अध्याय 15

संचार व्यवस्था

15.1 भूमिका

संचार सूचना के संप्रेषण की क्रिया है। इस संसार का प्रत्येक प्राणी, अपने चारों ओर के संसार के अन्य प्राणियों से, लगभग निरंतर ही सूचनाओं के आदान-प्रदान की आवश्यकता का अनुभव करता है। किसी सफल संचार के लिए यह आवश्यक है कि प्रेषक एवं ग्राही दोनों ही किसी सर्वसामान्य भाषा को समझते हों। मानव निरंतर ही यह प्रयत्न करता रहा है कि उसका मानव जाति से संचार गुणता में उन्नत हो। मानव प्रागैतिहासिक काल से आधुनिक काल तक, संचार में उपयोग होने वाली नयी-नयी भाषाओं एवं विधियों की खोज करने के लिए प्रयत्नशील रहा है, ताकि संचार की गति एवं जटिलताओं के पदों में बढ़ती आवश्यकताओं की पूर्ति हो सके। संचार प्रणाली के विकास को प्रोन्नत करने वाली घटनाओं एवं उपलब्धियों के विषय में जानकारी होना लाभप्रद है, जिसे सारणी 15.1 में प्रस्तुत किया गया है।

आधुनिक संचार की जड़ें 19 वीं तथा 20 वीं शताब्दियों में सर जगदीश चन्द्र बोस, एफ.बी. मोर्स, जी मार्कोनी तथा अलेक्जेंडर ग्राह्म बेल के कार्य द्वारा डाली गईं। 20 वीं शताब्दी के पहले पचास वर्षों के पश्चात इस क्षेत्र में विकास की गति नाटकीय रूप से बढ़ी प्रतीत होती है। आगामी दशकों में हम बहुत सी अन्य महत्वपूर्ण उपलब्धियाँ देख सकते हैं। इस अध्याय का उद्देश्य संचार की अभिकल्पना, अर्थात संचार के ढंग (Mode), मॉडुलन की आवश्यकता, और आयाम-मॉडुलन के निगमन तथा उत्पादन से परिचित होना है।

15.2 संचार व्यवस्था के अवयव

संचार सभी सजीव वस्तुओं के जीवन के प्रत्येक चरण में व्याप्त है। चाहे संचार की कोई भी प्रकृति हो, प्रत्येक संचार व्यवस्था के तीन आवश्यक तत्व होते हैं- प्रेषित्र, माध्यम/चैनल तथा अभिग्राही। चित्र 15.1 में किसी संचार व्यवस्था के व्यापक रूप को ब्लॉक आरेख द्वारा दर्शाया गया है।

सारणी 15.1 संचार के इतिहास की कुछ प्रमुख उपलब्धियाँ

वर्ष	घटना	टिप्पणी
$\begin{aligned} & 1565 \text { ई. } \\ & \text { (लगभग) } \end{aligned}$	बादशाह अकबर को किसी दूरस्थ स्थान से बेगम द्वारा बच्चे को जन्म दिये जाने की सूचना ढोल बजाकर देना	यह माना जाता है कि वज़ीर बीरबल ने बादशाह और बेगम के विश्राम-स्थलों के बीच निश्चित संख्या में ढोल बजाने वालों की व्यवस्था का प्रयोग किया था
1835	सैम्यूल एफ. बी. मोर्स तथा सर चार्ल्स व्हीटस्टोन द्वारा टेलीग्राफ़ का आविष्कार	इसके परिणामस्वरूप डाकघरों द्वारा संदेश भेजने में आश्चर्यजनक वृद्धि हुई तथा संदेशवाहकों द्वारा स्वयं यात्रा कर संदेश पहुँचाने का कार्य काफ़ी कम हो गया
1876	अलेक्ज़ैंडर ग्राह्म बेल तथा एंटोनियो मेयूस्सी द्वारा टेलीफ़ोन का आविष्कार	कदाचित मानव जाति के इतिहास में सबसे व्यापक उपयोग होने वाला संचार का साधन
1895	सर जे.सी. बोस तथा जी. मार्कोनी द्वारा बेतार के तार का निदर्शन	यह तार द्वारा संचार के युग से बे-तार द्वारा संचार के युग में एक ऊँची उड़ान थी
1936	टेलीविज़न प्रसारण (जॉन लॉगी बेयर्ड)	BBC द्वारा प्रथम टेलीविज़न प्रसारण
1955	महाद्वीप के पार पहला रेडियो फ़ैक्स प्रेषित (अलेक्ज़ैंडर बेन)	अलेक्ज़ैंडर बेन ने फ़ैक्स की अवधारणा 1843 में पेटंट कराई
1968	ARPANET पहला इंटरनेट अस्तित्व में आया (J.C.R. लिक्लीडर)	ARPANET परियोजना अमेरिका के रक्षा विभाग द्वारा संचालित की गई। इसके अंतर्गत नेटवर्क से संयोजित एक कंप्यूटर से फ़ाइल दूसरे कंप्यूटर में स्थानांतरित की गयी
1975	बेल लेबोरेट्रीज़ पर तंतु प्रकाशिकी विकसित हुई	पारंपरिक संचार व्यवस्थाओं की तुलना में तंतु प्रकाशिक संचार व्यवस्था श्रेष्ठ तथा सस्ती हैं
1989-91	टिम बर्नर-ली ने World Wide Web का आविष्कार किया।	WWW को ऐसे विशालकाय विश्वकोष के सदृश माना जा सकता है जिसका ज्ञान सर्वसाधारण को हर समय सुलभ रहता है

संचार व्यवस्था

चित्र 15.1 किसी व्यापक संचार व्यवस्था का ब्लॉक आरेख।
किसी संचार व्यवस्था में प्रेषित्र किसी एक स्थान पर अवस्थित होता है, अभिग्राही किसी अन्य स्थान पर (पास अथवा दूर) अवस्थित होता है तथा चैनल एक ऐसा भौतिक माध्यम है जो इन्हें एक दूसरे से संयोजित करता है। चैनल का प्रकार संचार व्यवस्था के प्रकार पर निर्भर करता है। यह प्रेषित्र तथा अभिग्राही को संयोजित करने वाले एक तार अथवा केबल के रूप में हो सकता है अथवा वह बेतार (वायरलैस) भी हो सकता है। प्रेषित्र का उद्देश्य सूचना स्रोत द्वारा उत्पन्न संदेश सिग्नल को चैनल द्वारा प्रेषण के लिए उपयुक्त रूप में परिवर्तित करना है। यदि किसी सूचना स्रोत का निर्गत वाक् सिग्नल की भाँति अविद्युतीय हो तो कोई ट्रांसड्यूसर, इस संदेश को प्रेषित्र में देने से पूर्व विद्युत सिग्नल में रूपांतरित कर देता है। जब कोई प्रेषित सिग्नल चैनल के अनुदिश संचारित होता है तो यह चैनल में अपूर्णता के कारण विरूपित हो सकता है। इसके अतिरिक्त प्रेषित सिग्नल में नॉयज (Noise, रव) मिल जाता है, फलस्वरूप अभिग्राही प्रेषित सिग्नल का विकृत रूप प्राप्त करता है। अभिग्राही का कार्य प्राप्त सिग्नल को प्रचालित करना होता है। यह इस सूचना-सिग्नल की पुन: संरचना करके इसे मूल संदेश-सिग्नल को पहचान सकने योग्य रूप में लाता है ताकि संदेश प्राप्तकर्ता को पहुँचाया जा सके।

संचार के दो मूल ढंग हैं: बिंदु से बिंदु तक संचार, तथा प्रसारण।
बिंदु से बिंदु तक संचार विधि में एक एकल प्रेषित्र तथा एक अभिग्राही के बीच के संयोजन (Linkage) से होकर संचार होता है। इस विधि के संचार का एक उदाहरण टेलीफ़ोन व्यवस्था है। इसके विपरीत, प्रसारण विधि में किसी एकल प्रेषित्र के तदनुरूपी बहुत से अभिग्राही होते हैं। प्रसारण विधि द्वारा संचार के उदाहरण रेडियो तथा टेलीविजन हैं।

15.3 इलेक्ट्रॉनिक संचार व्यवस्थाओं में उपयोग होने वाली मूल शब्दावली

अब तक हम कुछ पदों (शब्दों) जैसे सूचना स्रोत, प्रेषित्र, अभिग्राही, चैनल, नॉयज़ (रव), आदि से परिचित हो चुके हैं। यदि हम निम्नलिखित मूल शब्दावली से परिचित हो जाएँ तो हमें किसी भी संचार व्यवस्था को समझना आसान हो जाएगा।
(i) ट्रान्सड्यूसर : कोई युक्ति जो ऊर्जा के एक रूप को किसी दूसरे रूप में परिवर्तित कर देती है उसे ट्रांसड्यूसर कहते हैं। इलेक्ट्रॉनिक संचार व्यवस्थाओं में हमें प्रायः ऐसी युक्तियों से व्यवहार करना होता है जिनका या तो निवेश अथवा निर्गत विद्युतीय रूप में होता है। किसी विद्युतीय ट्रांसड्यूसर को इस प्रकार परिभाषित किया जाता है-ऐसी युक्ति जो कुछ भौतिक चरों (दाब, विस्थापन, बल,

- भौतिकी

जगदीश चंद्र बोस (18581937) उन्होंने परालघु वैद्युतचुंबकीय तरंगों के जनन के लिए एक उपकरण बनाया और उसके अर्द्ध प्रकाशीय गुणों का अध्ययन किया। ऐसा कहा जाता है कि वे गैलेना जैसे अर्द्धचालक को वैद्युतचुंबकीय तरंगों के स्वतः पुनर्प्राप्त संसूचक के रूप में उपयोग करने वाले पहले व्यक्ति थे। बोस ने ब्रिटिश पत्रिका दि इलैक्ट्रीशियन के 27 दिसंबर 1995 के अंक में तीन लेख प्रकाशित किए। 13 दिसंबर 1901 को मार्कोनी के पहले बेतार के संचार से दो वर्ष से भी अधिक पहले बोस के आविष्कार के बारे में 27 अप्रैल 1899 की रॉयल सोसाइटी की कार्यवाही में भी लेख प्रकाशित हो चुका था। बोस ने ऐसे अतिसंवेदी उपकरणों का आविष्कार किया जिनके द्वारा जीवित प्राणियों पर बाह्य उद्दीपकों की अतिसूक्ष्म प्रतिक्रिया को संसूचित किया जा सकता था। इनके द्वारा उन्होंने जंतु एवं वानस्पतिक ऊतकों में समांतरता स्थापित की।

ताप आदि) को अपने निर्गत पर तदनुरूपी विद्युतीय सिग्नल के चरों में रूपांतरित कर देते हैं।
(ii) सिग्नल : प्रेषण के लिए उपयुक्त वैद्युत रूप में रूपांतरित सूचना को सिग्नल या संकेत कहते हैं।

सिग्नल या तो अनुरूप (Analog) अथवा अंकीय (Digital) हो सकते हैं। अनुरूप सिग्नल वोल्टता अथवा धारा के सतत् विचरण होते हैं। ये अनिवार्यत: समय के एकल मान वाले फलन होते हैं। ज्या तरंग (Sine wave) एक मूल अनुरूप सिग्नल होती है। सभी अन्य अनुरूप सिग्नलों को इनके ज्या तरंग अवयवों के पदों में पूर्णतः समझा जा सकता है। टेलीविज़न के ध्वनि तथा दृश्य सिग्नल प्रकृति में अनुरूप सिग्नल होते हैं। अंकीय सिग्नल वे होते हैं जो क्रमवार विविक्त मान प्राप्त कर सकते हैं। अंकीय इलेक्ट्रॉनिकी में विस्तृत रूप में उपयोग होने वाली द्विआधारी पद्धति में किसी सिग्नल के केवल दो स्तर होते हैं। ' 0 ' निम्न वोल्टता धारा स्तर के तदनुरूपी है तो ' 1 ' उच्च वोल्टता-धारा स्तर के तदनुरूपी होता है। अंकीय संचार के लिए उपयोगी बहुत सी कोडन पद्धतियाँ हैं। इनमें संख्या प्रणालियों के उपयुक्त संयोजनों जैसे द्विआधारी कोडित दशमलव (Binary Coded Decimal या BCD)* का उपयोग किया जाता है। संख्याओं, अक्षरों तथा निश्चित लक्षणों को निरूपित करने वाला सार्वजनिक रूप से लोकप्रिय अंकीय कोड "American Standard Code for Information Interchange (ASCII)** है।
(आजकल प्रकाशिक सिग्नल भी प्रयोग होते हैं)
(iii) रव : रव से हमारा तात्पर्य उन अवांछनीय सिग्नलों से है जो किसी संचार व्यवस्था में संदेश सिग्नलों के प्रेषण तथा संसाधन में विक्षोभ का प्रयास करते हैं। रव उत्पन्न करने का स्रोत व्यवस्था के बाहर अथवा भीतर स्थित हो सकता है।
(iv) प्रेषित्र : प्रेषित्र प्रवेशी संदेश सिग्नल को संसाधित करके चैनल से होकर प्रेषण तथा इसके पश्चात अभिग्रहण के लिए उपयुक्त बनाता है।
(v) अभिग्राही : कोई अभिग्राही चैनल के निर्गत पर प्राप्त सिग्नल से वांछनीय संदेश सिग्नलों को प्राप्त करता है।
(vi) क्षीणता : माध्यम से संचरण के समय सिग्नल की प्रबलता में क्षति को क्षीणता कहते हैं।
(vii) प्रवर्धन : यह किसी इलेक्ट्रॉनिक परिपथ जिसे प्रवर्धक (संदर्भ अध्याय 14) कहते हैं, के उपयोग से सिग्नल आयाम (और फलस्वरूप उसकी तीव्रता) में वृद्धि करने की प्रक्रिया है। संचार व्यवस्था में क्षीणता के कारण होने वाले क्षय की क्षतिपूर्ति के लिए प्रवर्धन आवश्यक है। अतिरिक्त सिग्नल प्रबलता के लिए आवश्यक ऊर्जा DC विद्युत स्रोत से प्राप्त सिग्नल है। प्रवर्धन, स्रोत तथा लक्ष्य के बीच उस स्थान पर किया जाता है जहाँ सिग्नल की प्रबलता, अपेक्षित प्रबलता से दुर्बल हो जाती है।

[^0](viii) परास : यह स्रोत तथा लक्ष्य के बीच की वह अधिकतम दूरी है जहाँ तक सिग्नल को उसकी पर्याप्त प्रबलता से प्राप्त किया जाता है।
(ix) बैंड चौड़ाई : बैड चौड़ाई से हमारा तात्पर्य उस आवृत्ति परास से है जिस पर कोई उपकरण प्रचालित होता है अथवा स्पेक्ट्रम के उस भाग से होता है जिसमें सिग्नल की सभी आवृत्तियाँ विद्यमान हैं।
(x) मॉडुलन : अनुभाग 15.7 में दिए गए कारणों के अनुसार निम्न आवृत्ति के मूल सिग्नलों (संदेशों / सूचनाओं) को अधिक दूरियों तक प्रेषित नहीं किया जा सकता। इसीलिए प्रेषित्र पर, निम्न आवृत्ति के संदेश सिग्नलों की सूचनाओं को किसी उच्च आवृत्ति की तरंग पर अध्यारोपित कराया जाता है जो सूचना के वाहक की भाँति व्यवहार करती है। इस प्रक्रिया को मॉडुलन कहते हैं। जैसा कि आगे चर्चा की जाएगी मॉडुलन कई प्रकार के होते हैं जिन्हें संक्षेप में AM, FM तथा PM कहते हैं।
(xi) विमॉडुलन : इस प्रक्रिया को जिसमें अभिग्राही द्वारा वाहक तरंग से सूचना की पुनः प्राप्ति की जाती है, विमॉडुलन कहते हैं। यह मॉडुलन के विपरीत प्रक्रिया है।
(xii) पुनरावर्तक (Repeater) : पुनरावर्तक अभिग्राही तथा प्रेषित्र का संयोजन होता है। पुनरावर्तक प्रेषित्र से सिग्नल चयन करता है, उसे प्रवर्थित करता है तथा उसे अभिग्राही को पुनः प्रेषित कर देता है। कभी-कभी तो वाहक तरंगों की आवृत्ति में परिवर्तन भी कर देता है। पुनरावर्तकों का उपयोग चित्र 15.2 में दर्शाए अनुसार किसी संचार व्यवस्था का परास विस्तारित करने के लिए किया जाता है। कोई संचार उपग्रह वास्तव में अंतरिक्ष में एक पुनरावर्तक स्टेशन ही है।

चित्र 15.2 संचार के परास में वृद्धि के लिए परावर्तक स्टेशन का उपयोग।

15.4 सिग्नलों की बैंड-चौड़ाई

किसी संचार व्यवस्था में संदेश सिग्नल कोई आवाज, संगीत, दृश्य अथवा कंप्यूटर आँकड़ा हो सकता है। उन सिग्नलों में प्रत्येक के आवृत्ति परास भिन्न होते हैं। किसी दिए गए सिग्नल की संचार प्रक्रिया को जिस प्रकार की संचार व्यवस्था चाहिए वह उस आवृत्ति बैंड पर निर्भर करती है जो उसके लिए आवश्यक माना जाता है।

वाक् सिग्नलों के लिए 300 Hz से 3100 Hz का आवृत्ति परास उपयुक्त माना जाता है। अत: वाक् सिग्नलों को व्यापारिक टेलीफ़ोन संचार के लिए $2800 \mathrm{~Hz}(3100 \mathrm{~Hz}-300 \mathrm{~Hz})$ बैंड चौड़ाईं चाहिए। संगीत के प्रेषण के लिए वाद्य यंत्रों द्वारा उच्च आवृत्तियों के स्वर उत्पन्न करने के कारण, लगभग 20 kHz की बैंड चौड़ाई की आवश्यकता होती है। आवृत्ति का श्रव्य परिसर 20 Hz से 20 kHz तक है।

दृश्यों के प्रसारण (प्रेषण) के लिए वीडियो सिग्नलों को 4.2 MHz बैंड चौड़ाई की आवश्यकता होती है। TV सिग्नलों में दृश्य तथा श्रव्य दोनों अवयव होते हैं तथा उनके प्रेषण के लिए प्राय: 6 MHz बैंड चौड़ाई आवंटित की जाती है।

भौतिकी

पिछले अनुच्छेद में हमने केवल अनुरूप सिग्नलों पर ही विचार किया है। अंकीय सिग्नल चित्र 15.3 में दर्शाए अनुसार आयताकार तरंग की आकृति के होते हैं। यह दर्शाया जा सकता है कि आयताकार तरंग का अपघटन (वियोजन) $v_{0}, 2 v_{0}, 3 v_{0}, 4 v_{0} \ldots \mathrm{n} v_{0}$ आवृत्तियों की ज्यावक्रीय तरंगों के अध्यारोपण के रूप में किया जा सकता है। यहाँ n एक पूर्णांक है जिसे अनंत तक विस्तरित किया जा सकता है तथा $v_{0}=1 / T_{0}$ है। इस तथ्य की व्याख्या के लिए एक ही आरेख में मूल आवृत्ति $\left(v_{0}\right)$; मूल आवृत्ति $\left(v_{0}\right)+$ द्वितीय गुणावृत्ति $\left(2 v_{0}\right)$, मूल आवृत्ति $\left(v_{0}\right)+$ द्वितीय गुणावृत्ति $\left(2 v_{0}\right)+$ तृतीय गुणावृत्ति $\left(3 v_{0}\right)$ दर्शायी गई हैं। इस आरेख से यह स्पष्ट है कि आयताकार तरंग को यथार्थ रूप में पुनरुत्पादन करने के लिए हमें सभी गुणावृत्तियों $v_{0}, 2 v_{0}, 3 v_{0}, 4 v_{0} \ldots$, आदि को अध्यारोपित करने की आवश्यकता होगी, जिससे यह ध्वनित होता है कि बैंड की चौड़ाई अनंत चाहिए। तथापि व्यावहारिक कार्यों के

चित्र 15.3 मूल ज्या तरंग तथा इसकी गुणावृत्तियों के पदों में
आयताकार तरंग का सन्निकटन। लिए उच्च गुणावृत्तियों के योगदान की उपेक्षा की जा सकती है जिससे बैंड चौड़ाई सीमित हो जाएगी। इसके परिणामस्वरूप अभिग्रहीत तरंगें प्रेषित तरंगों की तुलना में विरूपित होंगी। यदि बैंड चौड़ाई इतनी अधिक है कि इसमें कुछ गुणावृत्तियाँ समायोजित हो सकती हैं तो सूचना की कोई क्षति नहीं होती है तथा कुल मिलाकर आयताकार सिग्नल प्राप्त हो जाता है। इसका कारण यह है कि जितनी उच्च गुणावृत्ति होती है तरंग रूप के लिए इसका योगदान उतना ही कम होता है।

15.5 प्रेषण माध्यम की बैंड-चौड़ाई

संदेश सिग्नलों की ही भाँति विभिन्न प्रकार के प्रेषण माध्यमों के लिए भिन्न-भिन्न बैंड-चौड़ाई की आवश्यकता होती है। प्रेषण में सामान्यतः उपयोग किए जाने वाले माध्यम-तार, मुक्त आकाश, तथा प्रकाशिक-तंतु केबल हैं। समाक्षी केबल व्यापक रूप से उपयोग होने वाला तार माध्यम है जो लगभग 750 MHz की बैंड-चौड़ाई प्रदान करता है। इस प्रकार का केबल सामान्यतः 18 GHz आवृत्ति से नीचे प्रचालित होता है। रेडियो तरंगों का उपयोग करके मुक्त आकाश से आवृत्तियों के एक विस्तृत परिसर (कुछ सहस्त kHz से कुछ GHz तक) में संचार होता है। इस आवृत्ति परिसर को तालिका 15.2 में दर्शाए अनुसार फिर से विभाजित कर विविध सेवाएँ प्रदान करने के लिए आवंटित किया जाता है। तंतुओं का प्रयोग करके प्रकाशिक संचार, आवृत्ति परिसर 1 THz से 1000 THz तक (सूक्ष्म तरंगों से पराबैंगनी तक) , संपन्न किया जाता है। एक प्रकाशिक तंतु 100 GHz से अधिक की संचार बैंड-चौड़ाई प्रदान कर सकता है।

एक अंतर्राष्ट्रीय समझौते के परिणामस्वरूप, स्पेक्ट्रम की विभिन्न बैंड-चौड़ाइयों का आवंटन किया गया है। आवृत्ति आवंटन की वर्तमान व्यवस्था का संचालन अंतर्राष्ट्रीय दूरसंचार यूनियन

संचार व्यवस्था

सारणी 15.2 कुछ प्रमुख बेतार संचार आवृत्ति बैंड

सेवा	आवृत्ति बैंड	टिप्पणी
मानक AM प्रसारण	$540-1600 \mathrm{kHz}$	
FM प्रसारण	88-108 MHz	
टेलीविज़न	$\begin{aligned} & 54-72 \mathrm{MHz} \\ & 76-88 \mathrm{MHz} \\ & 174-216 \mathrm{MHz} \\ & 420-890 \mathrm{MHz} \end{aligned}$	VHF (अति उच्च आवृत्ति) TV UHF (परा उच्च आवृत्ति) TV
सेल्यूलर मोबाइल रेडियो	$\begin{aligned} & 896-901 \mathrm{MHz} \\ & 840-935 \mathrm{MHz} \end{aligned}$	मोबाइल से आधार स्टेशन के लिए आधार स्टेशन से मोबाइल के लिए
उपग्रह संचार	$\begin{aligned} & 5.925-6.425 \mathrm{GHz} \\ & 3.7-4.2 \mathrm{GHz} \end{aligned}$	उपर्परिलिंक अधोलिंक

15.6 वैद्युतचुंबकीय तरंगों का संचरण

रेडियो तरंगों का उपयोग करने वाले संचार में एक सिरे पर प्रेषित्र होता है जिसका ऐंटीना वैद्युतचुंबकीय तरंगें विकरित करता है, जो अंतरिक्ष में गमन करती हुई दूसरे सिरे पर स्थित अभिग्राही के ऐंटीना पर पहुँचती हैं। जैसे-जैसे वैद्युतचुंबकीय तरंगें प्रेषित्र से दूर होती जाती है वैसे-वैसे इनकी तीव्रता कम होती जाती है। वैद्युतचुंबकीय तरंगों के संचरण तथा गमनपथ को कई कारक प्रभावित करते हैं। यहाँ पर पृथ्वी के वातावरण की संरचना को समझना भी महत्त्वपूर्ण है क्योंकि वैद्युतचुंबकीय तरंगों के संचरण में इसकी सक्रिय भूमिका है। सारणी 15.3 में वायुमंडल की कुछ उपयोगी सतहों का संक्षिप्त विवरण दिया गया है।

15.6.1 भू-तरंगें

सिग्नलों को उच्च दक्षता से विकिरित करने के लिए ऐंटीना का साइज़ सिग्नल की तरंगदैर्घ्य λ के तुलनीय (कम से कम ~ $\lambda / 4$) होना चाहिए। लंबी तरंगदैर्घ्यों (अर्थात निम्न आवृत्तियों) के लिए ऐंटीना के भौतिक साइज़ बड़े होते हैं तथा उन्हें पृथ्वी के पृष्ठ पर अथवा इसके बहुत पास लगाया जाता है। मानक आयाम-मॉडुलित (AM) प्रसारण में भू-आधारित ऊर्ध्वाधर स्तंभों (टॉवर) का व्यापक उपयोग प्रेषण ऐंटीना की भाँति होता है। इस प्रकार के ऐंटीना से सिग्नल के प्रसारण पर भूमि का प्रबल प्रभाव होता है। संचरण की इस विधि को पृष्ठीय तरंग संचरण कहते हैं तथा यह तरंग पृथ्वी की पृष्ठ पर विसर्पण करती है। यह तरंग पृथ्वी के जिस भाग से गुजरती है उस पर धारा प्रेरित करती है तथा पृथ्वी द्वारा ऊर्जा के अवशोषण के कारण तरंग क्षीण होती जाती है। आवृत्ति में वृद्धि के साथ पृष्ठीय तरंगों की क्षीणता में तीव्रता से वृद्धि होती है। अतः प्रेषित की जा सकने वाली आवृत्ति का अधिकतम परास प्रेषित शक्ति तथा इसकी आवृत्ति (कुछ MHz से कम) पर निर्भर करता है।

- भौतिकी

सारणी 15.3 वायुमंडल की विभिन्न सतहें तथा उनकी संचरित वैद्युतचुंबकीय तरंगों से अन्योन्य क्रिया				
स्तर (सतह) का		पृथ्वी के पृष्ठ से सन्निकट तुंगता	अस्तित्व की अवधि	सर्वाधिक प्रभावित आवृत्तियाँ
क्षोभ मंडल		10 km	दिन व रात	अति उच्च आवृत्ति (कई GHz तका
D (समताप मंडल का भाग)	आ य न	$65-75 \mathrm{~km}$	केवल दिन	निम्न आवृत्ति परावर्तित; कुछ अंश तक मध्य आवृत्ति तथा उच्च आवृत्तियाँ अवशोषित
E, (समताप मंडल का भाग)	मं	100 km	केवल दिन	पृष्ठीय तरंगों का सहायक, उच्च आवृत्तियाँ परावर्तित
F_{1} (मध्यमंडल का भाग)	के	170-190 km	दिन के समय, रात्रि में F_{2} के साथ विलीन	उच्च आवृत्तियों का आंशिक अवशोषण करते हुए भी उन्हें F_{2} तक पहुँचने देना
F_{2} (थर्मोस्फीयर)	भा	रात्रि में 300 km दिन के समय $250-400 \mathrm{~km}$	दिन व रात	उच्च आवृत्ति तरंगों का दक्षतापूर्वक परावर्तन, विशेषकर रात्रि के समय

15.6.2 व्योम तरंगें

कुछ MHz से 30 से 40 MHz के आवृत्ति परिसर में अधिक दूरी का संचार, रेडियो तरंगों के आयनमंडली परावर्तन द्वारा पुनः पृथ्वी पर वापस लौटने के कारण संभव हो पाता है। इस प्रकार के संचरण को व्योम तरंग संचरण कहते हैं तथा इसका उपयोग लघुतरंग प्रसारण सेवाओं द्वारा किया जाता हैं। इसे आयनमंडल कहने का कारण यह है कि क्योंकि यहाँ आयन अथवा आवेशित कण अत्यधिक संख्या में होते हैं। यह आकाश में पृथ्वी के पृष्ठ से $\sim 65 \mathrm{~km}$ से लगभग 400 km ऊँचाई तक फैला हुआ है। जब सूर्य से उच्च ऊर्जायुक्त विकिरण तथा पराबैंगनी किरणें वायु के संपर्क में आती हैं तो वायु के अणु आयनित हो जाते हैं। इसके अतिरिक्त आयनमंडल कई परतों में विभाजित होता है, जिसे विस्तार से सारणी 15.3 में दर्शाया गया है। आयनन की मात्रा तुंगता (ऊँचाई) पर निर्भर करती है। वायुमंडल का घनत्व ऊँचाई बढ़ने पर घटता है। अधिक ऊँचाइयों पर सौर विकिरण तीव्र होते हैं परंतु आयनित होने के लिए कुछ ही अणु उपलब्ध होते हैं। भू-पृष्ठ के समीप यद्यपि आण्विक सांद्रता (घनत्व) काफी अधिक होता है, परंतु विकिरणों की तीव्रता कम होने के कारण यहाँ आयनन कम होता है। तथापि, माध्य ऊँचाइयों की कुछ स्थितियों पर आयनन घनत्व के उच्च मान पाए जाते हैं। आयनमंडलीय परत, 3 MHz से 30 MHz परिसर की आवृत्तियों के लिए परावर्तक की भाँति कार्य करती है। 30 MHz से उच्च आवृत्ति को वैद्युतचुंबकीय तरंगें, आयनमंडल का भेदन करके पलायन कर जाती हैं। यह परिघटना चित्र 15.4 में दर्शायी गई है। वैद्युतचुंबकीय तरंगों के बंकन की परिघटना जिसके फलस्वरूप वे पृथ्वी के पृष्ठ की ओर मोड़ दी जाती है, प्रकाशिकी के पूर्ण आंतरिक परावर्तन के सदृश ही है।*

[^1]
संचार व्यवस्था

चित्र 15.4 व्योम तरंग संचरण। सारणी 15.3 में परतों का नामकरण दिया गया है।

15.6.3 आकाश तरंग

आकाश तरंगों द्वारा प्रसारण रेडियो तरंगों के प्रसारण का एक अन्य ढंग है। आकाश-तरंग, प्रेषण-ऐंटीना से अभिग्राही-ऐंटीना तक सरल रेखीय पथ पर गमन करती है। आकाश तरंगों का उपयोग दृष्टिरेखीय रेडियो संचरण [line-of-sight (LOS) radio communication] के साथ ही साथ उपग्रह संचार में भी किया जाता है। 40 MHz से अधिक आवृत्तियों पर संचार केवल दृष्टिरेखीय (LOS) रेडियो संचरण द्वारा ही संभव है। इन आवृत्तियों पर ऐंटीना का साइज़ अपेक्षाकृत छोटा होता है तथा इसे पृथ्वी के पृष्ठ से कई तरंगदैर्घ्यों की ऊँचाई पर स्थापित किया जा सकता है। LOS प्रकृति का संचार होने के कारण, चित्र 15.5 में दर्शाए अनुसार, पृथ्वी की वक्रता के कारण सीधी तरंगें किसी बिंदु पर अवरोधित हो जाती हैं। यदि सिग्नल को क्षितिज से परे प्राप्त करना है तो अभिग्राही ऐंटीना काफ़ी अधिक ऊँचाई पर स्थापित किया जाना चाहिए ताकि वह LOS तरंगों को बीच में रोक सके।

चित्र 15.5 आकाश तरंगों द्वारा दृष्टिरेखीय संचार।
यदि प्रेषक ऐंटीना h_{T} ऊँचाई पर है, तो आप यह दर्शा सकते हैं कि क्षितिज की दूरी d_{T} का मान $d_{T}=\sqrt{2 R h_{T}}$ होगा, यहाँ R पृथ्वी की वक्रता त्रिज्या (लगभग 6400 km) है। d_{T} को प्रेषक ऐंटीना का रेडियो क्षितिज भी कहते हैं। चित्र 15.5 के संदर्भ में, पृथ्वी के पृष्ठ से h_{T} तथा h_{R} ऊँचाई वाले दो ऐंटीना के बीच की अधिकतम दृष्टिरेखीय दूरी इस प्रकार व्यक्त की जा सकती है-

$$
\begin{equation*}
d_{M}=\sqrt{2 R h_{T}}+\sqrt{2 R h_{R}} \tag{15.1}
\end{equation*}
$$

यहाँ h_{R} अभिग्राही ऐंटीना की ऊँचाई है।

भौतिकी

टेलीविज़न प्रसारण, माइक्रोवेव-लिंक तथा सेटेलाइट संचार उन संचार प्रणालियों के कुछ उदाहरण हैं जो आकाश तरंग प्रसारण ढंग का उपयोग करती है। चित्र 15.6 में अब तक तरंग संचरण की वर्णित विविध विधियों का सारांश दिया गया है।

चित्र 15.6 वैद्युतचुंबकीय तरंगों के संचरण की विविध विधियाँ।
उदाहरण 15.1 किसी मीनार के शीर्ष पर स्थापित प्रेषक ऐंटीना की ऊँचाई 32 m तथा अभिग्राही ऐंटीना की ऊँचाई 50 m है। LOS विधा में संतोषजनक संचार के लिए दोनों ऐंटीना के बीच की अधिकतम दूरी क्या है? (पृथ्वी की त्रिज्या $=6400 \mathrm{~km}$)
हल

$$
\begin{aligned}
& d_{m}=\sqrt{2 \times 64 \times 10^{5} \times 32}+\sqrt{2 \times 64 \times 10^{5} \times 50} \mathrm{~m} \\
& =64 \times 10^{2} \times \sqrt{10}+8 \times 10^{3} \times \sqrt{10} \mathrm{~m} \\
& =144 \times 10^{2} \times \sqrt{10} \mathrm{~m}=45.5 \mathrm{~km}
\end{aligned}
$$

15.7 माडुलन तथा इसकी आवश्यकता

जैसा कि पहले वर्णन किया जा चुका है कि किसी संचार व्यवस्था का उद्देश्य सूचना अथवा संदेश सिग्नलों को प्रेषित करना है। संदेश सिग्नलों को आधार बैंड सिग्नल भी कहते हैं जो आवश्यक रूप से उस मूल सिग्नल द्वारा निरूपित आवृत्ति बैंड को निर्दिष्ट करता है, जिसे सूचना स्रोत द्वारा प्रदान किया गया है। व्यापक रूप से कोई भी सिग्नल एकल आवृत्ति का ज्यावक्र नहीं होता, वरन वह एक आवृत्ति परिसर, जिसे सिग्नल बैंड चौड़ाई कहते हैं, में फैला होता है। मान लीजिए हम श्रव्य आवृत्ति (Audio frequency या AF) के किसी इलेक्ट्रॉनिक सिग्नल (जिसकी आधार बैंड आवृत्ति 20 kHz से कम है। को किसी लंबे परास की दूरी पर सीधे ही प्रेषित करना चाहते हैं। आइए, यह ज्ञात करें कि वे कौन-कौन से कारक हैं जो हमें ऐसा करने से रोकते हैं तथा हम उन पर कैसे पार पाते हैं।

15.7.1 ऐंटीना अथवा ऐरियल का साइज़

किसी सिग्नल को प्रेषित करने के लिए हमें किसी ऐंटीना या ऐरियल की आवश्यकता होती है। कोई ऐंटीना उस सिग्नल में समय के साथ होने वाले परिवर्तन उचित रूप से संवेदन कर सके, इसके लिए यह आवश्यक है कि उस ऐंटीना का साइज़ उस सिग्नल से संबद्ध तरंगदैघ्यं (λ) के तुलनीय हो (साइज़ कम से कम $\lambda / 4$ हो)। 20 kHz आवृत्ति की किसी वैद्युतचुंबकीय तरंग की तरंगदैर्घ्य $\lambda=15 \mathrm{~km}$ होती है। स्पष्ट है कि इस लंबाई के तुलनीय साइज़ का ऐंटीना निर्मित करना तथा प्रचालित करना संभव नहीं है। अतः ऐसे आधार-बैंड सिग्नलों का सीधा प्रेषण व्यावहारिक नहीं है। यदि प्रेषण आवृत्ति उच्च (उदाहरणार्थ, यदि $v=1 \mathrm{MHz}$ है तो $\lambda=300 \mathrm{~m}$) हो, तो उपयुक्त लंबाई के ऐंटीना द्वारा प्रेषण संभव हो सकता है। अतः हमारे न्यून आवृत्ति आधार बैंड सिग्नल में निहित सूचना को किसी उच्च रेडियो आवृत्तियों में प्रेषण से पूर्व रूपांतरित (translate) करने की आवश्यकता होती है।

15.7.2 किसी ऐंटीना द्वारा प्रभावी शक्ति विकिरण

किसी रेखीय ऐंटीना (लंबाई $=l$) से होने वाले विकिरण का सैद्धांतिक अध्ययन यह दर्शाता है कि ऐंटीना द्वारा विकरित शक्ति $(l / \lambda)^{2}$ के अनुक्रमानुपाती होती है। इसका तात्पर्य यह है कि ऐंटीना की समान लंबाई़ के लिए, तरंगदैर्घ्य λ के घटने पर (अर्थात आवृत्ति में वृद्धि होने पर) विकिरित शक्ति में वृद्धि हो जाती है। अतः किसी लंबी तरंगदैर्घ्य के आधार-बैंड सिग्नल द्वारा प्रभावी शक्ति विकिरण कम होती है। अत: किसी अच्छे प्रेषण के लिए हमें उच्च शक्ति चाहिए और इसीलिए यह तथ्य हमें प्रेषण के लिए उच्च आवृत्ति के उपयोग की आवश्यकता दर्शाता है।

15.7.3 विभिन्न प्रेषित्रों से प्राप्त सिग्नलों का मिश्रण

आधार-बैंड संकेतों के सीधे प्रसारण (प्रेषण) के विरुद्ध एक अन्य महत्त्वपूर्ण तर्क अधिक व्यावहारिक है। मान लीजिए बहुत से व्यक्ति एक ही समय बातचीत कर रहे हैं अथवा एक ही क्षण कई प्रेषित्र आधार-बैंड सूचना सिग्नल प्रेषित कर रहे हैं। ये सभी सिग्नल एक-दूसरे के साथ मिल जाते हैं तथा इनमें विभेदन करने का कोई सरल उपाय नहीं हैं। यह संभावित हल के रूप में उच्च आवृत्तियों पर एक ऐसे संचार के उपयोग की ओर संकेत करता है, जिसमें प्रत्येक संदेश सिग्नल के प्रेषण के लिए आवृत्तियों का एक बैंड आवंटित किया जाता है।

उपरोक्त तर्क यह सुझाता है कि न्यून आवृत्ति के मूल आधार बैंड या सूचना सिग्नल का प्रेषण से पूर्व किसी उच्च आवृत्ति तरंग में रूपांतरण आवश्यक है। यह रूपांतरण प्रक्रिया इस प्रकार की होनी चाहिए कि रूपांतरित सिग्नल में उन सभी सूचनाओं का समावेश रहे जो मूल सिग्नल में समाहित थी। ऐसा करने के लिए हम किसी उच्च आवृत्ति सिग्नल, जिसे वाहक तरंग कहते हैं, की सहायता लेते हैं। वह प्रक्रिया जिसके द्वारा वाहक तरंग के साथ सूचना को संलग्न किया जाता है मॉडुलन कहलाती है। वाहक तरंग सतत (ज्यावक्रीय) अथवा स्पंद के रूप में चित्र 15.7 में दर्शाए अनुसार हो सकती है।

(a)

(b)

चित्र 15.7 (a) ज्यावक्रीय तथा (b) स्पंद (पल्स) आकृति सिग्नल।

किसी ज्यावक्रीय वाहक तरंग को इस प्रकार निरूपित किया जा सकता है।

$$
\begin{equation*}
c(t)=A_{c} \sin \left(\omega_{c} t+\phi\right) \tag{15.2}
\end{equation*}
$$

यहाँ $c(t)$ सिग्नल तीव्रता (वोल्टता अथवा धारा), A_{c} आयाम, $\omega_{c}\left(=2 \pi v_{c}\right)$ कोणीय आवृत्ति तथा

-1 भौतिकी

ϕ वाहक तरंग की आरंभिक कला है। मॉडुलन की प्रक्रिया में इन तीनों प्राचलों में से वाहक तरंग के किसी भी एक प्राचल A_{c}, ω_{c} तथा ϕ को संदेश अथवा सूचना सिग्नल द्वारा नियंत्रित किया जा सकता है। इसके परिणामस्वरूप तीन प्रकार के मॉडुलन होते हैं: (i) आयाम मॉडुलन (AM); (ii) आवृत्ति मॉडुलन (FM); तथा (iii) कला मॉडुलन (PM) जैसा कि चित्र 15.8 में दर्शाया गया है।

चित्र 15.8 किसी वाहक तरंग का मॉड़लनः (a) ज्यावक्रीय वाहक तरंग,
(b) मॉडूलक सिग्नल (c) आयाम मॉडुलन, (d) आवृत्ति मॉडूलन तथा (e) कला मॉडुलन

इसी प्रकार किसी स्पंद के तीन महत्वपूर्ण लक्षण होते हैं: स्पंद आयाम, स्पंद अवधि अथवा स्पंद चौड़ाई, तथा स्पंद स्थिति (जो स्पंद के आयाम में वृद्धि या गिरावट के काल को निर्दिष्ट करती है) जिन्हें चित्र 15.7 (b) में दर्शाया गया है। अतः स्पंद माडुलन के विभिन्न प्रकार है : (a) स्पंद आयाम माडुलन (PAM), (b) स्पंद अवधि माडुलन (PDM) अथवा स्पंद चौड़ाई माडुलन (PWM), तथा (c) स्पंद स्थिति माडुलन (PPM)। इस अध्याय के अंतर्गत हम अपनी चर्चा को आयाम माडुलन तक ही सीमित रखेंगे।

15.8 आयाम माडुलन

आयाम माडुलन में वाहक तरंग के आयाम में सूचना सिग्नल के अनुसार परिवर्तन होता है। यहाँ पर किसी ज्यावक्रीय सिग्नल को माडुलक सिग्नल के रूप में उपयोग करके, हम आयाम माडुलन प्रक्रिया को स्पष्ट करेंगे।

मान लीजिए $c(t)=A_{c} \sin \omega_{c} t$ वाहक तरंग को निरूपित करती है, तथा $m(t)=A_{m} \sin \omega_{m} t$ माडुलक सिग्नल अथवा संदेश को निरूपित करती है जबकि, $\omega_{m}=2 \pi f_{m}$ संदेश सिग्नल को कोणीय आवृत्ति है। तब माडुलित सिग्नल $c_{m}(t)$ को इस प्रकार व्यक्त किया जा सकता है।

$$
\begin{align*}
& c_{m}(t)=\left(A_{c}+A_{m} \sin \omega_{m} t\right) \sin \omega_{c} t \\
& =A_{c}\left(1+\frac{A_{m}}{A_{c}} \sin \omega_{m} t\right) \sin \omega_{c} t \tag{15.3}
\end{align*}
$$

ध्यान दीजिए, अब संदेश सिग्नल माडुलित सिग्नल में अंतर्विष्ट है। इसे चित्र 15.8(c) में भी देखा जा सकता है। समीकरण (15.3) से हम यह लिख सकते हैं,

$$
\begin{equation*}
c_{m}(t)=A_{c} \sin W_{c} t+m A_{c} \sin W_{m} t \sin W_{c} t \tag{15.4}
\end{equation*}
$$

यहाँ $\mu=A_{m} / A_{c}$ माडुलन सूचकांक है। विरूपण से बचाव के लिए व्यवहार में $\mu \leq 1$ रखा जाता है।

त्रिकोणमितीय संबंध $\sin A \sin B=1 / 2[\cos (A-B)-\cos (A+B]$ का उपयोग करके हम समीकरण 15.4 के $c_{m}(t)$ को इस प्रकार व्यक्त कर सकते हैं।
$c_{m}(t)=A_{c} \sin \omega_{c} t+\frac{\mu \boldsymbol{A}_{c}}{2} \cos \left(\omega_{c}-\omega_{m}\right) t-\frac{\mu \boldsymbol{A}_{c}}{2} \cos \left(\omega_{c}+\omega_{m}\right) t$
यहाँ पर $\left(\omega_{c}-\omega_{m}\right)$ तथा $\left(\omega_{c}+\omega_{m}\right)$ को क्रमशः निम्न पार्श्व आवृत्ति तथा उच्च पार्श्व आवृत्ति कहते हैं। इस प्रकार अब माडुलित सिग्नल में ω_{c} आवृत्ति की वाहक तरंग के साथ दो ज्यावक्रीय तरंगें, जिनकी आवृत्तियाँ से कुछ भिन्न होती हैं, और जिन्हें पार्श्व बैंड कहते हैं, अंतर्विष्ट होती हैं। चित्र 15.9 में माडुलित सिग्नल का आवृत्ति स्पेक्ट्रम दर्शाया गया है।

चित्र 15.9 किसी आयाम माडुलित सिग्नल का आयाम व ω के बीच ग्राफ़।
जब तक प्रसारित आवृत्तियाँ (वाहक तरंगें) पर्याप्त दूरियों पर रखी जाती हैं ताकि पार्श्व बैंड एक दूसरे पर अतिव्यापित न हों, विभिन्न स्टेशन एक दूसरे में बिना बाधा पहुँचाए प्रचालित हो सकते हैं।

उदाहरण 15.210 kHz आवृत्ति तथा 10 V शिखर वोल्टता के संदेश सिग्नल का उपयोग किसी 1 MHz आवृत्ति तथा 20 V शिखर वोल्टता की वाहक तरंग को माडुलित करने में किया गया है। (a) माड़लन सूचकांक तथा (b) उत्पन्न पार्श्व बैंड ज्ञात कीजिए।

हल
(a) माड्लन सूचकांक $=10 / 20=0.5$
(b) पार्श्व बैंड $(1000+10) \mathrm{kHz}=1010 \mathrm{kHz}$ तथा $(1000-10 \mathrm{kHz})=990 \mathrm{kHz}$ पर हैं।

15.9 आयाम माडुलित तरंग को उत्पन्न करना

आयाम माडुलन उत्पन्न करने के विविध ढंग हो सकते हैं। चित्र 15.10 में ब्लॉक आरेख में इसकी एक सरल संकल्पनात्मक विधि दर्शायी गई है।
(माडुलक
$\mathrm{c}(\mathrm{t})$

$$
B x(t)+C x(t)^{2}
$$

सिगनल) $\mathrm{A}_{\mathrm{c}} \sin \omega_{c} \mathrm{t}$
(वाहक)
चित्र 15.10 AM सिग्नल प्राप्त करने के लिए सरल माडुलक का ब्लॉक आरेख।

भौतिकी

यहाँ सिग्नल $x(t)$ को उत्पन्न करने के लिए माडुलक सिग्नल $A_{\mathrm{m}} \sin \omega_{\mathrm{m}} t$ को वाहक सिग्नल $A_{\mathrm{c}} \sin \omega_{\mathrm{c}} t$ में मिलाया जाता है। इस सिग्नल $x(t)=A_{\mathrm{m}} \sin \omega_{\mathrm{m}} t+A_{c} \sin \omega_{\mathrm{c}} t$ को फिर वर्ग नियम युक्ति, जो कि एक अरैखिक युक्ति है, से गुज़ारते हैं। इस प्रकार उत्पन्न निर्गत है :

$$
\begin{equation*}
y(t)=B x(t)+C x^{2}(t) \tag{15.6}
\end{equation*}
$$

यहाँ B तथा C नियतांक हैं। इस प्रकार

$$
\begin{align*}
& y(t)=B A_{m} \sin \omega_{m} t+B A_{c} \sin \omega_{\mathrm{c}} t+ \\
& C\left[A_{m}^{2} \sin ^{2} \omega_{m} t+A_{c}^{2} \sin ^{2} \omega_{c} t+2 A_{m} A_{c} \sin \omega_{m} t \sin \omega_{c} t\right] \tag{15.7}\\
& =B \Lambda_{m} \sin \omega_{m} t+B A_{c} \sin \omega_{\mathrm{c}} t \\
& +\frac{C A_{m}^{2}}{2}+\frac{C A_{c}^{2}}{2}-\frac{C A_{m}^{2}}{2} \cos 2 \omega_{m} t-\frac{C A_{c}^{2}}{2} \cos 2 \omega_{c} t \\
& +C A_{m} A_{c} \cos \left(\omega_{c}-\omega_{m}\right) t-C A_{m} A_{c} \cos \left(\omega_{c}+\omega_{m}\right) t \tag{15.8}
\end{align*}
$$

यहाँ पर, त्रिकोणमितीय संबंधों $\sin ^{2} A=(1-\cos 2 A) / 2$ तथा $\sin A \sin B$ के लिए संबंध, जिसे पहले भी उपयोग किया जा चुका है, का उपयोग किया गया है।

समीकरण (15.8) एक dc पद $C / 2\left(A_{m}^{2}+A_{c}^{2}\right)$ तथा आवृत्तियों $\omega_{\mathrm{m}}, 2 \omega_{\mathrm{m}}, \omega_{\mathrm{c}}, 2 \omega_{\mathrm{c}}$, $\omega_{\mathrm{c}}-\omega_{\mathrm{m}}, \omega_{\mathrm{c}}+\omega_{\mathrm{m}}$ के ज्यावक्र हैं जैसा कि चित्र 15.10 में दर्शाया गया है। इस सिग्नल को बैंड पारक फिल्टर* से गुज़ारते हैं जो dc अवयव तथा आवृत्तियों $\omega_{\mathrm{m}}, 2 \omega_{\mathrm{m}}$ तथा $2 \omega_{\mathrm{c}}$ के ज्यावक्रों का निराकरण करके $\omega_{\mathrm{c}}, \omega_{\mathrm{c}}-\omega_{\mathrm{m}}, \omega_{\mathrm{c}}+\omega_{\mathrm{m}}$ आवृत्तियों को प्रतिधारित कर लेता है। इस प्रकार बैंड पारक फिल्टर का निर्गत का समीकरण (15.5) के समान रूप होता है, अत: यह एक AM तरंग होती है।

यहाँ यह उल्लेख करना आवश्यक है कि माडुलित सिग्नल को ऐसे ही प्रेषित नहीं किया जा सकता। माडुलक का अनुगमन एक शक्ति प्रवर्धक करता है जो सिग्नल को आवश्यक शक्ति प्रदान करता है। इस प्रकार प्राप्त माड्डुलित सिग्नल का संभरण किसी उपयुक्त साइज़ के ऐंटीना को किया जाता है जो चित्र 15.11 में दर्शाए अनुसार सिग्नल को विकिरित कर देता है।

चित्र 15.11 प्रेषित्र का ब्लॉक-आरेख।

15.10 आयाम माडुलित तरंग का संसूचन

चैनल से प्रसारण में प्रेषित संदेश क्षीण हो जाता है। अतः अभिग्राही ऐंटीना किसी प्रवर्धक तथा संसूचक का अनुगमन करता है। साथ ही, संसाधन की सुविधा के लिए वाहक आवृत्ति को प्रायः किसी मध्य आवृत्ति (IF) चरण पर संसूचन से पूर्व निम्न आवृत्ति में परिवर्तित कर लेते हैं। संसूचित

* बैंड पारक फिल्टर न्यून तथा उच्च आवृत्तियों का निराकरण कर देता है तथा आवृत्तियों के एक बैंड को गुज़रने देता है।

सिग्नल इतना प्रबल नहीं होता कि उसका उपयोग किया जा सके, अतः उसे प्रवर्धित करने की आवश्यकता होती है। चित्र 15.12 में किसी प्ररूपी अभिग्राही का ब्लॉक-आरेख दर्शाया गया है।

चित्र 15.12 अभिग्राही का ब्लॉक-आरेख।

संसूचन वह प्रक्रिया है जिसके द्वारा माडुलित वाहक तरंग से माडुलिक सिग्नल की पुनः प्राप्ति की जाती है। हमने अभी यह देखा था कि माडुलित वाहक तरंग में ω_{c} तथा $\omega_{c} \pm \omega_{m}$ आवृत्तियाँ होती हैं। इससे आवृत्ति ω_{m} वाले कोणीय मूल संदेश सिग्नल $m(t)$ को प्राप्त करने की एक सरल विधि चित्र 15.13 में ब्लॉक-आरेख के रूप में दर्शायी गई है।

चित्र 15.13 AM सिग्नल के संसूचक का ब्लॉक-आरेख। y -अक्ष के लिए भौतिक राशि वोल्टता अथवा धारा हो सकती है।

माडुलित सिग्नल, जिसका रूप चित्र 15.13(a) में दर्शाया गया है, दिष्टकारी से गुज़ारा जाता है जिसके फलस्वरूप (b) में दर्शाए अनुसार निर्गम प्राप्त होता है। सिग्नल (b) का यह एन्वेलप ही मूल सिग्नल है। सिग्नल $m(t)$ को पुनः प्राप्ति के लिए इस संदेश सिग्नल (b) को एन्वेलप संसूचक (जो एक सरल RC परिपथ होता है) से गुज़ारा जाता है।

इस अध्याय में हमने संचार तथा संचार व्यवस्थाओं की कुछ मूल संकल्पनाओं के विषय में चर्चा की है। इसमें हमने एक विशिष्ट प्रकार के अनुरूप माडुलन-आयाम माडुलन (AM) के विषय में भी चर्चा की है। माडुलन के अन्य प्रकारों तथा अंकीय संचार व्यवस्था की भी आर्धुनिक संचार में महत्वपूर्ण भूमिका है। इस क्षेत्र में प्रतिदिन अन्य उत्तेजनापूर्ण विकास कार्य हो रहे हैं।

अब तक हमने अपनी चर्चा को कुछ मूल संचार व्यवस्थाओं तक ही सीमित रखा है। इस अध्याय को समाप्त करने से पहले हम आपको आधुनिक समय की कुछ उन संचार व्यवस्थाओं की झलक दिखाना चाहते हैं जिनसे हमारे दैनिक जीवन में सूचनाओं के आदान-प्रदान के ढंग में आमूलचूल परिवर्तन उत्पन्न हो गया है।

ह. भौतिकी

अतिरिक्त जानकारी

इंटरनेट

इस व्यवस्था का सारे संसार में करोड़ों उपभोक्ता उपयोग कर रहे हैं। इस व्यवस्था के अंतर्गत किसी विशाल एवं जटिल नेटवर्क से संयोजित दो या अधिक कंप्यूटरों के बीच हर प्रकार की सूचनाओं का आदान-प्रदान एवं संचार का अवसर प्राप्त होता है। यह 1960 में आरंभ हुआ तथा सर्वसाधारण के लिए 1990 से सुलभ किया गया। समय के साथ उसमें विस्फोटक वृद्धि हुई है जो अपनी पहुँच का निरंतर विस्तार कर रही है। इसके निम्नलिखित अनुप्रयोग हैं:
(i) ई-मेल : यह ई-मेल सॉफ्टवेयर का उपयोग करके पाठ्यसामग्री/आलेखी सामग्री के आदान-प्रदान की सुविधा प्रदान करता है। हम कोई पत्र लिखकर उसे ISP's (इंटरनेट सेवा प्रदानकर्ता) के द्वारा पत्र पाने वाले के पास भेज सकते हैं। यहाँ ISP डाकघर के रूप में पत्र भेजने और प्राप्त करने का कार्य करता है।
(ii) फाइल ट्रांसफर : फाइल स्थानांतर कार्यक्रम (FTP) इंटरनेट से जुड़े एक कंप्यूटर से दूसरे कंप्यूटर को फाइल/सॉफ्टवेयर स्थानांतरित करने का अवसर प्रदान करता है।
(iii) वर्ल्ड वाइड वेब (WWW) : ऐसे कंप्यूटर जो दूसरे से बाँटने के लिए अपने भीतर कुछ विशिष्ट सूचना संग्रहित करते हैं या तो स्वयं ही अथवा वेब सेवा प्रदान करने वालों के द्वारा कोई वेबसाइट प्रदान करते हैं। शासकीय विभाग, कम्पनियाँ, अशासकीय संगठन (NGO) तथा कोई व्यक्ति भी अपने क्रियाकलापों के विषय में सीमित अथवा मुक्त उपयोग के लिए अपनी सूचना इसमें दे सकते हैं। यह जानकारी इसके उपभोक्ताओं के लिए सुलभ (पहुँच के भीतर) हो जाती है। बहुत से सर्च इंजन जैसे याहू, गूगल आदि संबंधित वेबसाइटों की सूची बनाकर जानकारी प्राप्त करने में हमारी सहायता करते हैं। वेब का एक अत्यंत शक्तिशाली लक्षण हाइपर टैक्स्ट है जो स्वतः ही हमें प्रासंगिक जानकारी देने के लिए जोड़ HTML (हाइपर टेक्स्ट मार्कअप लेंग्वेज) का उपयोग करके वेब के एक पृष्ठ को दूसरे पृष्ठ से जोड़ देता है।
(iv) ई-कॉमर्स : इलेक्ट्रॉनिक साधनों जैसे क्रेडिट कार्ड का उपयोग करके इंटरनेट के उपयोग द्वारा व्यापार को प्रोन्नत करना, ई-कॉमर्स कहलाता है। ग्राहक विविध उत्पादों एवं सेवाओं के प्रतिबिंबों को देखकर विभिन्न कंपनियों के वेबसाइट द्वारा उनके उत्पादों एवं सेवाओं के विषय में जानकारी प्राप्त कर लेते हैं। वे घर अथवा ऑफिस से वस्तुओं की ऑन लाइन खरीदारी कर सकते हैं। कंपनियाँ वस्तुएँ अथवा अपनी सेवाएँ डाक द्वारा अथवा कूरियर सेवा द्वारा प्रदान कर देती हैं।
(v) बातचीत-गपशप : समान रुचि के व्यक्तियों द्वारा टाइप किए हुए संदेशों द्वारा बातचीत को चैट (Chat) करना कहते हैं। चैट ग्रुप में सम्मिलित कोई भी व्यक्ति तात्कालिक संदेश प्राप्त करके तुरंत ही उत्तर दे सकता है।

अनुलिपि (FAX)

यह इलेक्ट्रॉनिक सिग्नल उत्पन्न करने के लिए किसी लिखित प्रमाण की विषय वस्तु का (प्रतिबिंब के रूप में विषय वस्तु की भाँति नहीं) क्रमवीक्षण करता है। ये सिग्नल फिर उसकी मंजिल (दूसरी FAX मशीन) तक सामान्य ढंग से टेलीफ़ोन की लाइन द्वारा भेजे जाते हैं। मंजिल पर पहुँचने के पश्चात सिग्नलों को FAX मशीन मूल लिखित प्रमाणों की प्रतिकृति में पुन: परिवर्तित कर देती है। ध्यान देने योग्य बात यह है कि FAX मशीन, किसी स्थिर लिखित प्रमाण का प्रतिबिंब प्रदान करती है, टेलीविज़न की भाँति गतिशील वस्तुओं के प्रतिबिंब प्रदान नहीं कर सकती।

मोबाइल टेलीफ़ोनी

मोबाइल टेलीफ़ोनी की परिकल्पना सर्वप्रथम 1970 के दशक में विकसित की गई और अगले दशक में इसे पूर्णतः लागू कर दिया गया। इस व्यवस्था की केंद्रीय अभिधारणा के अनुसार समस्त सेवा क्षेत्र को उचित संख्या के कक्षों में बाँट लेते हैं। ये कक्ष किसी ऑफिस जिसे मोबाइल टेलीफोन स्विचिंग ऑफिस (MTSO) कहते हैं पर केंद्रित रखते हैं। प्रत्येक्ष कक्ष के पास एक निम्न शक्ति प्रेषित्र है जिसे बेस स्टेशन कहते हैं, तथा यह मोबाइल रिसीवरों (जिसे बोलचाल में सेल फ़ोन कहते हैं) की बड़ी संख्या को सेवा प्रदान करता है। प्रत्येक कक्ष के पास कुछ वर्ग किलोमीटर अथवा इससे भी कम क्षेत्र होता है जो उपभोक्ताओं की संख्या पर निर्भर करता है। जब कोई मोबाइल रिसीवर किसी एक बेस स्टेशन के क्षेत्र से बाहर किसी अन्य क्षेत्र में जाता है तो यह आवश्यक है कि उस मोबाइल उपभोक्ता को उसी बेस स्टेशन पर स्थानांतरित किया जाए। इस कार्यविधि को हैंडओवर या हैंडऑफ़ कहते हैं। यह प्रक्रिया अत्यधिक तीव्रता से चलाई जाती है तथा उपभोक्ता इस पर ध्यान तक नहीं दे पाता। मोबाइल टेलीफ़ोन प्ररूपी ढंग से आवृत्तियों के UHF परिसर (लगभग $800-950 \mathrm{MHz}$) में प्रचालित किए जाते हैं।

सारांश

1. इलेक्ट्रॉनिक संचार का तात्पर्य सूचना अथवा संदेशों (जो वैद्युत वोल्टता या धारा के रूप में उपलब्ध होते हैं) को एक बिंदु से दूसरे बिंदु तक विश्वसनीय ढंग से स्थानांतरित करना है।
2. किसी संचार व्यवस्था के तीन मूल एकक-संप्रेषक, संप्रेषण-चैनल, तथा अभिग्राही होते हैं।
3. संचार व्यवस्था के दो महत्वपूर्ण प्रकार अनुरूप तथा अंकीय संचार हैं। अनुरूप संचार में प्रसारित की जाने वाली सूचना व्यापक रूप से संतत तरंगवत होती है, जबकि अंकीय संचार में मात्र विविक्त अथवा क्वांटित स्तर के होते हैं।
4. प्रत्येक संदेश सिग्नल का एक आवृत्ति परिसर होता है। किसी संदेश सिग्नल की बैंड-चौड़ाई का तात्पर्य उस आवृत्ति-बैंड से होता है जो उस संदेश सिग्नल में अंतर्विष्ट सूचना संतोषजनक प्रेषण के लिए आवश्यक होता है। इसी प्रकार कोई भी व्यावहारिक संचार-व्यवस्था आवृत्ति के केवल किसी परिसर को ही प्रेषण का अवसर प्रदान करती है और इसी को उस संचार व्यवस्था की बैंड-चौड़ाई कहा जाता है।
5. निम्न आवृत्तियों को लंबी दूरी तक संप्रेषित नहीं किया जा सकता है। अत: इसे एक विशेष प्रक्रिया जिसे माडुलन कहते हैं, के द्वारा किसी उच्च आवृत्ति के वाहक सिग्नल पर अध्यारोपित किया जाता है।
6. माडुलन में वाहक सिग्नल के कुछ लक्षण जैसे आयाम, आवृत्ति अथवा कला, माडुलक अथवा संदेश सिग्नल के अनुरूप परिवर्तित हो जाते हैं। तदनुसार विभिन्न माडुलित तरंगों को आयाम माडुलित (AM), आवृत्ति माडुलित (FM), अथवा कला माडुलित (PM) तरंग कहते हैं।
7. स्पंद माडुलन का वर्गीकरण इस प्रकार किया जाता है : स्पंद आयाम माडुलन (PAM), स्पंद अवधि माडुलन (PDM) अथवा स्पंद चौड़ाई माडुलन (PWM), तथा स्पंद स्थिति माडुलन (PPM)
8. लंबी दूरियों तक संप्रेषण के लिए सिग्नलों को आकाश में कुछ युक्तियों के द्वारा विकिरित किया जाता है जिन्हें ऐंटीना कहते हैं। ये विकिरित सिग्नल वैद्युतचुंबकीय तरंगों के रूप में प्रसारित होते हैं तथा उनके प्रसारण की विधा को पृथ्वी तथा इसका वायुमंडल प्रभावित करता है। पृथ्वी के पृष्ठ के निकट वैद्युतचुंबकीय तरंगें पृष्ठीय तरंगों के रूप में प्रसारित होती हैं। पृष्ठीय प्रसारण कुछ MHz आवृत्तियों तक ही उपयोगी होता है।
9. पृथ्वी के किन्हीं दो बिंदुओं के बीच लंबी दूरी का संचार आयनमंडल द्वारा वैद्युतचुंबकीय तरंगों के परावर्तन द्वारा संभव हो पाता है। इस प्रकार की तरंगों को व्योम तरंगें कहते हैं। व्योम तरंगों का प्रसारण लगभग 30 MHz आवृत्ति तक ही हो सकता हैं। इस आवृत्ति से अधिक आवृत्ति की वैद्युतचुंबकीय तरंगें अनिवार्य रूप से आकाश तरंगों के रूप में प्रसारित होती है। आकाश तरंगों का उपयोग दृष्टिरेखीय संचार तथा उपग्रह संचार में होता है।
10. यदि कोई ऐंटीना h_{T} ऊँचाई से वैद्युतचुंबकीय तरंगें विकिरित करता है, तो उसके परिसर d_{T} को $\sqrt{2 R h_{T}}$ द्वारा व्यक्त किया जाता है, यहाँ R पृथ्वी की त्रिज्या है।
11. आयाम माडुलित सिग्नल में $\left(\omega_{\mathrm{c}}-\omega_{\mathrm{m}}\right), \omega_{\mathrm{c}}$ तथा $\left(\omega_{\mathrm{c}}+\omega_{\mathrm{m}}\right)$. आवृत्तियाँ होती हैं।
12. संदेश सिग्नल तथा वाहक तरंग को किसी अरैखिक युक्ति पर अनुप्रयुक्त करके तथा फिर उसे बैंड पारक फिल्टर से गुजारकर, आयाम माडुलित सिग्नल प्राप्त किया जाता है।
13. AM संसूचन किसी AM तरंग रूप से माडुलक सिग्नल की पुनः प्राप्ति की वह प्रक्रिया है जिसके संचालन में किसी दिष्टकारी तथा एन्वेलप संसूचक का उपयोग किया जाता है।

विचारणीय विषय

1. संदेश/सूचना सिग्नल के संग्रेषण तथा अभिग्रहण की प्रक्रिया में सिग्नल के साथ नॉयज (रव) जुड़ जाता है। क्या आप इस नॉयज के कुछ स्रोत बता सकते हैं?
2. माडुलन की प्रक्रिया में नयी आवृत्तियाँ जिन्हें पार्श्वबैंड कहते हैं, वाहक तरंग आवृत्ति के दोनों ओर (वाहक आवृत्ति से अधिक तथा कम) उत्पन्न हो जाते हैं। इनका परिमाण अधिकतम माडुलक आवृत्ति के बराबर होता है। क्या (a) केवल पार्श्वबैंडों, (b) केवल एक पार्श्वबैंड को प्रेषित करके संदेश की पुनःप्राप्ति संभव हो सकती है?
3. आयाम माडुलन में माडुलन सूचकांक $\mu \leq 1$ का उपयोग किया जाता है। यदि $\mu>1$ हो तो क्या होगा?

अभ्यास

15.1 व्योम तरंगों के उपयोग द्वारा क्षितिज के पार संचार के लिए निम्नलिखित आवृत्तियों में से कौन सी आवृत्ति उपयुक्त रहेगी?
(a) 10 kHz
(b) 10 MHz
(c) 1 GHz
(d) 1000 GHz
15.2 UHF परिसर की आवृत्तियों का प्रसारण प्रायः किसके द्वारा होता है?
(a) भू-तरंगें
(b) व्योम तरंगें
(c) पृष्ठीय तरंगें
(d) आकाश तरंगें
15.3 अंकीय सिग्नल :
(i) मानों का संतत समुच्चय प्रदान नहीं करते।
(ii) मानों को विविक्त चरणों के रूप में निरूपित करते हैं।
(iii) द्विआधारी पद्धति का उपयोग करते हैं।
(iv) दशमलव के साथ-साथ द्विआधारी पद्धति का भी उपयोग करते हैं।

उपरोक्त प्रकथनों में कौन से सत्य हैं?
(a) केवल (i) तथा (ii)
(b) केवल (ii) तथा (iii) ,
(c) (i), (ii) तथा (iii) परन्तु (iv) नहों
(d) (i), (ii), (iii) तथा (iv) सभी
15.4 दृष्टिरेखीय संचार के लिए क्या यह आवश्यक है कि प्रेषक ऐंटीना की ऊँचाई अभिग्राही ऐंटीना की ऊँचाई के बराबर हो? कोई TV प्रेषक ऐंटीना 81 m ऊँचा है। यदि अभिग्राही ऐंटीना भूस्तर पर है तो यह कितने क्षेत्र में सेवाएँ प्रदान करेगा?

संचार व्यवस्था

15.5 12 V शिखर वोल्टता की वाहक तरंग का उपयोग किसी संदेश सिग्नल के प्रेषण के लिए किया गया है। माडुलन सूचकांक 75% के लिए माडुलक सिग्नल की शिखर वोल्टता कितनी होनी चाहिए?
15.6 किसी माडुलित तरंग का अधिकतम आयाम 10 V तथा न्यूनतम आयाम 2 V पाया जाता है। माड़ुलन सूचकांक μ का मान निश्चित कीजिए। यदि न्यूनतम आयाम शून्य वोल्ट हो तो माडुलन सूचकांक क्या होगा?
15.7 आर्थिक कारणों से किसी AM तरंग का केवल ऊपरी पार्श्व बैंड ही प्रेषित किया जाता है, परंतु ग्राही स्टेशन पर वाहक तरंग उत्पन्न करने की सुविधा होती है। यह दर्शाइए कि यदि कोई ऐसी युक्ति उपलब्ध हो जो दो सिग्नलों की गुणा कर सके, तो ग्राही स्टेशन पर माडुलक सिग्नल की पुनःप्राप्ति संभव है।
15.8 चित्र 15.14 में दर्शाए अनुसार कोई माडुलक सिग्नल वर्ग तरंग है।

चित्र 15.14
दिया गया है कि वाहक तरंग $c(t)=2 \sin (8 \pi t) \mathrm{V}$
(i) आयाम माडुलित तंरग रूप आलेखित कीजिए।
(ii) माड्ललन सूचकांक क्या है?

अभ्यासों के उत्तर

अध्याय 9

$9.1 v=-54 \mathrm{~cm}$ ।प्रतिबिंब वास्तविक, उलटा तथा आवर्धित है। प्रतिबिंब का साइज़ 5.0 cm है। जब $u \rightarrow f, v \rightarrow \infty ; u<f$ के लिए प्रतिबिंब आभासी बनेगा।
$9.2 v=6.7 \mathrm{~cm}$ । आवर्धन $=5 / 9$, अर्थात प्रतिबिंब का साइज़ 2.5 cm है। जैसे ही $u \rightarrow \infty$; $v \rightarrow f$ (परंतु फोकस से आगे कभी नहीं बढ़ता) जबकि $m \rightarrow 0$
$9.3 \quad 1.33 ; 1.7 \mathrm{~cm}$
$9.4 n_{g a}=1.51 ; n_{w a}=1.32 ; n_{g w}=1.144$; जिससे $\sin r=0.6181$ अर्थात $r \simeq 38^{\circ}$ प्राप्त होता है।
$9.5 r=0.8 \times \tan i_{c}$ तथा $\sin i_{c}=1 / 1.33 \cong 0.75$, जहाँ r सबसे बड़े वृत्त की त्रिज्या मीटर में है तथा i_{c} पानी-वायु अंतरापृष्ठ के लिए क्रांतिक कोण है। क्षेत्रफल $=2.6 \mathrm{~m}^{2}$
$9.6 n \cong 1.53$ तथा जल में प्रिज्म के लिए $D_{m} \cong 10^{\circ}$
$9.7 R=22 \mathrm{~cm}$
9.8 यहाँ बिंब आभासी तथा प्रतिबिंब वास्तविक है। $u=+12 \mathrm{~cm}$ (बिंब दाहिनी ओर है; आभासी)
(a) $f=+20 \mathrm{~cm}$ । प्रतिबिंब वास्तविक है तथा लेंस से 7.5 cm दूर दाहिनी ओर है।
(b) $f=-16 \mathrm{~cm}$ ।प्रतिबिंब वास्तविक है तथा लेंस से 48 cm दूर दाहिनी ओर है।
$9.9 v=8.4 \mathrm{~cm}$ ।प्रतिबिंब सीधा तथा आभासी है। यह साइज़ में छोटा है, साइज़ $=1.8 \mathrm{~cm}$ जैसे $u \rightarrow \infty, v \rightarrow f$ (लेकिन f से आगे नहीं जाता जबकि $m \rightarrow 0$)। ध्यान दीजिए, जब वस्तु अवतल लेंस $(f=21 \mathrm{~cm})$ के फोकस पर रखी होती है, तब उसका प्रतिबिंब लेंस से 10.5 cm दूर बनता है (अनंत पर नहीं बनता जैसा कि गलती से कोई सोच सकता है)।
9.1060 cm फोकस दूरी का अपसारी लेंस।
9.11 (a) $v_{e}=-25 \mathrm{~cm}$ तथा $f_{e}=6.25 \mathrm{~cm}$ से $u_{e}=-5 \mathrm{~cm} ; v_{o}=(15-5) \mathrm{cm}=$ 10 cm प्राप्त होता है,

$$
f_{\mathrm{o}}=u_{\mathrm{o}}=-2.5 \mathrm{~cm} \text {; आवर्धन क्षमता }=20
$$

(b) $u_{0}=-2.59 \mathrm{~cm}$; आवर्धन क्षमता $=13.5$
9.1225 cm दूरी पर प्रतिबिंब बनने के लिए नेत्रिका का कोणीय आवर्धन
$=\frac{25}{2.5}+1=11 ;\left|u_{e}\right|=\frac{25}{11} \mathrm{~cm}=2.27 \mathrm{~cm} ; v_{0}=7.2 \mathrm{~cm}$
पृथकन दूरी $=9.47 \mathrm{~cm}$; आवर्धन क्षमता $=88$

उत्तर

$9.1324 ; 150 \mathrm{~cm}$
9.14 (a) कोणीय आवर्धन $=1500$
(b) प्रतिबिंब का व्यास $=13.7 \mathrm{~cm}$
9.15 वांछित परिणाम ज्ञात करने के लिए दर्पण के समीकरण तथा दर्पण की सीमा का प्रयोग कीजिए।
(a) $f<0$ (अवतल दर्पण); $u<0$ (बिंब बाईं ओर)
(b) $f>0$ के लिए; $u<0$
(c) $f>0$ (उत्तल दर्पण) तथा $u<0$
(d) $f<0$ (अवतल दर्पण); $f<u<0$
9.16 पिन 5.0 cm ऊपर उठी हुई प्रतीत होती है। यह स्पष्ट प्रकाश किरण आरेख द्वारा देखा जा सकता है कि उत्तर काँच के गुटके की स्थिति पर निर्भर नहीं करता (छोटे आपतन कोणों के लिए)।
9.17 (a) $\sin i^{\prime}{ }_{c}=1.44 / 1.68$ जिससे $i^{\prime}{ }_{c}=59^{\circ}$ प्राप्त होता है। पूर्ण आंतरिक परावर्तन $i>59^{\circ}$ अथवा जब $r<r_{\text {max }}=31^{\circ}$ पर होता है। अब, $\left(\sin i_{\text {max }} / \sin r_{\text {milax }}\right)=1.68$, जिससे $i_{\max } \simeq 60^{\circ}$ प्राप्त होता है। इस प्रकार कोण के परिसर $0<i<60^{\circ}$ की सभी आपतित किरणों का पाइप में पूर्ण आंतरिक परावर्तन होगा (यदि पाइप की लंबाई परिमित है, जो कि व्यवहार में होती है, तब i पर निम्न सीमा पाइप के व्यास तथा उसकी लंबाई के अनुपात द्वारा निर्धारित होगी।)
(b) यदि कोई बाह्य आवरण नहीं है, जो $i_{\mathrm{c}}^{\prime}=\sin ^{-1}(1 / 1.68)=36.5^{\circ}$ । अब, $i=$ 90° के लिए $r=36.5^{\circ}$ तथा $i^{\prime}=53.5^{\circ}$ होंगे, जो i_{c}^{\prime} से अधिक है। इस प्रकार [परिसर में सभी आपतित किरणें $\left(53.5^{\circ}<i<90^{\circ}\right)$] पूर्ण आंतरिक परावर्तित होंगी।
9.18 (a) किसी समतल अथवा उत्तल दर्पण के 'पीछे’ किसी बिंदु पर अभिसरित किरणें दर्पण के सामने परदे पर किसी बिंदु पर परावर्तित हो जाती हैं। दूसरे शब्दों में, कोई समतल दर्पण अथवा उत्तल दर्पण आभासी बिंब के लिए वास्तविक प्रतिबिंब उत्पन्न कर सकता है। कोई उचित प्रकाश किरण आरेख खींचकर स्वयं को संतुष्ट कीजिए।
(b) जब परावर्तित अथवा अपवर्तित किरणें अपसारी होती हैं तो प्रतिबिंब आभासी होता है। अपसारी किरणों को उचित अभिसारी लेंस की सहायता से परदे पर अभिसरित किया जा सकता है। नेत्र का आभासी लेंस ठीक यही करता है। यहाँ आभासी प्रतिबिंब लेंस के लिए बिंब की भाँति कार्य करता है और वास्तविक प्रतिबिंब बनता है। ध्यान दीजिए, यहाँ आभासी प्रतिबिंब की स्थिति पर परदे को अवस्थित नहीं किया जाता है। यहाँ कोई अपवाद नहीं है।
(c) अधिक लंबा।
(d) लगभग अभिलंबतः देखने की तुलना में तिरछे देखने के लिए आभासी गहराई कम हो जाती है। प्रेक्षक की विभिन्न स्थितियों के लिए प्रकाश किरण आरेख खींचकर इस तथ्य को स्वयं स्वीकार कीजिए।
(e) हीरे का अपवर्तनांक लगभग 2.42 होता है जो सामान्य काँच के अपवर्तनांक (लगभग 1.5) से काफी अधिक होता है। हीरे का क्रांतिक कोण लगभग 24° है जो काँच के क्रांतिक कोण की अपेक्षा काफी कम है। कोई हीरे को तराशने वाला दक्ष व्यक्ति आपतन कोण (हीरे के भीतर) के बड़े परिसर 24° से 90° का लाभ यह सुनिश्चित करने में उठा लेता है कि हीरे से बाहर निकलने से पूर्व प्रकाश कई फलकों से पूर्ण परावर्तित हो-इस प्रकार से कि हीरे का चमकदार प्रभाव उत्पन्न हो।
9.19 परदे तथा वस्तु के बीच निश्चित दूरी s के लिए, लेंस समीकरण उस स्थिति में u तथा v के लिए वास्तविक हल प्रदान नहीं करती, जब f का मान $s / 4$ से अधिक होता है।

भौतिकी

$9.20 \quad 21.4 \mathrm{~cm}$
9.21 (a) (i) मान लीजिए कि कोई समांतर प्रकाश-पुंज बाईं ओर से पहले उत्तल लेंस पर आपतित होता है। तब
$f_{1}=30 \mathrm{~cm}, u_{1}=-\infty$ से प्राप्त होता है $v_{1}=+30 \mathrm{~cm}$ यह प्रतिबिंब दूसरे लेंस के लिए आभासी बिंब बन जाता है।
$f_{2}=-20 \mathrm{~cm}, u_{2}=+(30-8) \mathrm{cm}=+22 \mathrm{~cm}$, जिससे $v_{2}=-220 \mathrm{~cm}$ प्राप्त होता है। समांतर आपतित किरण-पुंज दो लेंसों के निकाय के केंद्र से 216 cm दूर किसी बिंदु से अपसारित होता प्रतीत होता है।
(ii) मान लीजिए कि कोई समांतर प्रकाश-पुंज बाईं ओर से पहले अवतल लेंस पर आपतित होता है। तब $f_{1}=-20 \mathrm{~cm}, u_{1}=-\infty$ से प्राप्त होता है $v_{1}=-20 \mathrm{~cm} \mid$ गह प्रतिबिंब दूसरे लेंस के लिए वास्तविक बिंब बन जाता है। $f_{2}=+30 \mathrm{~cm}, u_{2}=-(20+8) \mathrm{cm}$ $=28 \mathrm{~cm}$, से $v_{2}=420 \mathrm{~cm}$ प्राप्त होता है। समांतर प्रकाश-पुंज दो लेंसों के तंत्र के मध्य बिंदु की बाईं ओर से 416 cm दूर स्थित बिंदु से अपसरित होता प्रतीत होता है।
स्पष्ट है कि उत्तर इस पर निर्भर करता है कि लेंस तंत्र के किस ओर समांतर प्रकाश-पुंज आपतित होता है। साथ ही, हमारे पास कोई ऐसी सरल लेंस समीकरण नहीं है जो सभी $u($ तथा $v)$ के मानों के लिए, निकाय के निश्चित नियतांक के पदों में सत्य हो। (निकाय के स्थिरांक f_{1} तथा f_{2} तथा दोनों लेंसों के बीच पृथकन दूरो द्वारा निर्धारित होते हैं।) प्रभावी फोकस दूरी की धारणा, इसलिए इस तंत्र के लिए अर्थपूर्ण प्रतीत नहीं होती।
(b) $u_{1}=-40 \mathrm{~cm}, f_{1}=30 \mathrm{~cm}$ से $v_{1}=120 \mathrm{~cm}$ प्राप्त होता है। पहले (उत्तल) लेंस के कारण आवर्धन का परिमाण $=120 / 40=3$ $u_{2}=+(120-8) \mathrm{cm}=+112 \mathrm{~cm}$ (बिंब आभासी)
$f_{2}=-20 \mathrm{~cm}$ से $v_{2}=-\frac{112 \times 20}{92} \mathrm{~cm}$ प्राप्त होता है। अर्थात दूसरे (अवतल) लेंस के कारण आवर्धन का परिमाण $=20 / 92$ आवर्धन का नेट परिमाण $=3 \times(20 / 92)=0.652$ प्रतिबिंब का साइज़ $=0.652 \times 1.5 \mathrm{~cm}=0.98 \mathrm{~cm}$
9.22 यदि ग्रिज्म में अपवर्तित किरण दूसरे फलक पर क्रांतिक कोण i_{c} पर आपतित होती है तो, पहले फलक पर अपवर्तन कोण r का मान $\left(60^{\circ}-i_{c}\right)$ होता है।
अब $i_{c}=\sin ^{-1}(1 / 1.524) \simeq 41^{\circ}$
अत: $r=19^{\circ}$ तथा $\sin i=0.4962$, तथा $i=\sin ^{-1} 0.4965 \simeq 30^{\circ}$ ।
9.23 समान काँच के बने दो सर्वसम प्रिज्मों को स्पर्श करते हुए यदि इस प्रकार समायोजित किया जाए कि उनके आधार एक दूसरे के विपरीत हों, तो वे एक काँच के स्लैब की भाँति कार्य करेंगे तथा इससे प्रकाश पुंज न तो विर्चलित होता है और न ही विक्षेपित होता है; परंतु पुंज का मात्र समांतर विस्थापन होता है।
(a) बिना विक्षेपण प्रकाश-पुंज को विर्चलित करने के लिए, किसी पदार्थ जैसे क्राउन काँच का एक पहला प्रिज्म लीजिए तथा किसी उचित अपवर्तन कोण का फ्लिट काँच का दूसरा प्रिज्म चुनिए [दूसरे प्रिज़्म (फ्लिए काँच) का अपवर्तन कोण क्राउन काँच के प्रिज़्म से छोटा लीजिए क्योंकि फ्लिट काँच अपेक्षाकृत अधिक विक्षेपण करता है]। इन दोनों प्रिज्मेों को एक-दूसरे के सापेक्ष उलटा रखने पर एक प्रिज्म दूसरे प्रिज्म के विक्षेपण को निरस्त कर देता है।
(b) बिना विचलन के प्रकाश के विक्षेपण के लिए फिल्लट काँच के प्रिज्म के अपवर्तन कोण में वृद्धि कीजिए (अधिक और अधिक अपवर्तन कोण के फ्लिट काँच के प्रिज्म लेकर प्रयास कीजिए) ताकि दोनों प्रिज्म्मों द्वारा उत्पन्न विचलन एक-दूसरे के समान तथा विपरीत हों। (फ्लिट काँच का अपवर्तन क्राउन काँच की अपेक्षा अधिक होने के कारण अभी भी फ्लिट काँच के प्रिज्म का अपवर्तन कोण क्राउन काँच के प्रिज्म की तुलना में छोटा होता है) क्योंकि इसमें बहुत से वर्णों के लिए समायोजन करना होता है, अत: यह वांछित उद्देश्य के लिए परिशुद्ध व्यवस्था नहीं होती।
9.24 वस्तुओं को अनंत पर देखने के लिए नेत्र अपनी न्यूनतम अभिसरित क्षमता का उपयोग करता है। यह क्षमता $(40+20)$ डाइऑप्टर $=60$ डाइऑप्टर है। इससे दृष्टिपटल तथा कॉर्निया नेत्र लेंस के बीच की दूरी r की स्थूल धारणा मिलती है : $(5 / 3) \mathrm{cm}$ किसी बिंब को निकट बिंदु ($u=-25 \mathrm{~cm}$) पर फोकसित कर दृष्टिपटल $(v=5 / 3 \mathrm{~cm})$ पर प्रतिबिंब प्राप्त करने के लिए फोकस दूरी

$$
\left[\frac{1}{25}+\frac{3}{5}\right]^{-1}=\frac{25}{16} \mathrm{~cm} \text { होनी चाहिए। }
$$

यह 64 डाइऑप्टर अभिसरित क्षमता के तदनुरूप है। तब नेत्र लेंस की क्षमता $(64-20)$ डाइऑप्टर $=24$ डाइऑप्टर है। नेत्र लेंस की समंजन का परिसर लगभग 20 से 24 डाइऑप्टर होता है।
9.25 नहीं। किसी व्यक्ति के नेत्र लेंस की समंजन की योग्यता (क्षमता) सामान्य होते हुए भी उसमें निकट दृष्टि अथवा दीर्घ दृष्टि दोष हो सकता है। निकट दृष्टि दोष नेत्र गोलक के सामने तथा पीछे से बहुत छोटा होने पर उत्पन्न होता है। व्यवहार में इसके साथ-साथ नेत्र लेंस भी अपनी समंजन क्षमता खो देता है। जब नेत्र गोलक की अपनी लंबाई सामान्य होती है परंतु नेत्र-लेंस अपनी समंजन क्षमता को आंशिक रूप में खो देता है (जैसा आयु में वृद्धि होने पर किसी भी सामान्य नेत्र में हो सकता है) तब इस दृष्टि ‘दोष’ को जरा दूरदर्शिता कहते हैं तथा इसका निराकरण दीर्घ दृष्टि दोष की ही भाँति किया जाता है।
9.26 व्यक्ति का दूर बिंदु 100 cm है, जबकि उसका निकट बिंदु सामान्य (लगभग 25 cm) हो सकता था। चश्मा लगाने पर अनंत पर रखी वस्तु का आभासी प्रतिबिंब 100 cm दूर बनता है। इससे पास की वस्तुओं, अर्थात् जो कि (जिनके चश्मे के द्वारा प्रतिबिंब) 100 cm और 25 cm के बीच हैं, तो व्यक्ति अपने नेत्र लेंस की समंजन क्षमता की योग्यता का उपयोग करता है। प्राय: यह योग्यता का अधिक आयु होने पर आंशिक ह्रास हो जाता है (जरा दूरदर्शिता)। ऐसे व्यक्ति का निकट बिंदु 50 cm दूर चला जाता है। वस्तुओं को 25 cm दूरी पर देखने के लिए व्यक्ति को +2 डाइऑप्टर क्षमता के चश्मे की आवश्यकता है।
9.27 अबिंदुकता नामक दृष्टि दोष अपवर्ती तंत्र (कॉर्निया + नेत्र लेंस) होने पर होता है। [नेत्र प्राय: गोलीय होता है, अर्थात इसकी विभिन्न तलों में वक्रता समान होती है, परंतु अबिंदुकता की स्थिति में कॉर्निया गोलीय नहीं होती]। वर्तमान स्थिति में, ऊर्ध्वाधर तल की वक्रता पर्याप्त है, अतः ऊर्ध्वाधर धारियों का स्पष्ट प्रतिबिंब रेटिना पर बन सकता है। परंतु क्षैतिज तल में वक्रता पर्याप्त नहीं है, अतः क्षैतिज धारियाँ धुँधली प्रतीत होती हैं। इस दोष की संशुद्धि ऊध्र्वाधर के अनुदिश अक्ष वक्रता के सिलिंडरी लेंस द्वारा की जा सकती है। स्पष्ट है कि ऊर्ध्वाधर तल की समांतर किरणें कोई अतिरिक्त अपवर्तित नहीं होंगी, परंतु जो क्षैतिज तल में हैं, यदि सिलिंडरी पृष्ठ की वक्रता का चयन उचित प्रकार से किया गया हो तो सिलिंडरी लेंस के वक्रित पृष्ठ से वे वांछनीय अतिरिक्त अभिसरित हो सकती हैं।

भौतिकी

9.28 (a) निकटतम दूरी $=4 \frac{1}{6} \mathrm{~cm} \approx 4.2 \mathrm{~cm}$ तथा द्रतम दूरी $=5 \mathrm{~cm}$
(b) अधिकतम कोणीय आवर्धन $=[25 /(25 / 6)]=6$; न्यूनतम कोणीय आवर्धन $=[25 / 5]=5$
9.29 (a) $\frac{1}{v}+\frac{1}{9}=\frac{1}{10}$, अर्थात् $v=-90 \mathrm{~cm}$

आवर्धन का परिमाण $=90 / 9=10$
आभासी प्रतिबिंब में प्रत्येक वर्ग का क्षेत्रफल $=10 \times 10 \times 1 \mathrm{~mm}^{2}=100 \mathrm{~mm}^{2}=$ $1 \mathrm{~cm}^{2}$
(b) आवर्धन क्षमता $=25 / 9=2.8$
(c) नहीं, किसी लेंस द्वारा आवर्धन तथा किसी प्रकाशिक यंत्र को कोणीय आवर्धन [अथवा आवर्धन क्षमता] दो भिन्न अभिधारणाएँ हैं। कोणीय आवर्धन वस्तु के कोणीय साइज़ (जो कि प्रतिबिंब के आवर्धित होने पर प्रतिबिंब के कोणीय साइज़ के बराबर होता है।) तथा उस स्थिति में वस्तु के कोणीय साइज़ (जबकि उसे निकट बिंदु 25 cm पर रखा जाता है), का अनुपात होता है। इस प्रकार, आवर्धन का परिमाण। (v / u) । होता है तथा आवर्धन क्षमता $(25 /|u|)$ होती है। केवल तब जब प्रतिबिंब निकट बिंदु पर $|v|=25 \mathrm{~cm}$ पर है तो केवल तभी दोनों राशियाँ समान होती हैं।
9.30 (a) प्रतिबिंब के निकट बिंदु $(25 \mathrm{~cm})$ पर बनने पर अधिकतम आवर्धन क्षमता प्राप्त होती है। अत:
$u=-7.14 \mathrm{~cm}$
(b) आवर्धन का परिमाण $=(25 /|u|)=3.5$
(c) आवर्धन क्षमता $=3.5$

हाँ, आवर्धन क्षमता (जब प्रतिबिंब 25 cm पर बनता है) आवर्धन के परिमाण के समान होती है।
9.31 आवर्धन $\sqrt{(6.25 / 1)}=2.5$
$v=+2.5 u$; अत:
$+\frac{1}{2.5 u}-\frac{1}{u}=\frac{1}{10}$
अर्थात् $\quad u=-6 \mathrm{~cm}$
$|v|=15 \mathrm{~cm}$
आभासी प्रतिबिंब सामान्य निकट बिंदु $(25 \mathrm{~cm})$ से भी पास बनता है तथा इसे नेत्र स्पष्ट नहीं देख सकता।
9.32 (a) यदि प्रतिबिंब का निरपेक्ष साइज़ वस्तु के साइज़ से बड़ा भी है, तो भी प्रतिबिंब का कोणीय साइज़ वस्तु के कोणीय साइज़ के समान होता है। कोई आवर्धक लेंस हमारी इस रूप में सहायता करता है : यदि आवर्धक लेंस नहीं है तो वस्तु 25 cm से कम दूरी पर नहों रखी जा सकती; आवर्धक लेंस होने पर हम वस्तु को अपेक्षाकृत बहुत निकट रख सकते हैं। वस्तु निकट हो तो उसका कोणीय साइज़ 25 cm दूर रखने की तुलना में कहीं अधिक होता है। हमारे कोणीय आवर्धन पाने या उपलब्ध करने का यही अर्थ है।

उत्तर

(b) हाँ, यह थोड़ा कम होता है, क्योंकि नेत्र पर अंतरित कोण लेंस पर अंतरित कोण से थोड़ा छोटा होता है। यदि प्रतिबिंब बहुत दूर हो तो यह प्रभाव नगण्य होता है। [नोट : जब नेत्र को लेंस से पृथक् रखते हैं, तो प्रथम वस्तु द्वारा नेत्र पर अंतरित कोण तथा इसके प्रतिबिंब द्वारा नेत्र पर अंतरित कोण समान नहीं होते।]
(c) प्रथम, अत्यंत छोटे फोकस दूरी के लेंसों की घिसाई आसान नहीं है। इससे अधिक महत्त्वपूर्ण बात है कि यदि आप फोकस दूरी कम करते हैं तो इससे विपथन (गोलीय तथा वर्ण) बढ़ जाता है। अतः व्यवहार में, आप किसी सरल उत्तल लेंस से 3 या अधिक की आवर्धन क्षमता नहीं प्राप्त कर सकते हैं। तथापि, किसी विपथन संशोधित लेंस प्रणाली के उपयोग से इस सीमा को 10 या इसके सन्निकट कारक से बढ़ा सकते हैं।
(d) किसी नेत्रिका का कोणीय आवर्धन $\left[\left(25 / f_{e}\right)+1\right]\left(f_{e} \mathrm{~cm}\right.$ में) होता है जिसके मान में f_{e} के घटने पर वृद्धि होती है। पुनः अभिदृश्यक का आवर्धन $\frac{v_{0}}{\left|u_{0}\right|}=\frac{1}{\left(\left|u_{0}\right| / f_{0}\right)-1}$ से प्राप्त होता है जो अधिक होता है यदि $\left|u_{0}\right|, f_{0}$ से कुछ अधिक हो। सूक्ष्मदर्शी का उपयोग अति निकट की वस्तुओं को देखने के लिए किया जाता है। अतः $\left|u_{0}\right|$ कम होता है और तदनुसार f_{0} भी।
(e) नेत्रिका के अभिदृश्यक के प्रतिबिंब को 'निर्गम द्वारक' कहते हैं। वस्तु से आने वाली सभी किरणें अभिदृश्यक से अपवर्तन के पश्चात निर्गम द्वारक से गुजरती हैं। अतः हमारे नेत्र से देखने के लिए यह एक आदर्श स्थिति है। यदि हम अपने नेत्र को नेत्रिका के बहुत ही निकट रखें तो नेत्रिका बहुत अधिक प्रकाश का अधिग्रहण नहीं कर पाएगी तथा दृष्टि-क्षेत्र भी घट जाएगा। यदि हम अपने नेत्र को निर्गम-द्वारक पर रखें तथा हमारे नेत्र की पुतली का क्षेत्रफल निर्गम-द्वारक के क्षेत्रफल से अधिक या समान हो तो हमारे नेत्र अभिदृश्यक से अपवर्तित सभी किरणों को अभिगृहित कर लेंगे। निर्गम-द्वारक का सटीक स्थान सामान्यतः अभिदृश्यक एवं नेत्रिका के अंतराल पर निर्भर करता है। जब हम किसी सूक्ष्मदर्शी से, इसके एक सिरे पर अपने नेत्र को लगाकर देखते हैं तो नेत्र एवं नेत्रिका के मध्य आदर्श दूरी यंत्र के डिज़ाइन में अंतर्निहित होती है।
9.33 मान लीजिए कि सूक्ष्मदर्शी सामान्य उपयोग में है अर्थात प्रतिबिंब 25 cm पर है। नेत्रिका का कोणीय आवर्धन

$$
=\frac{25}{5}+1=6
$$

अभिदृश्यक का आवर्धन

$$
=\frac{30}{6}=5 \text {, अत: }
$$

$\frac{1}{5 u_{0}}-\frac{1}{u_{0}}=\frac{\mathbf{1}}{1.25}$
जिससे $u_{0}=-1.5 \mathrm{~cm} . ; v_{0}=7.5 \mathrm{~cm} ;\left|u_{e}\right|=(25 / 6) \mathrm{cm}=4.17 \mathrm{~cm}$ प्राप्त होता है। अभिदृश्यक एवं नेत्रिका के बीच दूरी $(7.5+4.17) \mathrm{cm}=11.67 \mathrm{~cm}$ होनी चाहिए। अपेक्षित आवर्धन प्राप्त करने के लिए वस्तु को अभिदृश्यक से 1.5 cm दूर रखना होगा।
9.34 (a) $m=\left(f_{0} / f_{e}\right)=28$
(b) $m=\frac{f_{0}}{f_{e}}\left\lceil 1+\frac{f_{0}}{25}\right\rceil=33.6$
9.35 (a) $f_{0}+f_{\mathrm{e}}=145 \mathrm{~cm}$
(b) मीनार द्वारा अंतरित कोण $=(100 / 3000)=(1 / 30) \mathrm{rad}$; अभिदृश्यक द्वारा बनाए प्रतिबिंब से अंतरित कोण $=h / f_{0} ; f_{0}=140 \mathrm{~cm}$ दोनों कोणों के मानों की तुलना करने पर $h=4.7 \mathrm{~cm}$ प्राप्त होता है।
(c) नेत्रिका का आवर्धन $=6$ अंतिम प्रतिबिंब की ऊँचाई $=28 \mathrm{~cm}$
9.36 बड़े दर्पण (अवतल) द्वारा बनाया गया प्रतिबिंब छोटे दर्पण (उत्तल) के लिए आभासी बिंब का कार्य करता है। अनंत पर रखे बिंब से आने वाली समांतर किरणें, बड़े दर्पण से 110 mm दूर फोकसित होंगी। छोटे दर्पण के लिए आभासी बिंब की दूरी $=(110-20)=90 \mathrm{~mm}$ होगी। छोटे दर्पण की फोकस दूरी 70 mm है। दर्पण सूत्र का उपयोग करने पर हम देखेंगे कि प्रतिबिंब छोटे दर्पण से 315 mm दूर बनता है।
9.37 परावर्तित किरणें दर्पण के घूर्णन कोण से दोगुने कोण पर विक्षेपित होती हैं। अत: $d / 1.5=$ $\tan 7^{\circ} ; d=18.4 \mathrm{~cm}$
$9.38 n=1.33$

अध्याय 10

10.1 (a) परावर्तित प्रकाश : (तरंगदैर्घ्य, आवृत्ति, चाल आपतित प्रकाश के समान हैं)
$\lambda=589 \mathrm{~nm}, v=5.09 \times 10^{14} \mathrm{~Hz}, c=3.00 \times 10^{8} \mathrm{~m} \mathrm{~s}^{-1}$
(b) अपवर्तित प्रकाश : (आवृत्ति, आपतित आवृत्ति के समान है)
$v=5.09 \times 10^{14} \mathrm{I} \mathrm{z}$
$v=(c / n)=2.26 \times 10^{8} \mathrm{~m} \mathrm{~s}^{-1}, \lambda=(v / v)=444 \mathrm{~nm}$
10.2 (a) गोलीय
(b) समतल
(c) समतल (बड़े गोले की सतह का एक छोटा क्षेत्र लगभग समतलीय होता है)
10.3 (a) $2.0 \times 10^{\dot{8}} \mathrm{~m} \mathrm{~s}^{-1}$
(b) हाँ, क्योंकि अपवर्तनांक और इसलिए माध्यम में प्रकाश की चाल तरंगदैर्घ्य पर निर्भर करती है [जब कोई विशिष्ट तरंगदैर्घ्य या प्रकाश का रंग न दिया गया हो तो हम दिए गए अपवर्तनांक का मान पीले प्रकाश के लिए ले सकते हैं]। अब हम जानते हैं कि बैंगनी प्रकाश का विचलन काँच के प्रिज्म में लाल प्रकाश से अधिक होता है। अर्थात $n_{v}>n_{r}$ इसलिए, श्वेत प्रकाश का बैंगनी अवयव, लाल अवयव से धीमी गति से गमन करता है।
$10.4 \lambda=\frac{1.2 \times 10^{-2} \times 0.28 \times 10^{-3}}{4 \times 1.4} \mathrm{~m}=600 \mathrm{~nm}$
10.5 K/4
10.6 (a) 1.17 mm
(b) 1.56 mm
$10.70 .15^{\circ}$
$10.8 \tan ^{-1}(1.5) \simeq 56.3^{\circ}$
$10.95000 \AA, 6 \times 10^{14} \mathrm{~Hz} ; 45^{\circ}$
$\mathbf{1 0 . 1 0} 40 \mathrm{~m}$
10.11 सूत्र

$$
\begin{aligned}
\lambda^{\prime}-\lambda & =\frac{v}{c} \lambda \text { का उपयोग करने से } \\
\text { अर्थात } v & =\frac{c}{\lambda}\left(\lambda^{\prime}-\lambda\right) \\
& =\frac{3 \times 10^{8} \times 15}{6563} \\
& =6.86 \times 10^{5} \mathrm{~m} \mathrm{~s}^{-1}
\end{aligned}
$$

10.12 न्यूटन के कणिका सिद्धांत के अनुसार, अपवर्तन में, विरल माध्यम से सघन माध्यम में प्रवेश करते समय आपतित कण सतह के लंबवत आकर्षण बल का अनुभव करता है। इसकी परिणति वेग के अभिलंब घटक की वृद्धि में होगी। लेकिन पृष्ठ के अनुदिश घटक नियत रहता है। इसका तात्पर्य
$c \sin i=v \sin r$ या $\frac{v}{c}=\frac{\sin i}{\sin r}=n$; क्योंकि $n>1, v>c$ है।
यह अवधारणा प्रायोगिक परिणामों के विरुद्ध है ($v<c)$ । प्रकाश का तरंग सिद्धांत प्रयोग संगत है।
10.13 बिंदु बिंब को केंद्र लेकर दर्पण को स्पर्श करते हुए एक वृत्त खींचिए। यह गोलीय तरंगाग्र का बिंब से दर्पण पर पहुँचने वाला समतलीय भाग है। अब दर्पण की उपस्थिति एवं अनुपस्थिति में t समय के बाद उसी तरंगाग्र की इन्हीं स्थितियों को आरेखित कीजिए। आप दर्पण के दोनों ओर स्थित दो एक जैसे चाप पाएँगे। सरल ज्यामिति के उपयोग से, परावर्तित तरंगाग्र का केंद्र (बिंब का प्रतिबिंब) दर्पण से बिंब की बराबर दूरी पर दिखाई देगा।
10.14 (a) निर्वात में प्रकाश की चाल एक सार्वत्रिक नियतांक है जो सूचीबद्ध कारकों में से किसी पर भी निर्भर नहीं है। विशेषत: यह एक आश्चर्यजनक तथ्य है कि यह स्रोत तथा प्रेक्षक की सापेक्ष गति पर भी निर्भर नहीं करता है। यह तथ्य आइंसटाइन के आपेक्षिकता के विशिष्ट सिद्धांत का मूल अभिगृहीत है।
(b) प्रकाश की चाल की माध्यम पर निर्भरता
(i) स्रोत की प्रकृति पर निर्भर नहीं है (प्रकाश की चाल का निर्धारण माध्यम के संचरण गुणों से है। यह तथ्य अन्य तरंगों के लिए, भी सत्य है, जैसे ध्वनि-तरंगों एवं जल-तरंगों आदि के लिए)।
(ii) समदैशिक माध्यम के लिए संचरण दिशा पर निर्भर नहीं करता है।
(iii) स्रोत तथा माध्यम की सापेक्ष गति पर निर्भर नहीं करता लेकिन प्रेक्षक तथा माध्यम की सापेक्ष गति पर निर्भर करता है।
(iv) तरंगदैर्घ्य पर निर्भर करता है।
(v) तीव्रता पर निर्भर नहीं करता (यद्यपि अधिक तीव्र किरण-पुंज के लिए यह स्थिति अधिक जटिल है तथा यहाँ हमारे लिए महत्वपूर्ण नहीं है)।
10.15 ध्वनि-तरंगों के संचरण के लिए माध्यम आवश्यक है। यद्यपि (i) तथा (ii) स्थिति में संगत समान सापेक्ष गति (स्रोत तथा प्रेक्षक के मध्य) भौतिक रूप से समरूपी नहों है, क्योंकि माध्यम के

भौतिकी

सापेक्ष प्रेक्षक की गति इन दोनों स्थितियों में भिन्न है। अतः, (i) तथा (ii) स्थितियों में हम ध्वनि के लिए डॉप्लर के सूत्रों की समानता की अपेक्षा नहों कर सकते। निर्वात में प्रकाश-तरंगों के लिए, स्पष्टतया (i) तथा (ii) स्थिति के बीच कोई भेद नहीं है। यहाँ मात्र स्रोत तथा प्रेक्षक की सापेक्ष गतियाँ ही अर्थ रखती हैं तथा आपेक्षिकीय डॉप्लर का सूत्र (i) तथा (ii) स्थिति के लिए समान है। माध्यम में प्रकाश संचरण के लिए पुन: ध्वनि-तरंगों के समान, दोनों स्थितियाँ समान नहीं हैं तथा (i) तथा (ii) स्थितियों के लिए हमें डॉप्लर के सूत्र के भिन्न होने की अपेक्षा रखनी चाहिए।
$10.163 .4 \times 10^{-4} \mathrm{~m}$
10.17 (a) आकार $\sim \lambda / d$ सूत्र के अनुसार, आकार आधा रह जाता है। तीव्रता चार गुनी बढ़ जाती है।
(b) द्वि-झिरी समायोजन में व्यतिकरण फ्रिजों की तीव्रता प्रत्येक झिरी के विवर्तन पैटर्न द्वारा माडुलित (modulated) होती है।
(c) वृत्तीय अवरोध के किनारों से विवर्तित तरंगें छाया के केंद्र पर संपोषी व्यतिकरण द्वारा प्रदीप्त बिंदु उत्पन्न करती हैं।
(d) तरंगों के बड़े कोण पर विवर्तन अथवा मुड़ने के लिए अवरोधों/द्वारकों का आकार, तरंग की तरंगदैर्घ्य के समकक्ष होना चाहिए। यदि अवरोध/द्वारक का आकार तरंगदैर्घ्य की तुलना में बहुत बड़ा है तो विवर्तन छोटे कोण से होगा। यहाँ आकार कुछ मीटरों की कोटि का होता है। प्रकाश की तरंगदैर्घ्घ लगभग $5 \times 10^{-7} \mathrm{~m}$ है, जबकि ध्वनि तरंगों; जैसे 1 k Hz आवृत्ति वाली ध्वनि की तरंगदैर्द्य लगभग 0.3 m है। इस प्रकार ध्वनि-तरंगें विभाजक के चारों ओर मुड़ सकती हैं जबकि प्रकाश तरंगें नहीं मुड़ सकतीं।
(e) न्यायसंगतता का आधार (d) में उल्लेखित है। साधारण प्रकाशिक यंत्रों में प्रयुक्त द्वारकों का आकार प्रकाश की तरंगैैै्घ्य से बहुत बड़ा होता है।
$\mathbf{1 0 . 1 8} 12.5 \mathrm{~cm}$
10.190 .2 nm
10.20 (a) ऐंटीना द्वारा प्राप्त सीधे संकेत तथा गुज़ररे वाले वायुयान से परावर्तित संकेतों का व्यतिकरण।
(b) अध्यारोपण का सिद्धांत तरंगगति को नियंत्रित करने वाली अवकल (differential) समीकरण के रेखीय चरित्र से प्रतिपादित है। यदि y_{1} और y_{2} इस समीकरण के हल हैं, तो y_{1} और y_{2} का रेखीय योग भी उनका हल होगा। जब आयाम बड़े हों (उदाहरणा के लिए उच्च तीव्रता का लेज़र किरण-पुंज) तथा अरैखिक प्रभाव महत्वपूर्ण हो तो यह स्थिति और भी जटिल हो जाती है, जिसका समझना यहाँ आवश्यक नहीं है।
10.21 किसी एकल झिरी को n छोटी झिरियों में बाँटिए जिनमें प्रत्येक की चौड़ाई $a^{\prime}=a / n$ है। कोण $\theta=n \lambda / a=\lambda / a^{\prime}$ । प्रत्येक छोटी झिरी से कोण θ की दिशा में तीव्रता शून्य है। इनका संयोजन भी शून्य तीव्रता प्रदान करता है।

अध्याय 11
11.1
(a) $7.24 \times 10^{18} \mathrm{~Hz}$
(b) 0.041 nm
11.2
(a) $0.34 \mathrm{cV}=0.54 \times 10^{-19} \mathrm{~J}$
(b) 0.34 V
(c) $344 \mathrm{~km} / \mathrm{s}$
$11.3 \quad 1.5 \mathrm{cV}=2.4 \times 10^{-19} \mathrm{~J}$

उत्तर

11.4 (a) $3.14 \times 10^{-19} \mathrm{~J}, 1.05 \times 10^{-27} \mathrm{~kg} \mathrm{~m} / \mathrm{s}$
(b) 3×10^{16} फोटॉन/ s
(c) $0.63 \mathrm{~m} / \mathrm{s}$
11.54×10^{21} फोटॉन $/ \mathrm{m}^{2} \mathrm{~s}$
$11.6 \quad 6.59 \times 10^{-34} \mathrm{~J} \mathrm{~s}$
11.7
(a) $3.38 \times 10^{-19} \mathrm{~J}=2.11 \mathrm{eV}$
(b) 3.0×10^{20} फोटॉन $/ \mathrm{s}$
$11.8 \quad 2.0 \mathrm{~V}$
11.9 नहीं, क्योंकि $v<v_{0}$
$11.104 .73 \times 10^{14} \mathrm{~Hz}$
$11.112 .16 \mathrm{eV}=3.46 \times 10^{-19} \mathrm{~J}$
11.12 (a) $4.04 \times 10^{-24} \mathrm{~kg} \mathrm{~m} \mathrm{~s}^{-1}$
(b) 0.164 nm
11.13 (a) $5.92 \times 10^{-24} \mathrm{~kg} \mathrm{~m} \mathrm{~s}^{-1}$
(b) $6.50 \times 10^{6} \mathrm{~m} \mathrm{~s}^{-1}$
(c) 0.112 nm
11.14 (a) $6.95 \times 10^{-25} \mathrm{~J}=4.34 \mu \mathrm{eV} \quad$ (b) $3.78 \times 10^{-28} \mathrm{~J}=0.236 \mathrm{neV}$
11.15 (a) $1.7 \times 10^{-35} \mathrm{~m}$
(b) $1.1 \times 10^{-32} \mathrm{~m}$
(c) $3.0 \times 10^{-23} \mathrm{~m}$
11.16 (a) $6.63 \times 10^{-25} \mathrm{~kg} \mathrm{~m} / \mathrm{s}$ (दोनों के लिए)
(b) 1.24 keV
(c) 1.51 eV
11.17 (a) $6.686 \times 10^{-21} \mathrm{~J}=4.174 \times 10^{-2} \mathrm{eV}$
(b) 0.145 nm
$11.18 \lambda=h / p=h /(h \nu / c)=c / v$
11.190 .028 nm
11.20 (a) $e V=\left(m v^{2} / 2\right)$ का उपयोग कीजिए अर्थात, $v=[(2 e V / m)]^{1 / 2} ; v=1.33 \times 10^{7} \mathrm{~m} \mathrm{~s}^{-1}$
(b) यदि हम $V=10^{7} \mathrm{~V}$ के लिए उसी सूत्र का प्रयोग करें, तो $v=1.88 \times 10^{9} \mathrm{~m} \mathrm{~s}^{-1}$ आता है। यह स्पष्ट रूप से गलत है, क्योंकि कोई भी द्रव्य कण प्रकाश के वेग $\left(c=3 \times 10^{8} \mathrm{~m} \mathrm{~s}^{-1}\right)$ से अधिक वेग से नहीं चल सकता। वस्तुतः गतिज ऊर्जा के लिए उपरोक्त सूत्र $\left(m v^{2} / 2\right)$ केवल $(v / c) \ll 1$ के लिए वैध है। बहुत अधिक चाल पर, जब (v / c) के लगभग तुल्य (यद्यपि हमेशा 1 से कम) होता है, तो आपेक्षिकीय प्रभाव-क्षेत्र के कारण निम्नलिखित सूत्र वैध होते हैं :

आपेक्षिकीय संवेग $p=m v$
कुल ऊर्जा $E=m c^{2}$
गतिज ऊर्जा $K=m c^{2}-m_{o} c^{2}$
जहाँ आपेक्षिकीय द्रव्यमान m निम्नानुसार दिया जाता है

$$
m=m_{0}\left(1-\frac{v^{2}}{c^{2}}\right)^{-1 / 2}
$$

m_{0} कण का विराम द्रव्यमान कहलाता है। इन संबंधों से प्राप्त होता है :
$E=\left(p^{2} c^{2}+m_{0}^{2} \mathbf{c}^{4}\right)^{1 / 2}$
ध्यान दीजिए कि आपेक्षिकीय प्रभाव-क्षेत्र में, जब v / c लगभग 1 के बराबर होता है, तो कुल ऊर्जा $E \geq m_{0} c^{2}$ (विराम द्रव्यमान ऊर्जा)। इलेक्ट्रॉन की विराम द्रव्यमान ऊर्जा लगभग

भौतिकी

0.51 MeV होती है। इसलिए 10 MeV की गतिज ऊर्जा, जो इलेक्ट्रॉन की विराम द्रव्यमान ऊर्जा से बहुत अधिक है, आपेक्षिकीय प्रभाव-क्षेत्र को व्यक्त करती है। आपेक्षिकीय सूत्रों के प्रयोग से $v(10 \mathrm{MeV}$ गतिज ऊर्जा के लिए $)=0.999 \mathrm{c}$
11.21 (a) 22.7 cm
(b) नहीं। जैसा कि ऊपर स्पष्ट किया गया है, 20 MeV का एक इलेक्ट्रॉन आपेक्षिकीय गति से चलेगा। परिणामस्वरूप, अ-आपेक्षिकीय सूत्र $R=\left(m_{c} v / e B\right)$ वैध नहीं रहता। आपेक्षिकीय सूत्र है

$$
R=p / e B=m v / e B \text { या } \quad R=m_{0} v /\left(e B \sqrt{1-v^{2} / c^{2}}\right)
$$

$11.22 e V=\left(m v^{2} / 2\right)$ तथा $R=(m v / e B)$ के प्रयोग से $(e / m)=\left(2 V / R^{2} B^{2}\right)$; तथा दिए गए आँकड़ों के प्रयोग से प्राप्त होता है : $(e / m)=1.73 \times 10^{11} \mathrm{C} \mathrm{kg}^{-1}$

11.23 (a) 27.6 keV (b) 30 kV की कोटि का।

$11.24 \lambda=(h c / E)$ के प्रयोग से, जहाँ $E=5.1 \times 1.602 \times 10^{-10} \mathrm{~J} \lambda=2.43 \times 10^{-16} \mathrm{~m}$
11.25 (a) $\lambda=500 \mathrm{~m}$ के लिए $E=(h c / \lambda)=3.98 \times 10^{-28} \mathrm{~J}$ प्रति सेकंड उत्सर्जित फोटॉनों की संख्या

$$
=10^{4} \mathrm{~J} \mathrm{~s}^{-1} / 3.98 \times 10^{-28} \mathrm{~J} \simeq 3 \times 10^{31} \mathrm{~s}^{-1}
$$

हम देखते हैं कि रेडियोफोटॉन की ऊर्जा बहुत कम है और रेडियो पुंज में प्रति सेकंड उत्सर्जित फोटॉनों की संख्या बहुत अधिक है। इसलिए यहाँ ऊर्जा के न्यूनतम क्वांटम (फोटॉन) के अस्तित्व को उपेक्षित करने और रेडियो तरंग की कुल ऊर्जा को सतत मानने से नगण्य त्रुटि आती है। (b) $v=6 \times 10^{14} \mathrm{~Hz}$ के लिए $E \simeq 4 \times 10^{-19} J$ न्यूनतम तीव्रता के संगत फोटॉनों का अभिवाह (फ्लक्स)

$$
=10^{-10} \mathrm{~W} \mathrm{~m}^{-2} / 4 \times 10^{-19} \mathrm{~J}=2.5 \times 10^{8} \mathrm{~m}^{-2} \mathrm{~s}^{-1}
$$

आँख की पुतली में प्रवेश करने वाले फोटॉनों की संख्या प्रति सेकंड $=2.5 \times 10^{8} \times 0.4 \times$ $10^{-4} \mathrm{~s}^{-1}=10^{4} \mathrm{~s}^{-1}$ । यद्यपि यह फोटॉनों की संख्या (a) की तरह अत्यधिक नहीं है, फिर भी हमारे लिए यह काफी अधिक है, क्योंकि हम कभी भी अपनी आँखों से फोटॉनों को न तो अलग-अलग देख सकते हैं, न ही गिन सकते हैं।
$11.26 \phi_{0}=h v-e V_{0}=6.7 \times 10^{-19} \mathrm{~J}=4.2 \mathrm{eV} ; v_{0}=\frac{\mathrm{f}_{0}}{h}=1.0 \times 10^{15} \mathrm{~Hz} ; \quad v=4.7$ $\times 10^{14} \mathrm{~Hz}<\nu_{0}$ के संगत $\lambda=6328 \AA$ है।
चाहे लेसर के प्रकाश की तीव्रता कितनी भी अधिक क्यों न हो, फोटोसेल इस प्रकाश के लिए अक्रियाशील ही रहेगा।
11.27 दोनों स्रोतों के लिए $e V_{0}=h v-\phi_{0}$ का उपयोग कीजिए। प्रथम स्तोत के लिए दिए गए आँकड़ों से, $\phi_{o}=1.40 \mathrm{eV}$ अतः, दूसरे स्रोत के लिए $V_{o}=1.50 \mathrm{~V}$ ।
$11.28 V_{0}$ और v में आरेख खींचिए। आरेख का ढाल (h / e) और v-अक्ष पर इसका अंतःखंड v_{0} को प्रदर्शित करता है। पहले चार बिंदु लगभग सरल रेखा पर आते हैं, जो v-अक्ष को $v_{C}=5.0 \times 10^{14}$ Hz (देहली आवृत्ति) पर काटती है। पाँचवाँ बिंदु $v<v_{0}$ के लिए होता है, जहाँ प्रकाश विद्युत उत्सर्जन नहीं होता और इसलिए धारा को रोकने के लिए निरोधी विभव की आवश्यकता नहीं होती। आरेख का ढाल $4.15 \times 10^{-15} \mathrm{~V} \mathrm{~s}$ है। $e=1.6 \times 10^{-19} \mathrm{C}$ तथा $h=6.64 \times 10^{-34} \mathrm{~J} \mathrm{~s}(h$ का मानक मान $=6.626 \times 10^{-34} \mathrm{~J} \mathrm{~s}$) के प्रयोग से, $\phi_{0}=h v_{0}^{\prime}=2.11 \mathrm{~V}$

उत्तर

11.29 यह पाया गया है कि दी हुई आपतित आवृत्ति $v, v_{0}^{\prime}(\mathrm{Na})$ तथा $v_{0}(\mathrm{~K})$ से अधिक है, परंतु $v_{0}(\mathrm{Mo})$ तथा $v_{0}(\mathrm{Ni})$ से कम है। इसलिए Mo तथा Ni प्रकाश विद्युत उत्सर्जन नहीं करेंगे। यदि लेसर निकट लाया जाता है, तो विकिरण की तीव्रता बढ़ती है, लेकिन इससे Mo तथा Ni संबंधी परिणामों पर कोई प्रभाव नहीं पड़ता। फिर भी Na और K से प्रकाश विद्युत धारा, विकिरण की तीव्रता बढ़ने के साथ बढ़ेगी।
11.30 प्रति परमाणु एक चालन इलेक्ट्रॉन और प्रभावी परमाण्विक क्षेत्रफल $\sim 10^{-20} \mathrm{~m}^{2}$ मानने पर, 5 सतहों में इलेक्ट्रॉनों की संख्या
$=\frac{5 \times 2 \times 10^{-4} \mathrm{~m}^{2}}{10^{-20} \mathrm{~m}^{2}}=10^{17}$
आपतित शक्ति
$=10^{-5} \mathrm{~W} \mathrm{~m}^{-2} \times 2 \times 10^{-4} \mathrm{~m}^{2}$
$=2 \times 10^{-9} \mathrm{~W}$
तरंग चित्रण (प्रकृति) में, आपतित शक्ति सभी इलेक्ट्रॉनों द्वारा सतत रूप से एकसमान अवशोषित होती है। परिणामस्वरूप, प्रति इलेक्ट्रॉन प्रति सेकंड अवशोषित ऊर्जा
$=\frac{2 \times 10^{-9}}{10^{17}}=2 \times 10^{-26} \mathrm{~W}$
प्रकाश विद्युत उत्सर्जन के लिए आवश्यक समय
$=\frac{2 \times 1.6 \times 10^{-19} \mathrm{~J}}{2 \times 10^{-26} \mathrm{~W}}=1.6 \times 10^{7} \mathrm{~s}$
जो लगभग आधा (0.5) वर्ष है।
महत्त्व : प्रायोगिक रूप से, प्रकाश-विद्युत उत्सर्जन लगभग तात्क्षणिक $\left(\sim 10^{-9} \mathrm{~s}\right)$ प्रेक्षित होता है। इसलिए तरंग-प्रकृति प्रयोग से पूर्ण असहमति में है। फोटॉन-चित्रण में, ऊपरी सतह में विकिरण की ऊर्जा सभी इलेक्ट्रॉनों द्वारा समान रूप से साझित नहीं होती है। बल्कि, ऊर्जा असतत 'क्वांटा' के रूप में आती है और ऊर्जा का अवशोषण धीरे-धीरे नहीं होता। फोटॉन या तो अवशोषित नहीं होता है, या लगभग तात्क्षणिक रूप से इलेक्ट्रॉन द्वारा अवशोषित होता है।
$11.31 \lambda=1 \AA$ के लिए, इलेक्ट्रॉन की ऊर्जा $=150 \mathrm{eV}$; फोटॉन की ऊर्जा $=12.4 \mathrm{keV}$ इसलिए, समान तरंगैदैर्घ्य के लिए, फोटॉन की ऊर्जा, इलेक्ट्रॉन की ऊर्जा से काफी अधिक होती है।
11.32 (a) $\lambda=\frac{h}{p}=\frac{h}{\sqrt{2 m K}}$

इसलिए समान K के लिए, λ, द्रव्यमान m के साथ $(1 / \sqrt{m})$ के अनुसार घटती है। अब $\left(m_{n} / m_{\mathrm{c}}\right)=1838.6$; अतः समान ऊर्जा 150 eV के लिए (अभ्यास 11.31 की तरह),

न्यूट्रॉन की तरंगदैर्घ्य $=\left(\frac{1}{\sqrt{18386}}\right) \times 10^{-10} \mathrm{~m}=2.33 \times 10^{-12} \mathrm{~m}$ । अंतरापरमाणिवक (Interatomic) दूरियाँ इससे लगभग सौ गुना बड़ी हैं। इसलिए 150 eV ऊर्जा का न्यूट्रॉनपुंज विवर्तन प्रयोगों के लिए उपयुक्त नहीं है।

भौतिकी

(b) $\lambda=(h / \sqrt{3 m k T})$ के प्रयोग से $\lambda=1.45 \times 10^{-10} \mathrm{~m}$, जो क्रिस्टल में अंतरापरमाण्विक

दूरियों के तुलनीय है। स्पष्टतया ऊपर (a) तथा (b) से, तापीय न्यूट्रॉन विवर्तन प्रयोगों के लिए उपयुक्त अन्वेषी (कण) हैं। इसलिए उच्च ऊर्जा के न्यूट्रॉन-पुंज को विवर्तन के लिए प्रयूक्त करने से पूर्व तापित कर लेना चाहिए।
$11.33 \lambda=5.5 \times 10^{-12} \mathrm{~m}$
λ (पीला प्रकाश) $5.9 \times 10^{-7} \mathrm{~m}$
विभेदन क्षमता, तरंगदैर्घ्य के व्युत्क्रमानुपाती है। इसलिए इलेक्ट्रॉन सूक्ष्मदर्शी की विभेदन क्षमता, प्रकाशीय सूक्ष्मदर्शी की विभेदन क्षमता से लगभग 10^{5} गुना है। व्यवहार में दूसरे (ज्यामितीय) कारकों का अंतर इस तुलना को थोड़ा सा परिवर्तित कर सकता है।
11.34 संवेग के लिए

$$
\begin{aligned}
p & =\frac{h}{\lambda}=\frac{6.63 \times 10^{-34} \mathrm{~J} \mathrm{~s}}{10^{-15} \mathrm{~m}} \\
& =6.63 \times 10^{-19} \mathrm{~kg} \mathrm{~m} \mathrm{~s}^{-1}
\end{aligned}
$$

ऊर्जा के लिए आपेक्षिकीय सूत्र के प्रयोग से

$$
\begin{aligned}
E^{2} & =c^{2} p^{2}+m_{0}^{2} c^{4}=9 \times(6.63)^{2} \times 10^{-22}+(0.511 \times 1.6)^{2} \times 10^{-26} \\
& \simeq 9 \times(6.63)^{2} \times 10^{-22} \mathrm{~J}^{2}
\end{aligned}
$$

द्वितीय पद (विराम द्रव्यमान ऊर्जा) नगण्य हो जाता है।
इसलिए, $E=1.989 \times 10^{-10} \mathrm{~J}=1.24 \mathrm{BeV}$
अतः त्वरक (accelerator) से निकले इलेक्ट्रॉन की ऊर्जा कुछ BeV की कोटि की अवश्य होनी चाहिए।
$11.35 \lambda=\frac{h}{\sqrt{3 \mathrm{mkT}}} ; m_{\text {Нe }}=\frac{4 \times 10^{-3}}{6 \times 10^{23}} \mathrm{~kg}$ के प्रयोग से
$\lambda=0.73 \times 10^{-10} \mathrm{~m}$ माध्य पृथक्करण (दूरो)
$r=(V / N)^{1 / 3}=(k T / p)^{1 / 3}$
$T=300 \mathrm{~K}, p=1.01 \times 10^{5} \mathrm{~Pa}$ के लिए $r=3.4 \times 10^{-9} \mathrm{~m}$ प्राप्त होता है। हम पाते हैं कि $r \gg \lambda$
11.36 अभ्यास 11.35 वाला समान सूत्र प्रयोग करने पर $\lambda=6.2 \times 10^{-9} \mathrm{~m}$ जो दी गई अंतराइलेक्ट्रॉनिक दूरी से बहुत अधिक है।
11.37 (a) क्वार्क, न्यूट्रॉन या प्रोटॉन में ऐसे बलों से बँधे माने जाते हैं, जो उनको दूर खींचने पर प्रबल होते हैं। इसलिए ऐसा प्रतीत होता है कि यद्यपि प्रकृति में भिन्नात्मक आवेश हो सकते हैं, तथापि प्रेक्षणीय आवेश e के पूर्ण गुणज होते हैं।
(b) विद्युत तथा चुंबकीय क्षेत्रों के लिए क्रमशः दोनों मूल संबंध $e V=(1 / 2) m v^{2}$ या $e E=m a$ तथा $e B v=m v^{2} / r$, प्रदर्शित करते हैं कि इलेक्ट्रॉन की गतिकी e एवं m दोनों द्वारा अलग-अलग निर्धारित नहीं होती, बल्कि e / m द्वारा निर्धारित होती है।
(c) निम्न दाबों पर आयनों की, उनके संगत इलेक्ट्रोडों पर पहुँचने और धारा की रचना करने की संभावना होती है। सामान्य दाबों पर, गैस अणुओं से टक्कर और पुनर्संयोजन के कारण आयनों की ऐसी कोई संभावना नहीं होती।
(d) कार्य-फलन, इलेक्ट्रॉन को चालन बैंड के ऊपरी स्तर से धातु से बाहर निकालने के लिए आवश्यक न्यूनतम ऊर्जा मात्र है। धातु के सभी इलेक्ट्रॉन इस स्तर (ऊर्जा अवस्था) में नहीं

उत्तर

होते। वे स्तरों की संतत बैंड में रहते हैं। परिणामस्वरूप, एक ही आपतित विकिरण के लिए, विभिन्न स्तरों से निकले इलेक्ट्रॉन, विभिन्न ऊर्जाओं के साथ निर्गत होते हैं।
(e) किसी कण की ऊर्जा E (न कि संवेग p) का परम मान एक योगात्मक स्थिरांक के अधीन स्वतंत्र है। इसलिए जहाँ λ भौतिक रूप से महत्वपूर्ण है, वहीं एक इलेक्ट्रॉन की द्रव्य तरंग के लिए ν के परम मान का कोई सीधा भौतिक महत्व नहीं होता है। इसी तरह कला चाल $\nu \lambda$ भी भौतिक कण से महत्वपूर्ण नहीं है। समूह चाल

$$
\frac{d v}{d(1 / \lambda)}=\frac{d E}{d p}=\frac{d}{d p}\left(\frac{p^{2}}{2 m}\right)=\frac{p}{m}
$$

भौतिक रूप से अर्थपूर्ण है।

अध्याय 12

12.1 (a) से भिन्न नहीं
(b) टॉमसन मॉडल, रदरफोर्ड मॉडल
(c) रदरफोर्ड मॉडल
(d) टॉमसन मॉडल, रदरफोर्ड मॉडल
(e) दोनों मॉडल
12.2 हाइड्रोजन परमाणु का नाभिक प्रोट्रॉन है। इसका द्रव्यमान $1.67 \times 10^{-27} \mathrm{~kg}$ है, जबकि आपतित ऐल्फ़ा कण का द्रव्यमान $6.64 \times 10^{-27} \mathrm{~kg}$ है। क्योंकि प्रकीर्ण होने वाले कण का द्रत्यमान लक्ष्य नाभिक (प्रोटॉन) से अत्यधिक है इसलिए प्रत्यक्ष संघट्ट में भी ऐल्फ़ा-कण वापस नहीं आएगा। यह ऐसा ही है जैसे कि कोई फुटबाल, विरामावस्था में टेनिस की गेंद से टकराए। इस प्रकार प्रकीर्णन बड़े कोणों पर नहीं होगा।
12.3820 nm
$12.45 .6 \times 10^{14} \mathrm{~Hz}$
$12.513 .6 \mathrm{eV} ;-27.2 \mathrm{eV}$
$12.69 .7 \times 10^{-8} \mathrm{~m} ; 3.1 \times 10^{15} \mathrm{~Hz}$
12.7 (a) $2.18 \times 10^{6} \mathrm{~m} / \mathrm{s} ; 1.09 \times 10^{6} \mathrm{~m} / \mathrm{s} ; 7.27 \times 10^{5} \mathrm{~m} / \mathrm{s}$
(b) $1.52 \times 10^{-16} \mathrm{~s} ; 1.22 \times 10^{-15} \mathrm{~s} ; 4.11 \times 10^{-15} \mathrm{~s}$
$12.82 .12 \times 10^{-10} \mathrm{~m} ; 4.77 \times 10^{-10} \mathrm{~m}$
12.9 लाइमैन श्रेणी: 103 nm तथा 122 nm

बामर श्रेणी: 665 nm
$12.102 .6 \times 10^{74}$
12.11 (a) लगभग समान
(b) काफ़ी कम
(c) यह संकेत करता है कि प्रकीर्णन मुख्यतः एक संघट्ट के कारण है क्योंकि एक संघट्ट की संभावना लक्ष्य परमाणुओं की संख्या के साथ रैखिकत: बढ़ती है और इसलिए मोटाई के साथ रैखिकतः बढ़ती है।
(d) टॉमसन मॉडल में, एक संघट्ट के कारण बहुत कम विक्षेप होता है। प्रेक्षित औसत प्रकीर्णन कोण की व्याख्या केवल बहुप्रकीर्णन को ध्यान में रखकर ही की जा सकती है। अतः टॉमसन

मॉडल में बहुप्रकीर्णन की उपेक्षा गलत है। रदरफोर्ड मॉडल में अधिकतर प्रकीर्णन एक संघट्ट के कारण होता है और बहुप्रकीर्णन प्रभाव की प्रथम सन्निकटन पर उपेक्षा की जा सकती है।
12.12 बोर मॉडल की प्रथम कक्षा की त्रिज्या a_{0} जिसका मान है $a_{0}=\frac{4 \pi \varepsilon_{0}(h / 2 \pi)^{2}}{m_{e} e^{2}}$ यदि हम परमाणु गुरुत्वीय बल $\left(G_{m_{p}} m_{e} / r^{2}\right)$, द्वारा बँधा मानते हैं, तब हमें $\left(e^{2} / 4 \pi \varepsilon_{0}\right)$ के स्थान पर $G m_{P} m_{e}$ प्रतिस्थापित करना चाहिए। अर्थात बोर मॉडल की प्रथम कक्षा की त्रिज्या $a_{0}^{G}=\frac{(h / 2 \pi)^{2}}{G m_{p} m_{e}^{2}} \cong 1.2 \times 10^{29} \mathrm{~m}$ होनी चाहिए। यह संपूर्ण विश्व के आकलित आकार से कहों अधिक है।
$12.13 \quad v=\frac{m e^{4}}{(4 \pi)^{3} \varepsilon_{0}^{2}(h / 2 \pi)^{3}}\left[\frac{1}{(n-1)^{2}}-\frac{1}{n^{2}}\right]=\frac{m e^{4}(2 n-1)}{(4 \pi)^{3} \varepsilon_{0}^{2}(h / 2 \pi)^{3} n^{2}(n-1)^{2}}$
n के अधिक मान के लिए, $v \cong \frac{m e^{4}}{32 \pi^{3} \varepsilon_{0}^{2}(h / 2 \pi)^{3} n^{3}}$
कक्षीय आवृत्ति $V_{\mathrm{c}}=(v / 2 \pi r)$ है।
बोर मॉडल में $v=\frac{n(h / 2 \pi)}{m r}$, और $r=\frac{4 \pi \varepsilon_{0}(h / 2 \pi)^{2}}{m e^{2}} n^{2}$ है।
अत: $v_{\mathrm{c}}=\frac{n(h / 2 \pi)}{2 \pi m r^{2}}=\frac{m e^{4}}{32 \pi^{3} \varepsilon_{0}^{2}(h / 2 \pi)^{3} n^{3}}$
जो n के अधिक मान के लिए v के मान के समान है।
12.14 (a) राशि $\left(\frac{e^{2}}{4 \pi \varepsilon_{0} m c^{2}}\right)$ की विमा लंबाई की विमा है। इसका मान $2.82 \times 10^{-15} \mathrm{~m}$ है जो प्ररूपी परमाण्वीय आमाप से काफ़ी कम है।
(b) राशि $\frac{4 \pi \varepsilon_{0}(h / 2 \pi)^{2}}{m e^{2}}$ की विमा, लंबाई की विमा है। इसका मान $0.53 \times 10^{-10} \mathrm{~m}$ है जो परमाण्वीय साइज़ों की कोटि का है। (ध्यान दीजिए कि विमीय तर्क वास्तव में यह नहीं बता सकते कि हमें सही साइज़ प्राप्त करने के लिए h के स्थान पर 4π और $h / 2 \pi$ प्रतिस्थापित करना चाहिए।
12.15 बोर मॉडल में, $m v r=n \hbar$ और $\frac{m v^{2}}{r}=\frac{Z e^{2}}{4 \pi \varepsilon_{0} r^{2}}$

अत: $T=\frac{1}{2} m v^{2}=\frac{Z e^{2}}{8 \pi \varepsilon_{0} r} ; r=\frac{4 \pi \varepsilon_{0} h^{2}}{Z e^{2} m} n^{2}$
इन संबंधों पर स्थितिज ऊर्जा के लिए शून्य के चयन का कोई प्रभाव नहीं है। अब स्थितिज ऊर्जा के शून्य स्तर को अनंत पर चयन करने पर
$V=-\left(Z e^{2} / 4 \pi \varepsilon_{0} r\right)$

उत्तर

(a) E का उद्धृत मान $=-3.4 \mathrm{eV}$ अनंत पर स्थितिज ऊर्जा शून्य स्तर के प्रथागत चयन पर आधारित है। $E=-T$ प्रयोग करने पर, इलेक्ट्रॉन की इस अवस्था में गतिज ऊर्जा +3.4 eV है।
(b) $V=-2 T$ के प्रयोग से, इलेक्ट्रॉन की स्थितिज ऊर्जा $=6.8 \mathrm{eV}$ प्राप्त होती है।
(c) यदि स्थितिज ऊर्जा के शून्य स्तर का भिन्न तरीके से चयन किया जाता है तो गतिज ऊर्जा अपरिवर्तित रहती है। गतिज ऊर्जा का मान +3.4 eV , स्थितिज ऊर्जा के शून्य स्तर के चयन पर निर्भर नहीं करता है। यदि स्थितिज ऊर्जा का शून्य स्तर भिन्न ढंग से चयनित किया जाता है तो इलेक्ट्रॉन की स्थितिज ऊर्जा एवं कुल ऊर्जा अवस्था परिवर्तित हो जाएगी।
12.16 ग्रहीय गति से संबद्ध कोणीय संवेग h के सापेक्ष अद्वितीय रूप से बड़ा है। उदाहरणार्थ, अपनी कक्षीय गति में पृथ्वी का कोणीय संवेग $10^{70} \mathrm{~h}$ कोटि का है। बोर के क्वांटमीकरण अभिगृहीत के पदों में, यह n के बहुत बड़े (10^{70} की कोटि का) मान के संगत है। n के इतने बड़े मान के लिए बोर मॉडल के क्वांटित स्तरों के उत्तरोत्तर ऊर्जाओं और कोणीय संवेगों के अंतर व्यावहारिक उद्देश्यों के संतत स्तरों की क्रमशः ऊर्जाओं और कोणीय संवेगों की तुलना में बहुत कम हैं।
12.17 बोर मॉडल के सूत्रों में m_{e} को m_{μ} से प्रतिस्थापित करने की आवश्यकता है। अतः अन्य पदों को नियत रखते हुए हम पाते हैं कि $r \alpha(1 / m)$ और $E \alpha m$

अत: $r_{\mu}=\frac{r_{e} m_{e}}{m_{\mu}}=\frac{0.53 \times 10^{-13}}{207}=2.56 \times 10^{-1.3} \mathrm{~m}$
$E_{m}=\frac{E_{c} m_{\mu}}{m_{e}}=-(13.6 \times 207) \mathrm{eV} \cong-2.8 \mathrm{keV}$

अध्याय 13

13.1 (a) 6.941 u (b) $19.9 \%, 80.1 \%$
13.220 .18 u
13.3104 .7 MeV
$13.48 .79 \mathrm{MeV}, 7.84 \mathrm{MeV}$
$13.51 .584 \times 10^{25} \mathrm{MeV}$ अथवा $2.535 \times 10^{12} \mathrm{~J}$
13.6 i) ${ }_{88}^{226} \mathrm{Ra} \rightarrow{ }_{86}^{222} \mathrm{Rn}+{ }_{2}^{4} \mathrm{He}$
ii) ${ }_{94}^{242} \mathrm{Pu} \rightarrow{ }_{92}^{238} \mathrm{U}+{ }_{2}^{4} \mathrm{He}$
iii) ${ }_{15}^{32} \mathrm{P} \rightarrow{ }_{16}^{32} \mathrm{~S}+\mathrm{e}^{-}+\bar{v}$
iv) ${ }_{83}^{210} \mathrm{~B} \rightarrow{ }_{84}^{210} \mathrm{Po}+\mathrm{e}^{-}+\bar{v}$
v) ${ }_{6}^{11} \mathrm{C} \rightarrow{ }_{5}^{11} \mathrm{~B}+\mathrm{e}^{+}+v$
vi) ${ }_{43}^{97} \mathrm{Tc} \rightarrow{ }_{42}^{97} \mathrm{Mo}+\mathrm{e}^{+}+v$
vii) ${ }_{54}^{120} \mathrm{Xe}+\mathrm{e}^{+} \rightarrow{ }_{53}^{120} \mathrm{I}+v$
$13.7 \begin{array}{ll}\text { (a) } 5 \mathrm{~T} \text { वर्ष } & \text { (b) } 6.65 \mathrm{~T} \text { वर्ष }\end{array}$
13.84224 वर्ष
$13.97 .126 \times 10^{-6} \mathrm{~g}$
$13.107 .877 \times 10^{10} \mathrm{~Bq}$ अथवा 2.13 Ci
13.111 .23
13.12 (a) $Q=4.93 \mathrm{MeV}, E_{\alpha}=4.85 \mathrm{MeV} \quad$ (b) $Q=6.41 \mathrm{MeV}, E_{\alpha}=6.29 \mathrm{MeV}$

भौतिकी

13.13 ${ }_{6}^{11} \mathrm{C} \rightarrow{ }_{6}^{11} \mathrm{~B}+\mathrm{e}^{+}+v+G$

$$
Q=\left[m_{N}\left({ }_{6}^{11} \mathrm{C}\right)-m_{N}\left({ }_{6}^{11} \mathrm{~B}\right)-m_{e}\right] c^{2},
$$

यहाँ इंगित द्रव्यमान परमाणुओं के न होकर नाभिकों के हैं। यदि परमाण्वीय द्रव्यमानों का उपयोग करने के लिए हमें ${ }^{11} \mathrm{C}$ के लिए $6 m_{e}$ तथा ${ }^{11} \mathrm{~B}$ के लिए $5 m_{e}$ द्रव्यमानों का और योग करना होगा। अत:
$Q=\left[m\left({ }_{6}^{11} \mathrm{C}\right)-m\left({ }_{6}^{11} \mathrm{~B}\right)-2 m_{e}\right] c^{2}$
दिए गए द्रव्यमानों के उपयोग से $Q=0.961 \mathrm{MeV}$
$Q=E_{d} \mid E_{c}+E_{v}$
विघटनज नाभिक e^{+}तथा v की तुलना में अधिक भारी है, अत: विघटनज नाभिक की ऊर्जा नगण्य ($E_{d} \approx 0$) होती है। यदि न्यूट्रिनों की गतिज ऊर्जा (E_{v}) न्यूनतम (अर्थात शून्य) हो तो पॉजीट्रान की ऊर्जा अधिकतग होगी, जो व्यावहारिक रूप रो Q के बराबर होगी अर्थात E_{o} का अधिकतम मान Q होगा।
$13.14{ }_{10}^{23} \mathrm{Ne} \rightarrow{ }_{11}^{23} \mathrm{Na}+\mathrm{e}^{-}+\bar{v}+Q ; Q=\left[m_{N}\left({ }_{10}^{23} \mathrm{Ne}\right)-m_{N}\left({ }_{11}^{23} \mathrm{Na}\right)-m_{e}\right] c^{2}$, अभ्यास 13.13 के समान ही, यहाँ प्रयुक्त द्रव्यमान नाभिकों के लिए है, परमाणुओं के नहों। परमाण्वीय द्रव्यमानों के मान प्रयोग करने पर $Q=\left[m\left({ }_{10}^{23} \mathrm{Ne}\right)-m\left({ }_{11}^{(23} \mathrm{Na}\right)\right] c^{2}: Q=4.37 \mathrm{MeV}$ अभ्यास 13.13 के समान ही इलेक्ट्रॉन की अधिकतम गतिज ऊर्जा $Q=4.37 \mathrm{MeV}$ ।
13.15 (i) $Q=-4.03 \mathrm{MeV}$; ऊष्माशोषी
(ii) $Q=4.62 \mathrm{MeV}$; ऊष्माउन्मोची
13.16 $Q=m\left({ }_{26}^{56} \mathrm{Fe}\right)-2 m\left({ }_{13}^{28} \mathrm{Al}\right)=26.90 \mathrm{MeV}$; असंभव
$13.174 .536 \times 10^{26} \mathrm{MeV}$
$13.18{ }_{92}^{235} \mathrm{U}$ की प्रति ग्राम उत्पादित ऊर्जा $=\frac{6 \times 10^{23} \times 200 \times 1.6 \times 10^{-13}}{235} \mathrm{Jg} \mathrm{g}^{-1}$ 5 वर्ष के समय में 80% समय के लिए उपयोग किए जाने पर रिएक्टर में व्ययित ${ }_{92}^{235} \mathrm{U}$ की मात्रा

$$
=\frac{5 \times 0.8 \times 3.154 \times 10^{16} \times 235}{1.2 \times 1.6 \times 10^{13}} \mathrm{~g}=1544 \mathrm{~kg}
$$

${ }_{92}^{235} \mathrm{U}$ की प्रारंभिक मात्रा $=3088 \mathrm{~kg}$
13.19 लगभग $4.9 \times 10^{4} \mathrm{y}$
13.20 360 KeV
13.22 प्रतियोगी प्रक्रमों पर विचार कीजिए :
${ }_{Z}^{A} \mathrm{X} \rightarrow{ }_{z-1}^{A} \mathrm{Y}+\mathrm{e}^{+}+v_{e}+\Theta_{1}$ (पाजीट्रॉन परिग्रहण)
$e^{-}+{ }_{Z}^{A} \mathrm{X} \rightarrow{ }_{Z-1}^{A} \mathrm{Y}+v_{e}+Q_{2}$ (इलेक्ट्रॉन परिग्रहण)

$$
\begin{aligned}
\Theta_{1} & =\left[m_{N}\left({ }_{Z}^{A} \mathrm{X}\right)-m_{N}\left({ }_{Z-1}^{A} \mathrm{Y}\right)-m_{e}\right] c^{2} \\
& =\left[m_{N}\left({ }_{Z}^{A} \mathrm{X}\right)-Z m_{e}-m\left({ }_{z-1}^{A} \mathrm{Y}\right)-(Z-1) m_{e}-m_{e}\right] c^{2} \\
& =\left[m\left({ }_{Z}^{A} \mathrm{X}\right)-m\left({ }_{Z-1}^{A} \mathrm{Y}\right)-2 m_{e}\right] c^{2} \\
Q_{2} & =\left[m_{N}\left({ }_{Z}^{A} \mathrm{X}\right)+m_{e}-m_{N}\left({ }_{Z-1}^{A} \mathrm{Y}\right)\right] c^{2} \quad=\left[m\left({ }_{Z}^{A} \mathrm{X}\right)-m\left({ }_{Z-1}^{A} \mathrm{Y}\right)\right] c^{2}
\end{aligned}
$$

अतः $Q_{1}>0$ तथा $Q_{2}>0$ परंतु $Q_{2}>0$ का अर्थ $Q_{1}>0$ आवश्यक नहीं है।
$13.23{ }_{12}^{25} \mathrm{Mg}: 9.3 \%,{ }_{12}^{26} \mathrm{Mg}: 11.7 \%$
13.24 एक नाभिक ${ }_{Z}^{A} \mathrm{X}$ की न्यूट्रॉन पृथक्करण ऊर्जा S_{n} के लिए समीकरण है,

$$
S_{n}=\left[m_{\mathrm{N}}\left({ }_{\mathrm{Z}}^{\mathrm{A}-1} \mathrm{X}\right)+m_{\mathrm{n}}-m_{\mathrm{N}}\left({ }_{\mathrm{Z}}^{\mathrm{A}} \mathrm{X}\right)\right] c^{2}
$$

दिए हुए आँकड़ों एवं $c^{2}=931.5 \mathrm{MeV} / \mathrm{u}$ का उपयोग करने पर हम पाते हैं
$S_{n}\left({ }_{21}^{41} \mathrm{Ca}\right)=8.36 \mathrm{MeV}$ एवं $\mathrm{S}_{n}\left({ }_{13}^{27} \mathrm{Al}\right)=13.06 \mathrm{MeV}$
13.25209 d
$13.26{ }_{6}^{14} \mathrm{C}$ के उत्सर्जन के लिए

$$
\begin{aligned}
Q & =\left[m_{N}\left({ }_{88}^{223} \mathrm{Ra}\right)-m_{N}\left({ }_{82}^{209} \mathrm{~Pb}\right)-m_{N}\left({ }_{6}^{14} \mathrm{C}\right)\right] c^{2} \\
& =\left[m\left({ }_{88}^{223} \mathrm{Ra}\right)-m\left({ }_{82}^{209} \mathrm{~Pb}\right)-m\left({ }_{6}^{14} \mathrm{C}\right)\right] c^{2}=31.85 \mathrm{MeV}
\end{aligned}
$$

${ }_{2}^{4} \mathrm{He}$ के उत्सर्जन के लिए, $Q=\left[m\left({ }_{88}^{223} \mathrm{Ra}\right)-m\left({ }_{86}^{219} \mathrm{Rn}\right)-m\left({ }_{2}^{4} \mathrm{He}\right)\right] c^{2}=5.98 \mathrm{MeV}$
13.27 $Q=\left[m\left({ }_{92}^{238} \mathrm{U}\right)+m_{\mathrm{n}}-m\left({ }_{58}^{140} \mathrm{Ce}\right)-m\left({ }_{44}^{99} \mathrm{Ru}\right)\right] c^{2}=231.1 \mathrm{MeV}$
13.28 (a) $Q=\left[m\left({ }_{1}^{2} \mathrm{H}\right)+m\left({ }_{1}^{3} \mathrm{H}\right)-m\left({ }_{2}^{4} \mathrm{He}\right)-m_{\mathrm{n}}\right] c^{2}=17.59 \mathrm{MeV}$
(b) कूलॉम प्रतिकर्षण के निरसन के लिए आवश्यक गतिज ऊर्जा $=480.0 \mathrm{KeV}$

$$
\begin{aligned}
& 480.0 \mathrm{keV}=7.68 \times 10^{-14} \mathrm{~J}=3 \mathrm{kT} \\
\therefore T & =\frac{7.68 \times 10^{-14}}{3 \times 1.381 \times 10^{-23}} \quad\left(\text { चूँकि } k=1.381 \times 10^{-23} \cdot \mathrm{~J} \mathrm{~K}^{-1}\right) \\
= & 1.85 \times 10^{9} \mathrm{~K} \text { (आवश्यक ताप) }
\end{aligned}
$$

$13.29 K_{\max }\left(\beta_{1}^{-}\right)=0.284 \mathrm{MeV}, K_{\max }\left(\beta_{2}^{-}\right)=0.960 \mathrm{MeV}$
$v\left(\gamma_{1}\right)=2.627 \times 10^{20} \mathrm{~Hz}, v\left(\gamma_{2}\right)=0.995 \times 10^{20} \mathrm{~Hz}, v\left(\gamma_{3}\right)=1.632 \times 10^{20} \mathrm{~Hz}$
13.30 (a) नोट करें कि सूर्य के अभ्यंतर में चार ${ }_{1}^{1} \mathrm{H}$ नाभिक मिलकर (संलयन) एक ${ }_{2}^{4} \mathrm{He}$ नाभिक बनाते हैं तथा प्रति संलयन लगभग 26 MeV की ऊर्जा विमुक्त होती है।
1 kg हाइड्रोजन के संलयन में विमुक्त ऊर्जा $=39 \times 10^{26} \mathrm{MeV}$
(b) $1 \mathrm{~kg}{ }_{9}^{235} \mathrm{U}$ के विखंडन में विमुक्त ऊर्जा $=5.1 \times 10^{26} \mathrm{MeV}$

1 kg हाइड्रोजन के संलयन में विमुक्त ऊर्जा, 1 kg यूरेनियम के विखंडन में विमुक्त ऊर्जा की लगभग 8 गुनी है।
$13.313 .076 \times 10^{4} \mathrm{~kg}$

भौतिकी

अध्याय 14
14.1 (c)
14.2 (d)
14.3 (c)
14.4 (c)
14.5 (c)
14.6 (b), (c)
14.7 (c)
14.8 अर्धतरंग के लिए 50 Hz ; पूर्ण तरंग के लिए 100 Hz
$14.9 v_{\mathrm{i}}=0.01 \mathrm{~V} ; I_{\mathrm{B}}=10 \mu \mathrm{~A}$
14.10 नहीं ($h v$ का मान E_{g} से अधिक ही है)
$14.11 n_{e} \approx 4.95 \times 10^{22} ; n_{h}=4.75 \times 10^{9} ; \mathrm{n}$-प्रकार का, चूँकि $n_{e} \gg n_{h}$
संकेत : आवेश उदासीनता के लिए $N_{\mathrm{D}}-N_{\mathrm{A}}=n_{e}-n_{h} ; n_{e} \cdot n_{h}=n_{i}^{2}$
इन समीकरणों को हल करने पर, $n_{\epsilon}=\frac{1}{2}\left[\left(N_{D}-N_{A}\right)+\sqrt{\left(N_{D}-N_{A}\right)^{2}+4 n_{i}^{2}}\right]$
14.121×10^{5}
14.13 (a) 0.0629 A , (b) 2.97 A , (c) 0.336Ω
(d) दोनों वोल्टताओं के लिए धारा I का मान लगभग I_{0} के समान होगा, इससे ज्ञात होता है कि पश्चद्वशिक बायस में गतिक प्रतिरोध का मान अनंत होगा!
14.15 NOT ; A Y

01
10
14.16 (a) AND (b) OR
14.17 OR गेट
14.18 (a) NOT, (b) AND
14.192 V

अध्याय 15

15.1 (b) 10 kHz का विकिरण नहीं होगा (ऐंटेना साइज़), 1 GHz एवं 1000 GHz पार चले जाएँगे।
15.2 (d) सारणी 15.2 देखिए।
15.3 (c) दशमलव प्रणाली संतत मानों का समुच्चय है।
15.4 नहीं। जिस क्षेत्र में सेवाएँ पहुँचेंगी उसका क्षेत्रफल है $A=p d_{T}^{2}=$

$$
\frac{22}{7} \times 162 \times 6.4 \times 10^{6}=3258 \mathrm{~km}^{2}
$$

$15.5 \quad \mu=0.75=\frac{A_{m}}{A_{c}}$

$$
A_{m}=0.75 \times 12=9 \mathrm{~V}
$$

15.6 चूँकि AM तरंग $\left(A_{c}+A_{m} \sin \omega_{m} t\right) \cos \omega_{c} t$, द्वारा व्यक्त होती है, इसका अधिकतम

आयाम $M_{1}=A_{c}+A_{m}$ होगा जबकि न्यूनतम आयाम $M_{2}=A_{c}-A_{m}$ होगा। अतः माड़ुलन सूचकांक है,
$m=\frac{A_{m}}{A_{c}}=\frac{M_{1}-M_{2}}{M_{1}+M_{2}}=\frac{8}{12}=\frac{2}{3}$
यदि $M_{2}=0$ तो स्पष्ट रूप से ही $m=1$ चाहे M_{1} का मान कुछ भी हो।
15.7 सरलता की दृष्टि से माना कि अभिग्राही सिग्नल
$A_{1} \cos \left(\omega_{c}+\omega_{m}\right) t$ है।
वाहक सिग्नल $A_{c} \cos \omega_{c} t$, अभिग्राही स्टेशन पर उपलब्ध है।
दोनों सिग्नलों को गुणा करने पर हमें प्राप्त होता है,
$A_{1} A_{c} \cos \left(\omega_{c}+\omega_{m}\right) t \cos \omega_{c} t$
$=\frac{A_{1} A_{c}}{2}\left[\cos \left(2 \omega_{c}+\omega_{m}\right) t+\cos \omega_{m} t\right]$
यदि इस सिग्नल को निम्न पारक फिल्टर से गुजारा जाए तो हम माडुलित सिग्नल
$\frac{A_{1} A_{c}}{2} \cos \omega_{m} t$ प्राप्त कर लेते हैं।
15.8 (a)

(b) $\mu=0.5$

[^0]: * BCD में किसी अंक को प्राय: चार द्विआधारी (0 या 1) बिटों द्वारा निरूपित किया जाता है। उदाहरण के लिए दशमलव प्रणाली में अंकों $0,1,2,3,4$ को 0000, 0001, 0010, 0011 तथा 0100. 1000 के द्वारा निरूपित करते हैं। 1000 आठ को निरूपित करता है।

[^1]: * मिराज की परिघटना से तुलना करें।

