- (iii) स्थिरवैद्युत क्षेत्र स्रोत को क्षेत्र के बिंदु से मिलाने वाले विस्थापन सदिश के अनुदिश होता है जबकि चुंबकीय क्षेत्र विस्थापन सदिश r तथा विद्युत धारा अवयव I dl दोनों के तलों के लंबवत होता है।
- (iv) बायो-सावर्ट नियम में कोण पर निर्भरता है जो स्थिर वैद्युत क्षेत्र में नहीं होती। चित्र 4.9 में, दिशा dl (डैश युक्त रेखा में किसी भी बिंदु पर चुंबकीय क्षेत्र शून्य है। इस दिशा के अनुदिश θ = 0, sin θ = 0 तथा समीकरण [4.11(a)], |d**B**| = 0

मुक्त दिक्स्थान की विद्युतशीलता, मुक्त दिक्स्थान की चुंबकशीलता तथा निर्वात में प्रकाश के वेग में एक रोचक संबंध है।

$$\varepsilon_0 \mu_0 = (4\pi\varepsilon_0) \left(\frac{\mu_0}{4\pi}\right) = \left(\frac{1}{9 \times 10^9}\right) (10^{-7}) = \frac{1}{(3 \times 10^8)^2} = \frac{1}{c^2}$$

इस संबंध के विषय में हम विद्युत चुंबकीय तरंगों के अध्याय 8 में चर्चा करेंगे। चूँकि निर्वात में प्रकाश का वेग नियत है, गुणनफल $\mu_0 \epsilon_0$ परिमाण में निश्चित है। ϵ_0 तथा μ_0 में से किसी भी एक मान का चयन करने पर अन्य का मान स्वत: निश्चित हो जाता है। SI मात्रकों में μ_0 का एक निश्चित परिमाण $4\pi \times 10^{-7}$ है।

उदाहरण 4.5 कोई विद्युत धारा अवयव $\Delta l = \Delta x \hat{i}$ जिससे एक उच्च धारा I = 10A प्रवाहित हो रही है, मूल बिंदु पर स्थित है (चित्र 4.10), *y*-अक्ष पर 0.5 m दूरी पर स्थित किसी बिंदु पर इसके कारण चुंबकीय क्षेत्र का क्या मान है। $\Delta x = 1$ cm



144

<u> उदाहरण 4.5</u>

अगले अनुभाग में हम वृत्ताकार पाश के कारण चुंबकीय क्षेत्र परिकलित करने के लिए बायो-सावर्ट नियम का उपयोग करेंगे।

4.6 विद्युत धारावाही वृत्ताकार पाश के अक्ष पर चुंबकीय क्षेत्र

इस अनुभाग में हम विद्युत धारावाही वृत्ताकार पाश के कारण उसके अक्ष के अनुदिश चुंबकीय क्षेत्र का मूल्यांकन करेंगे। इस मूल्यांकन में पिछले अनुभाग में वर्णित अत्यल्प विद्युत धारा अवयवों (I dl) के प्रभाव को संयोजित किया जाएगा। हम यह मानते हैं कि प्रवाहित विद्युत धारा अपरिवर्ती है तथा मूल्यांकन मुक्त दिक्स्थान (निर्वात) में किया गया है।

चित्र 4.11 में वृत्ताकार पाश में स्थायी विद्युत धारा *I* प्रवाहित होते हुए दर्शाई गई है। पाश को मूल बिंदु पर *xy* तल में स्थित दर्शाया गया है तथा पाश का त्रिज्या *R* है। *x*-अक्ष ही लूप का अक्ष है। हमें इसी अक्ष के बिंदु P पर चुंबकीय क्षेत्र परिकलित करना है, मान लीजिए बिंदु P पाश के केंद्र से *x* दूरी पर स्थित है।

पाश के चालक अवयव dl पर विचार कीजिए, इसे चित्र 4.11 में दर्शायी गई है। dl के कारण चुंबकीय क्षेत्र का परिमाण बायो-सावर्ट नियम [समीकरण 4.11(a)] के अनुसार

$$dB = \frac{\mu_0}{4\pi} \frac{I |d\mathbf{l} \times \mathbf{r}|}{r^3}$$
(4.12)

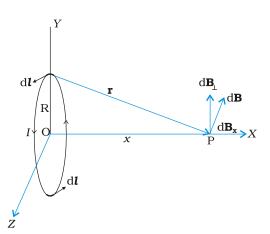
अब $r^2 = x^2 + R^2$ । साथ ही, पाश का कोई भी अवयव, इस अवयव से अक्षीय बिंदु के विस्थापन सदिश के लंबवत होगा। उदाहरण के लिए, चित्र 4.11 में अवयव dl y-z दिशा में है जबकि विस्थापन सदिश r अवयव dl से अक्षीय बिंदु P तक x-y तल में है। अत: $|dl \times r| = r dl$, इस प्रकार

$$dB = \frac{\mu_0}{4\pi} \frac{Idl}{\left(x^2 + R^2\right)}$$
(4.13)

d**B** की दिशा चित्र 4.11 में दर्शायी गई है। यह d**l** तथा **r** द्वारा बने तल के लंबवत है। इसका एक *x*- अवयव d**B**_x तथा *x*- अक्ष के लंबवत अवयव d**B**₁ है। जब *x*- अक्ष के लंबवत अवयवों को संयोजित करते हैं तो वे निरस्त हो जाते हैं तथा हमें शून्य परिणाम प्राप्त होता है। उदाहरण के लिए, चित्र 4.11 में दर्शाए अनुसार d**l** के कारण अवयव d**B**₁ इसके त्रिज्यत: विपरीत d**l** अवयव के कारण योगदान द्वारा निरस्ति हो जाता है। इस प्रकार केवल *x*-अवयव ही बच पाता है। *x*-दिशा के अनुदिश नेट योगदान पाश के ऊपर d*B*_x = dB cos θ को समाकलित करके प्राप्त किया जा सकता है।

$$\cos\theta = \frac{R}{(x^2 + R^2)^{1/2}}$$
(4.14)
समीकरणों (4.13) और (4.14),

$$dB_{x} = \frac{\mu_{0}Idl}{4\pi} \frac{R}{\left(x^{2} + R^{2}\right)^{3/2}}$$



चित्र 4.11 त्रिज्या *R* विद्युत धारावाही वृत्ताकार पाश के अक्ष पर चुंबकीय क्षेत्र। इस चित्र में रेखा अवयव *dl* के कारण चुंबकीय क्षेत्र *d*B तथा अक्ष के लंबवत कार्यरत इसके अवयवों को दर्शाया गया है।

145

समस्त पाश पर dlअवयवों का संकलन, $2\pi R$, प्राप्त होता है जो पाश की परिधि है। इस प्रकार

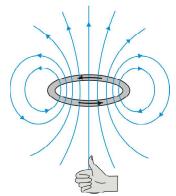
$$\mathbf{B} = B_{x}\hat{\mathbf{i}} = \frac{\mu_{0}IR^{2}}{2(x^{2} + R^{2})^{3/2}}\hat{\mathbf{i}}$$
(4.15)

उपरोक्त परिणाम की एक विशेष स्थिति के रूप में हम पाश के केंद्र पर चुंबकीय क्षेत्र प्राप्त कर सकते हैं। इस प्रकार यहाँ x = 0, तथा हमें प्राप्त होता है,

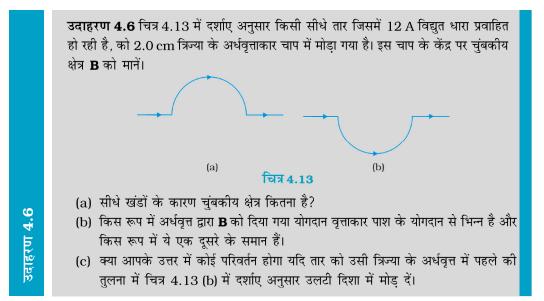
$$\mathbf{B}_{0} = \frac{\mu_{0}I}{2R}\hat{\mathbf{i}}$$
(4.16)

वृत्ताकार तार के कारण चुंबकीय क्षेत्र रेखाएँ बंद वृत्ताकार पाश बनाती हैं जिन्हें चित्र 4.12 में दर्शाया गया है। चुंबकीय क्षेत्र की दिशा (एक अन्य) *दक्षिण हस्त अंगुष्ठ नियम* द्वारा होती है। यह नियम नीचे दिया गया है.

वृत्ताकार तार के चारों ओर अपने दाएँ हाथ की हथेली को इस प्रकार मोड़िए कि उँगलियाँ विद्युत धारा की दिशा की ओर संकेत करें, तब इस हाथ का फैला हुआ अँगूठा चुंबकीय क्षेत्र की दिशा बताता है।

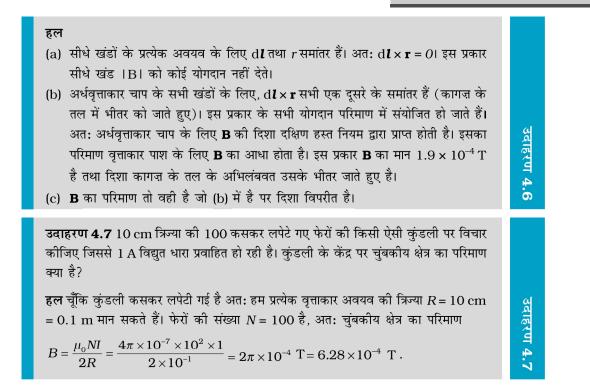


चित्र 4.12 किसी विद्युतवाही पाश का चुंबकीय क्षेत्र। पाठ की विषय वस्तु में वर्णित दक्षिण हस्त अंगुष्ठ नियम द्वारा उत्पन्न चुंबकीय क्षेत्र की दिशा निर्धारित होती है। पाश के ऊपरी पार्श्व को उत्तर ध्रुव तथा निचले पार्श्व को दक्षिण ध्रुव माना जा सकता है।



146

भौतिकी



4.7 ऐम्पियर का परिपथीय नियम

बायो-सावर्ट नियम को अभिव्यक्त करने का एक अन्य वैकल्पिक तथा रुचिकर उपाय भी है। ऐम्पियर के परिपथीय नियम में किसी खुले पृष्ठ जिसकी कोई सीमा हो, पर विचार किया जाता है। इस पृष्ठ से विद्युत धारा प्रवाहित होती है। हम यह विचार करते हैं कि सीमा रेखा बहुत से अल्प रेखा अवयवों से मिलकर बनी है। ऐसे ही एक रेखा अवयव dl पर विचार कीजिए। हम इस अवयव पर चुंबकीय क्षेत्र के स्पर्शरेखीय घटक **B**_t का मान लेंगे तथा इसे अवयव dl की लंबाई से गुणा करेंगे। [ध्यान दीजिए $B_t dl = \mathbf{B} \cdot d\mathbf{I}$]। इस प्रकार के सभी गुणनफल एक दूसरे के साथ संयोजित किए जाते हैं। हम सीमा पर विचार करते हैं क्योंकि जैसे-जैसे अवयवों की लंबाई घटती है इनकी संख्या बढ़ती है। तब इनका योग एक समाकलन बन जाता है। ऐम्पियर का नियम यह कहता है कि यह समाकलन पृष्ठ से प्रवाहित होने वाली कुल विद्युत धारा का μ_0 गुना होता है, अर्थात

$$\oint \mathbf{B} \cdot d\mathbf{l} = \mu_0 I \tag{4.17(a)}$$

यहाँ *I* पृष्ठ से गुज़रने वाली कुल विद्युत धारा है। इस समाकलन को पृष्ठ की सीमारेखा C के संपाती बंद के ऊपर लिया गया है। उपरोक्त संबंध में दिशा सम्मिलित है जो दक्षिण हस्त नियम से प्राप्त होती है। अपने दाएँ हाथ की उँगलियों को उस दिशा में मोड़िए जिस दिशा में पाश समाकल ∮**B**•dl में सीमा रेखा मुड़ी है। तब अँगूठे की दिशा उस दिशा को बताती है जिसमें विद्युत धारा को धनात्मक माना गया है।

बहुत से अनुप्रयोगों के लिए समीकरण [4.17 (a)] का कहीं अधिक सरलीकृत रूप पर्याप्त सिद्ध होता है। हम यह मानेंगे कि, इस प्रकार के प्रकरणों में ऐसे पाश (जिसे ऐम्पियरीय पाश कहते हैं।) का चयन संभव है जो इस प्रकार का है कि पाश के प्रत्येक बिंदु पर या तो



आंद्रे ऐम्पियर (1775 -1836) आंद्रे मैरी ऐम्पियर एक फ्रांसीसी भौतिक विज्ञानी, गणितज्ञ एवं रसायनज्ञ थे जिन्होंने विद्युतगतिकी विज्ञान की आधारशिला रखी। ऐम्पियर एक बाल प्रतिभा थे जिसने 12 वर्ष की आयु में उच्च गणित में महारत हासिल कर ली थी। ऐम्पियर ने ऑस्टेंड की खोज का महत्त्व समझा और धारा विद्युत एवं चुंबकत्व में संबंध खोजने के लिए प्रयोगों की एक लंबी शृंखला पार की। इन खोजों की परिणति 1827 में, Mathematical theory of Electrodynamic Phenomena Deduced Solely from Experiments नामक पुस्तक के प्रकाशन के रूप में हुई। उन्होंने परिकल्पना को कि सभी चुंबकीय प्रक्रम, वृत्तवाही विद्युत धाराओं के कारण होते हैं। ऐम्पियर स्वभाव से बहुत विनम्र और भुलक्कड़ थे। एक बार वह सम्राट नेपोलियन का रात्रिभोज का निमंत्रण भी भूल गए थे। 61 वर्ष की उम्र में न्यूमोनिया से उनकी मृत्यु हो गई। उनकी कब्र के पत्थर पर यह समाधि लेख उत्कीर्णित है - Tandem felix (अंत में प्रसन्न)।

आंद्रे ऐम्पियर (1775 –1836)

(i) **B** पाश के स्पर्शरेखीय है तथा शून्येतर नियतांक B है, अथवा

(ii) **B** पाश के अभिलंबवत है, अथवा

(iii) **B** नष्ट हो जाता है।

अब मान लीजिए *L* पाश की वह लंबाई (भाग) है जिसके लिए **B** स्पर्शरेखीय है। मान लीजिए पाश में परिवद्ध विद्युत धारा *I* है। तब समीकरण (4.17) को इस प्रकार व्यक्त कर सकते हैं

 $BL = \mu_0 I_e$ [4.17(b)]

जब किसी निकाय में इस प्रकार की सममिति हो जैसे कि चित्र 4.15 में सीधे विद्युत धारावाही अनंत तार के लिए है, तब ऐम्पियर का नियम हमें चुंबकीय क्षेत्र का एक सरल मूल्यांकन करने योग्य बनाता है जो ठीक उसी प्रकार है जैसे कि गाउस नियम विद्युत क्षेत्र को निर्धारित करने में हमारी सहायता करता है। इसे नीचे दिए गए उदाहरण 4.9 में दर्शाया गया है। पाश की सीमा रेखा का चयन एक वृत्त है तथा चुंबकीय क्षेत्र वृत्त की परिधि के स्पर्शरेखीय है। समीकरण [4.17 (b)] के वाम पक्ष के लिए इस नियम से प्राप्त मान B. $2\pi r$ है। हम यह पाते हैं कि तार के बाहर r दूरी पर चुंबकीय क्षेत्र स्पर्शरेखीय है तथा इसे इस प्रकार व्यक्त किया जा सकता है।

$$B \times 2\pi r = \mu_0 I,$$

 $B = \mu_0 I / (2\pi r)$

(ii)

(iii)

(4.18)

उपरोक्त परिणाम अनंत लंबाई के तार के लिए है जो कई दृष्टिकोणों से रोचक है–

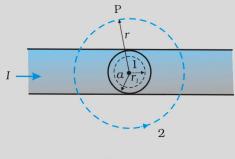
- (i) इसमें यह अंतर्निहित है कि r त्रिज्या के वृत्त के प्रत्येक बिंदु पर (तार को अक्ष के अनुदिश रखते हुए) क्षेत्र का परिमाण समान है। दूसरे शब्दों में चुंबकीय क्षेत्र में *बेलनाकार सममिति* है जो क्षेत्र सामान्यत: तीन निर्देशांकों पर निर्भर कर सकता है केवल एक ही निर्देशांक r पर निर्भर है। जहाँ कहीं भी सममिति होती है समस्याओं के हल सरल हो जाते हैं।
 - इस वृत्त के किसी भी बिंदु पर क्षेत्र की दिशा इसके स्पर्शरेखीय है। इस प्रकार चुंबकीय क्षेत्र की नियत परिमाण की रेखाएँ संकेंद्री वृत्त बनाती हैं। अब चित्र 4.1(c) पर ध्यान दीजिए, लौह चूर्ण वृत्त संकेंद्री में व्यवस्थित हुआ है। ये रेखाएँ जिन्हें हम चुंबकीय क्षेत्र रेखाएँ कहते है, बंद पाश बनाती हैं। यह स्थिरवैद्युत क्षेत्र रेखाओं से भिन्न हैं। स्थिरवैद्युत क्षेत्र रेखाएँ धन आवेशों से आरंभ तथा ऋण आवेशों पर समाप्त होती हैं। सीधे विद्युत धारावाही चालक के चुंबकीय क्षेत्र के

लिए व्यंजक ओर्स्टेंड प्रयोग का सैद्धांतिक स्पष्टीकरण करता है। एक अन्य ध्यान देने योग्य रोचक बात यह है कि यद्यपि तार अनंत लंबाई का है, तथापि शून्येतर दूरी पर इसके कारण चुंबकीय क्षेत्र अनंत नहीं है। यह केवल तार के अत्यधिक पास आने पर विस्फुटित होता है। यह क्षेत्र विद्युत धारा के अनुक्रमानुपाती है तथा विद्युत धारा स्रोत (अनंत लंबाई के) से दुरी के व्युत्क्रमानुपाती है।

(iv) लंबे तार के कारण उत्पन्न चुंबकीय क्षेत्र की दिशा को निर्धारित करने का एक सरल नियम है। इस नियम को दक्षिण हस्त नियम* कहते हैं। यह इस प्रकार है तार को अपने दाएँ हाथ में इस प्रकार पकड़िए कि आपका तना हुआ अँगूठा विद्युत धारा की दिशा

की ओर संकेत करे। तब आपकी अँगुलियों के मुड़ने की दिशा चुंबकीय क्षेत्र की दिशा में होगी। ऐम्पियर का परिपथीय नियम बायो-सावर्ट नियम से भिन्न नहीं है। दोनों ही नियम विद्युत धारा तथा चुंबकीय क्षेत्र में संबंध व्यक्त करते हैं तथा दोनों ही स्थायी विद्युत धारा के समान भौतिक परिणामों को व्यक्त करते हैं। जो संबंध ऐम्पियर के नियम तथा बायो-सावर्ट नियम के बीच है ठीक वही संबंध गाउस नियम तथा कूलॉम नियम के बीच में है। ऐम्पियर का नियम तथा गाउस का नियम दोनों ही परिरेखा अथवा परिपृष्ठ पर किसी भौतिक राशि (चुंबकीय अथवा विद्युत क्षेत्र) का संबंध किसी अन्य भौतिक राशि जैसे अन्त: क्षेत्र में उपस्थित स्रोत (विद्युत धारा अथवा आवेश) के बीच संबंध व्यक्त करते हैं। यहाँ ध्यान देने योग्य बात यह भी है कि ऐम्पियर का परिपथीय नियम केवल उन स्थायी विद्युत धाराओं पर लागू होता है जो समय के साथ परिवर्तित नहीं होतीं। निम्नलिखित उदाहरण हमें परिबद्ध विद्युत धारा का अर्थ समझने में सहायता करेगा।

उदाहरण 4.8 चित्र 4.15 में एक लंबा सीधा वृत्ताकार अनुप्रस्थ काट का (जिसकी त्रिज्या *a* है) विद्युत धारावाही तार जिससे स्थायी विद्युत धारा *I* प्रवाहित हो रही हो, दर्शाया गया है। स्थायी विद्युत धारा इस अनुप्रस्थ काट पर एकसमान रूप से वितरित है। क्षेत्रों *r* < *a* तथा *r* > *a* में चुंबकीय क्षेत्र परिकलित कीजिए



चित्र 4.15

हल (a) प्रकरण *r > a* पर विचार कीजिए। जिस पाश पर 2 अंकित है वह अनुप्रस्थ काट के साथ संकेंद्री वृत्त के रूप में ऐम्पियर पाश है। इस पाश के लिए

$$\begin{split} L &= 2 \pi r \\ I_e &= \text{ unst } \text{ grt } \text{ uft} \text{ agg } \text{ farger } \text{ unst } = I \\ \text{ ust } \text{ uft} \text{ uft} \text{ afg } \text{ farger } \text{ unst } \text{ is } \text{ int } \text{ afg } \text{ for } \text{ unst } \text{ afg } \text{$$

(b) प्रकरण r < a पर विचार कीजिए। इसके लिए ऐम्पियर पाश वह वृत्त है जिस पर 1 अंकित है।

उदाहरण 4.8

^{*} कृपया ध्यान दीजिए—दो सुस्पष्ट (पृथक) नियम हैं जिन्हें दक्षिण हस्त नियम कहते हैं। इनमें से एक नियम विद्युत धारा पाश के अक्ष पर चुंबकीय क्षेत्र B की दिशा देता है तथा दूसरा सीधे विद्युत धारावाही चालक तार के लिए B की दिशा है। इन नियमों में अँगूठे तथा अँगुलियों की भिन्न भूमिका है।

भौतिकी

इस पाश के लिए वृत्त की त्रिज्या r लेने पर, $L = 2 \pi r$

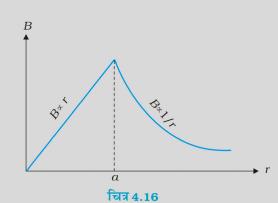
अब यहाँ परिबद्ध विद्युत धारा I_e का मान I नहीं है परंतु यह इस मान से कम है। चूँकि विद्युत धारा का विवरण एकसमान है, परिबद्ध विद्युत धारा के अंश का मान

$$I_e = I\left(\frac{\pi r^2}{\pi a^2}\right) = \frac{Ir^2}{a^2}$$

ऐम्पियर के नियम का उपयोग करने पर $B(2\pi r) = \mu_0 \frac{Ir^2}{a^2}$

$$B = \left(\frac{\mu_0 I}{2\pi a^2}\right) r$$

$$B \propto r \qquad (r < a)$$
[4.19(b)]



चित्र (4.16) में **B** के परिमाण तथा तार के केंद्र से दूरी *r* के बीच ग्राफ दर्शाया गया है। चुंबकीय क्षेत्र की दिशा अपने–अपने वृत्ताकार पाशों (1 अथवा 2) के स्पर्शरेखीय है तथा यह इसी अनुभाग में पहले वर्णन किए जा चुके दक्षिण हस्त नियम से निर्धारित की गई है। इस उदाहरण में आवश्यक सममिति विद्यमान है इसलिए इसी पर ऐम्पियर का नियम आसानी से लागू किया जा सकता है।

यहाँ ध्यान देने योग्य बात यह है कि जबकि ऐम्पियर के परिपथीय नियम को किसी भी पाश पर लागू किया जा सकता है परंतु यह हर प्रकरण में चुंबकीय क्षेत्र का मूल्यांकन सदैव ही आसान नहीं बनाता। उदाहरण के लिए, अनुभाग 4.6 में वर्णन किए गए वृत्ताकार पाश के प्रकरण में, इसे सरल व्यंजक $B = \mu_0 I/2R$ [समीकरण (4.16)] को, जोकि पाश के केंद्र पर चुंबकीय क्षेत्र के लिए है, प्राप्त करने के लिए लागू नहीं किया जा सकता। तथापि ऐसी बहुत सी परिस्थितियाँ हैं जिनमें उच्च सममिति होती है तथा इस नियम को सुविधापूर्वक लागू किया जा सकता है। अगले अनुभाग में हम इसका उपयोग दो सामान्यत: उपयोग होने वाले अत्यंत उपयोगी चुंबकीय निकायों–*परिनालिका* एवं *टोरॉइड* द्वारा उत्पन्न चुंबकीय क्षेत्रों को परिकलित करने में करेंगे।

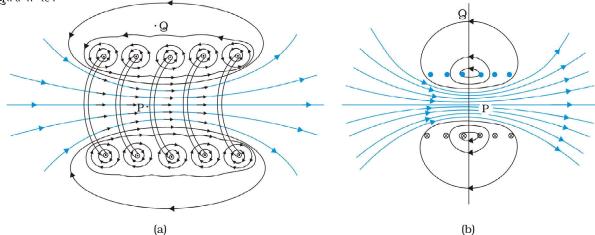
4.8 परिनालिका तथा टोरॉइड

परिनालिका तथा टोरॉइड ऐसे दो उपकरण हैं जो चुंबकीय क्षेत्र उत्पन्न करते हैं। टेलीविज़न में आवश्यक चुंबकीय क्षेत्र उत्पन्न करने के लिए परिनालिका का उपयोग होता है। सिंक्रोट्रॉन में आवश्यक चुंबकीय क्षेत्र उत्पन्न करने के लिए इन दोनों का संयुक्त रूप से उपयोग किया जाता है। परिनालिका तथा टोरॉइड दोनों में ही हमें उच्च सममिति की ऐसी स्थिति देखने को मिलती है जिनमें ऐम्पियर-नियम आसानी से लागू किया जा सकता है।

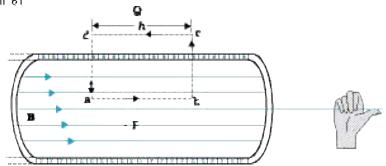
उदाहरण 4.8

4.8.1 परिनालिका

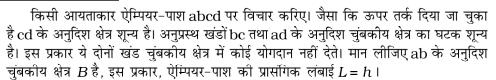
हम यहाँ एक लंबी परिनालिका के विषय में चर्चा करेंगे। लंबी परिनालिका से हमारा तात्पर्य यह है कि परिनालिका की लंबाई उसकी त्रिज्या की तुलना में अधिक है। परिनालिका में एक लंबा तार सर्पिल के आकार में लिपटा होता है जिसमें प्रत्येक फेरा अपने निकट के फेरे के साथ काफ़ी सटा होता है। इस प्रकार फेरे को एक वृत्ताकार पाश माना जा सकता है। किसी परिनालिका के सभी फेरों के कारण उत्पन्न कुल चुंबकीय क्षेत्र प्रत्येक फेरे के चुंबकीय क्षेत्रों का सदिश योग होता है। परिनालिका पर लपेटने के लिए इनैमलित तारों का उपयोग किया जाता है ताकि फेरे एक दूसरे से विद्युतरोधी रहें।



चित्र 4.17 में किसी परिमित परिनालिका का चुंबकीय क्षेत्र दर्शाया गया है। चित्र 4.17 (a) में हमने इस परिनालिका के एक खंड को विस्तारित करके दिखाया है। चित्र 4.17 (b) में वृत्ताकार पाश से यह स्पष्ट है कि दो पास-पास के फेरों के बीच चुंबकीय क्षेत्र नष्ट हो जाता है। चित्र 4.17 (b) में हम यह देखते हैं कि अन्त:भाग के मध्य बिंदु P पर चुंबकीय क्षेत्र एकसमान, प्रबल तथा परिनालिका के अक्ष के अनुदिश है। बाह्य भाग के मध्य बिंदु Q पर चुंबकीय क्षेत्र दर्शल है और साथ ही यह परिनालिका के अक्ष के अनुदिश है। बाह्य भाग के मध्य बिंदु Q पर चुंबकीय क्षेत्र दुर्बल है और साथ ही यह परिनालिका के अक्ष के अनुदिश है। बाह्य भाग के मध्य बिंदु Q पर चुंबकीय क्षेत्र दुर्बल है और साथ ही यह परिनालिका के अक्ष के अनुदिश है तथा इसका लंबवत अथवा अभिलंबवत कोई घटक भी नहीं है। जैसे-जैसे परिनालिका की लंबाई में वृद्धि होती है वह लंबी बेलनाकार धातु के पटल जैसी दिखाई देने लगती है। चित्र 4.18 में यह आदर्शीकृत चित्रण निरूपित किया गया है। परिनालिका के बाहर चुंबकीय क्षेत्र शून्य होने लगता है। परिनालिका के भीतर हर बिंदु पर चुंबकीय क्षेत्र अक्ष के समांतर होता है।



चित्र 4.18 अत्यधिक लंबी परिनालिका का चुंबकीय क्षेत्र। चुंबकीय क्षेत्र को निर्धारित करने के लिए हम एक आयताकार ऐम्पियर-पाश *a, b, c, d* पर विचार करते हैं।



मान लीजिए प्रति एकांक लंबाई फेरों की संख्या n है, तब फेरों की कुल संख्या nh है। इस प्रकार परिबद्ध विद्युत धारा है $I_e = I (n h)$, यहाँ I परिनालिका में प्रवाहित विद्युत धारा है। ऐम्पियर के परिपथीय नियम के अनुसार [समीकरण 4.17 (b) से]

$$BL = \mu_0 I_e, \quad B h = \mu_0 I (n h)$$

$$B = \mu_0 n I$$

🍢 भौतिकी

(4.20)

क्षेत्र की दिशा दक्षिण हस्त नियम से प्राप्त होती है। परिनालिका का सामान्यत: उपयोग एकसमान चुंबकीय क्षेत्र प्राप्त करने के लिए किया जाता है। अगले अध्याय में हम यह देखेंगे कि परिनालिका में भीतर नर्म लौह क्रोड रखकर विशाल चुंबकीय क्षेत्र उत्पन्न करना संभव है।

4.8.2 **टोरॉइड**

यह एक वृत्ताकार खोखला छल्ला होता है जिस पर किसी तार के अत्यधिक फेरे पास-पास सटाकर लपेटे जाते हैं। इसे एक ऐसी परिनालिका के रूप में भी देखा जा सकता है जिसे बंद करने के लिए वृत्ताकार मोड़ दिया गया है। इसे चित्र 4.19 (a) में दर्शाया गया है। इससे *I* विद्युत धारा प्रवाहित हो रही है। हम यह देखेंगे कि टोरॉइड के भीतर खुले दिक्स्थान में (बिंदु P) तथा टोरॉइड के बाहर (बिंदु Q) पर चुंबकीय क्षेत्र शून्य है। किसी आदर्श टोरॉइड जिसके फेरे सटाकर लिपटे होते हैं, के लिए टोरॉइड के भीतर चुंबकीय क्षेत्र **B** नियत रहता है।

चित्र 4.19 (b) में टोरॉइड की अनुप्रस्थ काट दर्शायी गई है। वृत्ताकार-पाशों के लिए दक्षिण हस्त नियम के अनुसार टोरॉइड के भीतर चुंबकीय क्षेत्र की दिशा दक्षिणावर्त है। खोंडत रेखाएँ जिन पर 1, 2, 3 अंकित हैं, इसके तीन ऐम्पियर-पाश हैं। सममिति के अनुसार चुंबकीय क्षेत्र इन पाशों में प्रत्येक के स्पर्शरेखीय होना चाहिए तथा प्रत्येक पाश के लिए इसका परिमाण नियत होना चाहिए। पाश 2 तथा 3 इन दोनों द्वारा घेरे गए वृत्ताकार क्षेत्र टोरॉइड को काटते हैं; इस प्रकार विद्युत धारावाही तार को प्रत्येक फेरा पाश 2 को एक तथा पाश 3 को दो बार काटता है। मान लीजिए पाश 1 के अनुदिश चुंबकीय क्षेत्र का परिमाण *B*, है। तब

ऐम्पियर के परिपथीय नियम में [समीकरण 4.17 (a)] $L = 2\pi r_1^{-1}$ तथापि, यह पाश कोई विद्युत धारा परिबद्ध नहीं करता, अत: $I_e = 0$ । इस प्रकार

T