अध्याय 14

अर्धचालक इलेक्ट्रॉनिकीपदार्थ, युक्तियाँ तथा सरल परिपथ

14.1 भूमिका

ऐसी युक्तियाँ जिनमें इलेक्ट्रॉनों का नियंत्रित प्रवाह प्राप्त किया जा सके, सभी इलेक्ट्रॉंनिक परिपथों की मूलभूत रचना खंड होती हैं। सन् 1948 में ट्रांजिस्टर की खोज से पहले ऐसी युक्तियाँ अधिकांशतः निर्वांत नलिकाएँ (या वाल्व) थीं, जैसे निर्वांत डायोड जिसमें दो इलेक्ट्रोड; एनोड (प्लेट) तथा कैथोड होते हैं; ट्रायोड जिसमें तीन इलेक्ट्रोड-कैथोड, प्लेट तथा ग्रिड होते हैं; टेट्रोड तथा पेंटोड (क्रमशः 4 तथा 5 इलेक्ट्रोडों के साथ)। किसी निर्वांत नलिका में इलेक्ट्रॉनों की आपूर्ति एक तप्त कैथोड द्वारा की जाती है तथा इसके विभिन्न इलेक्ट्रोडों के बीच वोल्टता को परिवर्तित करके निर्वात में इन इलेक्ट्रॉनों का नियंत्रित प्रवाह प्राप्त किया जाता है। अंतरा-इलेक्ट्रोडी स्थान (inter-electrode space) में इलेक्ट्रॉनों के प्रवाह के लिए निर्वात आवश्यक होता है, अन्यथा गतिमान इलेक्ट्रॉन अपने पथ में वायु के अणुओं से टकराकर अपनी ऊर्जा खो सकते हैं। इन युक्तियों में इलेक्ट्रॉन केवल कैथोड से एनोड की ओर प्रवाहित कर सकते हैं (अर्थात इलेक्ट्रॉन केवल एक ही दिशा में प्रवाहित हो सकते हैं)। यही कारण है कि ऐसी युक्तियों को साधारणतया वाल्व कहते हैं। निर्वात नलिकाओं से बनी युक्तियाँ आकार में बड़ी होती हैं, अधिक शक्ति का उपभोग करती हैं तथा प्रचालन में सामान्यतः उच्च वोल्टता ($\sim 100 \mathrm{~V}$) की आवश्यकता होती है। इसके साथ ही इनका जीवनकाल अपेक्षाकृत कम तथा विश्वसनीयता भी कम होती है। आधुनिक ठोस अवस्था अर्धचालक इलेक्ट्रॉनिकी (Solid State semi-conductor electronics) का प्रादुर्भाव सन् 1930 में इस आभास से किया गया कि कुछ ठोस अवस्था अर्धंचालक तथा उनकी संधियों में यह संभावना होती है कि उनमें आवेश वाहकों की संख्या तथा उनके प्रवाह की दिशा को नियंत्रित किया जा सकता है। प्रकाश, ऊष्मा तथा अल्प अनुप्रयुक्त वोल्टता जैसे उत्तेजक किसी अर्धचालक

में गतिमान आवेशों की संख्या परिवर्तित कर सकते हैं। ध्यान देने योग्य बात यह है कि अर्धचालक युक्तियों में आवेश वाहकों की आपूर्ति तथा प्रवाह स्वयं ठोस के भीतर ही होता है, जबकि पहले प्रयोग होने वाली निर्वात नलिकाओं/वाल्वों में गतिमान इलेक्ट्रॉनों को तप्त कैथोड से प्राप्त किया जाता था तथा निर्वांतित स्थानों अथवा निर्वांत में प्रवाहित कराया जाता था। अर्धंचालक युक्तियों में बाहरी तापन अथवा अधिक निर्वातित स्थान की आवश्यकता नहीं होती है। यह आकार में छोटी होती हैं, कम शक्ति का उपभोग करती हैं, कम वोल्टता पर काम करती हैं, इनका जीवन लंबा होता है और इनकी विश्वसनीयता अच्छी होती है। आधुनिक युक्तियों में तो निर्वातित नलिकाओं के सिद्धांत पर कार्य करने वाली कैथोड किरण ट्यूबों (CRT) जिनका उपयोग टेलीविज़न सेटों तथा कंप्यूटर मॉनीटरों में किया जाता है, ठोसावस्था इलेक्ट्रॉनिकी (Solid State electrons) परिपथों के साथ संलग्न लिक्वड क्रिस्टल डिसप्ले (LCD, द्रव क्रिस्टल प्रदर्श) मॉनीटरों द्वारा प्रतिस्थापित की जा रही हैं। अर्धचालक युक्तियों को औपचारिक रूप से समझे जाने से भी बहुत पहले प्रकृति में पाए जाने वाले गैलेना (लैड सल्फाइड PbS) के एक क्रिस्टल जिसके साथ धातु का एक संपर्क बिंदु संयोजित था, का उपयोग रेडियो तरंगों के संसूचक के रूप में किया जा चुका था।

निम्नलिखित अनुभागों में हम अर्धचालक भौतिकी की कुछ मूल अवधारणाओं से परिचय कराएँगे तथा संधि डायोड (Junction diode) (2 -इलेक्ट्रोडों की युक्ति) तथा द्विध्रुवीय संधि (Bipolar junction) ट्रांजिस्टर (3 -इलेक्ट्रोडों की युक्ति) जैसी कुछ अर्धचालक युक्तियों की चर्चा करेंगे। इन युक्तियों के अनुप्रयोगों को दर्शाने वाले कुछ परिपथों का वर्णन भी करेंगे।

14.2 धातुओं, चालकों तथा अर्धचालकों का वर्गीकरण

चालकता के आधार पर

विद्युत चालकता () अथवा प्रतिरोधकता ($\rho=1 / \sigma$) के सापेक्ष मान के आधार पर ठोस पदार्थों का निम्न प्रकार से वर्गीकरण किया जाता है :
(i) धातु : इनकी प्रतिरोधकता बहुत कम (अथवा चालकता बहुत अधिक) होती है।

$$
\begin{aligned}
& \rho \sim 10^{-2}-10^{-8} \Omega \mathrm{~m} \\
& \sigma \sim 10^{2}-10^{8} \mathrm{Sm}^{-1}
\end{aligned}
$$

(ii) अर्धचालक : इनकी प्रतिरोधकता या चालकता धातुओं तथा विद्युतरोधी पदार्थों के बीच की होती है।

$$
\begin{aligned}
& \rho \sim 10^{-5}-10^{6} \Omega \mathrm{~m} \\
& \sigma \sim 10^{5}-10^{-6} \mathrm{Sm}^{-1}
\end{aligned}
$$

(iii) विद्युतरोधी : इनकी प्रतिरोधकता बहुत अधिक (अथवा चालकता बहुत कम) होती है।

$$
\rho \sim 10^{11}-10^{19} \Omega \mathrm{~m}
$$

$$
\sigma \sim 10^{-11}-10^{-19} \mathrm{Sm}^{-1}
$$

ऊपर दिए गए, ρ तथा σ के मान केवल कोटि मान के सूचक हैं और दिए गए परिसर के बाहर भी जा सकते हैं। धातु, विद्युतरोधी पदार्थ तथा अर्धचालकों के बीच भेद करने के लिए प्रतिरोधकता का सापेक्ष मान ही मात्र एक मापदंड नहीं है। कुछ दूसरे अंतर भी हैं, जो जैसे-जैसे हम इस अध्याय में आगे बढ़ेंगे, स्पष्ट होते जाएँगे।

इस अध्याय में हमारी रुचि अर्धचालकों के अध्ययन में है जो कई प्रकार के हो सकते हैं।
(i) तात्विक अर्धचालक (Elemental semiconductors) - Si और Ge
(ii) यौगिक अर्धंचालक - उदाहरण हैं :

- अकार्बनिक - CdS, GaAs, CdSe, InP, आदि।
- कार्बनिक - एंश्रासीन, मादित (Doped) थैलोस्यानीस, आदि।
- कार्बनिक बहुलक (Organic polymers) - पॉलीपाइरोल, पॉलीऐनिलीन, पॉलीथायोफ़ीन

आजकल उपलब्ध अधिकांश अर्धचालक युक्तियाँ तात्विक अर्धचालक Si या Ge और यौगिक अकार्बनिक अर्धचालकों पर ही आधारित हैं। परंतु सन् 1990 के बाद कार्बनिक अर्धचालक और अर्धचालकी बहुलकों का उपयोग करके कुछ अर्धचालकी युक्तियों का विकास हुआ जिससे भविष्य के लिए बहुलक इलेक्ट्रॉनिकी तथा आण्विक इलेक्ट्रॉनिकी की प्रौद्योगिकी के प्रादुर्भाव के संकेत मिलते हैं। इस अध्याय में हम केवल अकार्बनिक अर्धचालक, विशेषकर तात्विक अर्धचालको Si तथा Ge के अध्ययन तक ही सीमित रहेंगे। तात्विक अर्धचालकों की विवेचना के लिए यहाँ जिन सामान्य अवधारणाओं को प्रस्तावित किया गया है वे किसी-न-किसी रूप में अधिकांश यौगिक अर्धचालकों पर लागू होती हैं।

ऊर्जा बैंड के आधार पर

बोर परमाणु मॉडल के अनुसार किसी वियुक्त परमाणु में उसके किसी इलेक्ट्रॉन की ऊर्जा उस इलेक्ट्रॉन की परिभ्रमण कक्षा पर निर्भर करती है। परंतु जब परमाणु एक-दूसरे के निकट आकर कोई ठोस बना लेते हैं तो वे एक-दूसरे के अत्यधिक निकट हो जाते हैं। अतः निकटस्थ परमाणुओं के इलक्ट्रॉनों की बाह्य कक्षाएँ अत्यधिक पास-पास आ जाती हैं और यहाँ तक कि एक-दूसरे को ढक लेती हैं। इसके परिणामस्वरूप किसी ठोस में इलेक्ट्रॉन की गति की प्रकृति किसी वियुक्त परमाणु के इलेक्ट्रॉन की गति से अत्यधिक भिन्न हो जाती है।

किसी क्रिस्टल के भीतर प्रत्येक इलेक्ट्रॉन की अपनी अद्वितीय स्थिति होती है तथा किन्हीं दो इलेक्ट्रॉनों के चारों ओर के आवेशों का पैटर्न यथार्थ रूप में एक जैसा नहीं होता। यही कारण है कि प्रत्येक इलेक्ट्रॉन के ऊर्जा स्तर भिन्न होते हैं। ये भिन्न ऊर्जा स्तर जिनमें ऊर्जा का संतत परिवर्तन होता रहता है ऊर्जा बैंडों का निर्माण करते हैं। वह ऊर्जा स्तर जिसमें संयोजकता इलेक्ट्रॉनों के ऊर्जा स्तर समाविष्ट हैं, संयोजकता बैंड (Valance band) कहलाता है। संयोजकता बैंड के ऊपर स्थित बैंड को चालन बैंड (Conduction band) कहते हैं। बिना किसी अतिरिक्त ऊर्जा के, सभी संयोजकता इलेक्ट्रॉन संयोजकता बैंड में रहते हैं। यदि चालन बैंड में निम्नतम स्तर चालन बैंड के उच्चतम स्तर से भी नीचे है तो संयोजकता बैंड के इलेक्ट्रॉन आसानी से चालन बैंड में गमन कर सकते हैं। सामान्यतः चालन बैंड रिक्त होता है। परंतु जब यह बैंड संयोजकता बैंड को अतिव्यापित (ढकता) करता है तो इलेक्ट्रॉन स्वतंत्रतापूर्वक इसके भीतर जा सकते हैं। ऐसा धात्विक चालकों में होता है।

यदि चालन बैंड तथा संयोजकता बैंड के बीच कोई रिक्ति (अंतराल) है, तो संयोजकता बैंड के सभी इलेक्ट्रॉन परिबद्ध होते हैं तथा चालन बैंड में कोई मुक्त इलेक्ट्रॉन उपलब्ध नहीं होता। यह पदार्थ को विद्युतरोधी बना देता है। परंतु संयोजकता बैंड के कुछ इलेक्ट्रॉन बाह्य ऊर्जा प्राप्त करके संयोजकता बैंड तथा चालन बैंड के बीच की रिक्ति को पार कर सकते हैं। तब ये इलेक्ट्रॉन चालन बैंड में पहुँच जाते हैं तथा संयोजकता बैंड में रिक्त ऊर्जा स्तर उत्पन्न कर देते हैं जिनमें अन्य इलेक्ट्रॉन जा सकते हैं। इस प्रकार यह प्रक्रिया चालन बैंड में इलेक्ट्रॉनों तथा संयोजकता बैंड में रिक्तिकाएँ होने के कारण चालन की संभावना उत्पन्न करती है।

आइए, अब हम यह विचार करें कि N परमाणुओं वाले Si अथवा Ge क्रिस्टल के प्रकरण में क्या होता है। Si में बाह्यतम कक्षा, तीसरी कक्षा $(n=3)$ होती है, जबकि Ge में बाह्यतम कक्षा चौथी कक्षा $(n=4)$ होती है। इनकी बाह्यतम कक्षा में 4 इलेक्ट्रॉन ($2 s$ और $2 p$ इलेक्ट्रॉन) होते हैं। अतः इस क्रिस्टल में बाह्य इलेक्ट्रॉनों की कुल संख्या $4 N$ हुई। किसी बाह्यतम कक्षा में अधिकतम इलेक्ट्रॉनों की संख्या $8(2 s+6 p$ इलेक्ट्रॉन $)$ होती है। अत: $4 N$ संयोजकता इलेक्ट्रॉनों के लिए उपलब्ध ऊर्जा स्तर $8 N$ है। ये $8 N$ विविक्त ऊर्जा स्तर या तो कोई संतत बैंड बना सकते हैं अथवा इनका भिन्न बैंडों में समूहन हो सकता है, जो क्रिस्टल में परमाणुओं के बीच दूरियों पर निर्भर करता है ['ठोसों का बैंड सिद्धांत' - बॉक्स देखिए]।

Si तथा Ge के क्रिस्टल जालकों में परमाणुओं के बीच की दूरियों पर, इन $8 N$ स्तरों का ऊर्जा बैंड दो भागों में टूट जाता है, जिनके बीच ऊर्जा अंतराल E_{g} (चित्र 14.1) का पृथकन होता है।

- मीक्षि

तापक्रम के परम शून्य पर $4 N$ संयोजकता इलेक्ट्रॉनों से पूर्णतः घिरा निम्न बैंड संयोजकता बैंड होता है। अन्य बैंड जिनमें $4 N$ ऊर्जा स्तर होते हैं उन्हें चालन बैंड कहते हैं, तथा यह परम शून्य पर पूर्णत: रिक्त होता है।

ठोसों का बैंड सिद्धांत

मान लीजिए कि Si या Ge क्रिस्टल में N परमाणु हैं। प्रत्येक परमाणु के इलेक्ट्रॉनों की विभिन्न कक्षाओं में विविक्त ऊर्जाएँ होंगी। यदि सभी परमाणु विलगित हों, अर्थात एक-दूसरे से अधिक अंतराल पर हों, तो इलेक्ट्रॉन ऊर्जाएँ वही रहेंगी। परंतु एक क्रिस्टल में परमाणु एक-दूसरे के बहुत निकट (2 से $3 \AA$) होते हैं और इसलिए इलेक्ट्रॉन एक-दूसरे से और निकटवर्ती परमाणु क्रोडों से भी पारस्परिक क्रिया करते हैं। सबसे बाहरी कक्षा के इलेक्ट्रॉन इस अतिव्यापन (या पारस्परिक क्रिया) को सर्वाधिक अनुभव करते हैं, जबकि भीतरी कक्षा या क्रोड़ के इलेक्ट्रॉनों की ऊर्जाएँ अप्रभावित रह सकती हैं। इसलिए Si या Ge क्रिस्टल में इलेक्ट्रॉन ऊर्जाओं को समझने के लिए हमें केवल बाह्यतम कक्षा के इलेक्ट्रॉनों की ऊर्जाओं में अंतर पर विचार करने की ही आवश्यकता है। Si के लिए बाह्यतम कक्षा तीसरी कक्षा है $(n=3)$ जबकि Ge के लिए बाह्यतम कक्षा चौथी कक्षा है $(n=4)$ । इन दोनों तत्वों की बाह्यतम कक्षा में इलेक्ट्रॉनों की संख्या 4 है ($2 s$ और $2 p$ इलेक्ट्रॉन)। इसलिए क्रिस्टल में बाहरी इलेक्ट्रॉनों की संपूर्ण संख्या $4 N$ हो गई। बाह्यतम कक्षा में इलेक्ट्रॉनों की अधिकतम संभव संख्या 8 है $(2 s+6 p$ इलेक्ट्रॉन)। इसलिए $4 N$ इलेक्ट्रॉनों में से $2 N$ इलेक्ट्रॉन तो, $2 N s$-अवस्था (कक्षीय क्वांटम संख्या $l=0$) में होंगे और शेष $2 N$ इलेक्ट्रॉन प्राप्य $6 N$ प्राप्य p-अवस्था में होंगे। स्पष्टतया, कुछ p-इलेक्ट्रॉन अवस्थाएँ रिक्त होंगी जैसा चित्र के सबसे दाहिने भाग में दिखाया गया है। यह पर्याप्त रूप से पृथक्कृत या एकल परमाणुओं की स्थिति है (चित्र का क्षेत्र A)।

मान लीजिए कि यह परमाणु एक ठोस बनाने के लिए एक-दूसरे के और निकट आना आरंभ करते हैं। विभिन्न परमाणुओं के इलेक्ट्रॉनों के बीच पारस्परिक क्रिया के कारण बाह्यतम कक्षा के इन इलेक्ट्रॉनों की ऊर्जाएँ परिवर्तित हो सकती हैं (बढ़ या घट सकती हैं)। $l=1$ की $6 N$ अवस्थाएँ, जिनकी ऊर्जाएँ प्रारंभ में वियुक्त परमाणुओं के लिए सर्वसम थीं, अब फैलकर एक ऊर्जा बैंड बनाती हैं [चित्र में क्षेत्र B]। इसी प्रकार $l=0$ की $2 N$ अवस्थाएँ, जिनकी ऊर्जाएँ वियुक्त परमाणुओं के लिए सर्वसम थीं, वह भी एक अन्य ऊर्जा बैंड में टूट जाती हैं [चित्र के क्षेत्र B को सावधानीपूर्वक देखें]। यह बैंड पहले बैंड से एक ऊर्जा अंतराल द्वारा पृथक रहता है।

परमाणुओं के बीच इससे भी कम पृथकन होने पर, तथापि, एक ऐसा क्षेत्र आता है जब यह बैंड एक-दूसरे में विलय कर जाते हैं। ऊपरी परमाण्वीय ऊर्जा स्तर की सबसे निचली ऊर्जा अवस्था नीचे वाले परमाण्वीय ऊर्जा स्तर की सबसे ऊपरी अवस्था के भी नीचे चली जाती है। इस क्षेत्र में (चित्र में क्षेत्र C), कोई ऊर्जा अंतराल नहीं रहता और ऊपरी तथा निचली ऊर्जा अवस्थाएँ मिश्रित हो जाती हैं।

अंततः, यदि परमाणुओं के बीच की दूरी और कम हो जाती है, तो ऊर्जा बैंड फिर से विभक्त हो जाते हैं और एक ऊर्जा अंतराल E_{o} से पृथक हो जाते हैं (चित्र में क्षेत्र D देखें)। प्राप्य ऊर्जा अवस्थाओं की संपूर्ण संख्या $8 N$ को फिर से दो बैंडों के बीच बाँट दिया गया है (निचले और ऊपरी ऊर्जा बैंडों में से प्रत्येक में 4 N अवस्थाएँ)। यहाँ सार्थक बात यह है कि निचले बैंड में ठीक उतनी ही अवस्थाएँ $(4 \mathrm{~N})$ हैं, जितने परमाणुओं में से प्राप्य संयोजकता इलेक्ट्रॉन ($4 N$) हैं।

इसलिए यह बैंड (जो संयोजकता बैंड कहलाता है) पूर्णत: भरा हुआ है, जबकि ऊपरी बैंड पूर्णत: खाली है। ऊपरी बैंड को चालन बैंड कहते हैं।

चित्र 14.1 देखिए। इसमें चालन बैंड में निम्नतम ऊर्जा स्तर को E_{C} के रूप में तथा संयोजकता बैंड में उच्चतम ऊर्जा स्तर को E_{V} के रूप में दर्शाया गया है। E_{C} के ऊपर तथा E_{V} के नीचे इसमें एक-दूसरे के अत्यधिक निकट बहुत से ऊर्जा स्तर दर्शाए गए हैं।

संयोजकता बैंड के शीर्ष तथा चालन बैंड की तली के बीच के अंतराल को ऊर्जा बैंड अंतराल (अथवा ऊर्जा अंतराल, E_{g}) कहते हैं। यह अंतराल पदार्थ की प्रकृति पर निर्भर करता है। यह अधिक, कम अथवा शून्य हो सकता है। इन विभिन्न स्थितियों को चित्र 14.2 में दर्शाया गया है तथा नीचे इसकी विवेचना की गई है।

प्रकरण I : यह चित्र 14.2(a) में दर्शायी गई स्थिति के संदर्भ में है। यह एक धातु की स्थिति है जिसमें चालन बैंड आंशिक रूप से भरा है तथा संयोजकता बैंड आंशिक रूप से रिक्त है अथवा चालन बैंड तथा संयोजकता बैंड अतिव्याप्त हैं। जब अतिव्यापन होता है तो

चित्र 14.10 K पर किसी अर्धचालक में ऊर्जा बैंड की स्थितियाँ, ऊपरी बैंड जिसे चालन बैंड कहते हैं, में अनंततः विशाल संख्या में, अत्यधिक निकट ऊर्जा अवस्शाएँ होती हैं। निचला बैंड जिसे संयोजकता बैंड कहते हैं, में अत्यधिक निकट पूर्णत: भरी ऊर्जा अवस्थाएँ होती हैं। संयोजकता बैंड से इलेक्ट्रॉन सरलता से चालन बैंड में जा सकते हैं। यह स्थिति विद्युत चालन के लिए अत्यधिक संख्रा में इलेक्ट्रॉन उपलब्ध करा देती है। जब संगोजकता बैंड आंशिक रूप से रिक्त होता है तो इलेक्ट्रॉन इसके निम्न स्तर से उच्च स्तर तक गति करके विद्युत चालन को संभव बना देते हैं। इसीलिए इस प्रकार के पदार्थों का प्रतिरोध कम अथवा चालकता उच्च होती है।

चित्र 14.2 (a) धातुओं,
(b) विद्युतरोधी तथा (c) अर्धचालकों के ऊर्जा बैंडों के बीच अंतर।

- भौतिकी

प्रकरण II : इस प्रकरण में जैसा कि चित्र $14.2(\mathrm{~b})$ में दर्शाया गया है, इस स्थिति में बैंड अंतराल E_{g} अधिक होता है $\left(E_{g}>3 \mathrm{cV}\right)$ । चालन बैंड में कोई रलेक्ट्रॉन नहीं होते। अतः कोई विद्युत चालन संभव नहीं होता। ध्यान देने योग्य बात यह है कि ऊर्जा अंतराल इतना अधिक होता है कि किसी भी तापीय उत्तेजन से इलेक्ट्रॉनों को संयोजकता बैंड से चालन बैंड की ओर उत्तेजित नहों किया जा सकता। यह विद्युतरोधी पदार्थों का उदाहरण है।

प्रकरण III : यह स्थिति 14.2 (c) में दर्शायी गई है। इसमें एक परिमित परंतु लघु बैंड अंतराल $\left(E_{g}<3 \mathrm{eV}\right)$ होता है। लघु बैंड अंतराल होने के कारण, क्मरे के ताप पर, कुछ इलेक्ट्राॅन संयोजकता बैंड में इतनी ऊर्जा अर्जित कर लेते हैं कि ऊर्जा अंतराल को पार करके चालन बैंड में पहुँच सकते हैं। ये इलेक्ट्रॉन (यद्यपि संख्या में कम होते हैं) चालन बैंड में गति कर सकते हैं। अतः अर्धचालकों का प्रतिरोध उतना अधिक नहों होता जितना विद्युतरोधी पदार्थों का होता है।

इस अनुभाग में हमने धातुओं, चालकों तथा अर्धचालकों का व्यापक वर्गीकरण किया है। अगले अनुभाग में हम अर्धचालकों में चालन प्रक्रिया के विषय में सीखेंगे।

14.3 नैज अर्धचालक

हम Ge और Si का सबसे साधारण उदाहरण लेंगे जिनकी जालक (Lattice) रचना चित्र 14.3 में दिखाई गई है। इन रचनाओं को हीरे जैसी रचना कहते हैं। प्रत्येक परमाणु चार अन्य निकटतम परमाणुओं द्वारा घिरा होता है। हम जानते हैं कि Si और Ge में चार संयोजकता इलेक्ट्रॉन होते हैं। इसकी क्रिस्टलीय रचना में प्रत्येक Si या Ge परमाणु अपने चार संयोजकता इलेक्ट्रॉनों में से एक-एक इलेक्ट्रॉन को अपने चार निकटतम परमाणुओं के साथ सहभागिता कराने की प्रवृत्ति रखता है तथा ऐसे प्रत्येक निकटवर्ती परमाणु के एक इलेक्ट्रॉन का सहभाग भी करता है। यही सहभागी इलेक्ट्रॉन युगल सहसंयोजी बंध (Covalent bond) या संयोजकता आबंध (Valence bond) कहलाते हैं। ऐसा माना जा सकता है कि दोनों सहभाजित इलेक्ट्रॉन उन संबंधित परमाणुओं के बीच आगे-पीछे गति करते रहते हैं, जिससे वे दुढ़ता से बँधे होते हैं। चित्र 14.3 में दिखाई गई Si या Ge की संरचना का 2-विमीय निरूपण चित्र 14.4 में व्यवस्थात्मक रूप से दिखाया गया है, जो सहसंयोजी बंध पर अत्यधिक बल देता है। चित्र 14.4 एक आदर्श चित्रण है जिसमें बँध टूटे नहीं हैं (सभी बँध बने हुए हैं)। ऐसी स्थिति निम्न ताप पर ही बनती है। जैसे-जैसे ताप बढ़ता है, इन इलेक्ट्रॉनों को और ऊष्मीय ऊर्जा प्राप्त होने लगती है जिससे

C, Si या Ge

- सहसंयोजी आबंध

चित्र 14.3 कार्बन, सिलिकॉन या जरमेनियम के लिए तीन-विमीय हीरे जैसी क्रिस्टल संरचना जिसमें जालक अंतराल a क्रमशः $3.56,5.43$ और $5.66 \AA$ है। बनकर चालन में योगदान करते हैं)। ऊष्मीय ऊर्जा क्रिस्टलीय जालक के कुछ परमाणुओं को प्रभावी रूप से आयनीकृत कर देती है तथा बँध में एक रिक्त स्थान बना देती है, जैसा चित्र 14.5 (a) में दिखाया गया है। मुक्त इलेक्ट्रॉंन (आवेश $-q$) जहाँ से निकलकर आया है, वहाँ वह प्रभावी आवेश $(+q)$ का एक रिक्त स्थान छोड़ देता है। प्रभावी धनात्मक आवेश वाला यह रिंक्त स्थान एक होल (hole) कहलाता है। होल प्रभावी धनात्मक आवेश वाले एक आभासी मुक्त कण की तरह व्यवहार करता है।

नैज अर्धचालकों (Intrinsic semiconductor) में मुक्त इलेक्ट्रॉनों की संख्या n_{e} होलों की संख्या, n_{h} के बराबर होती है, अर्थात

$$
n_{e}=n_{h}=n_{i}
$$

यहाँ n_{i} को नैज वाहक सांद्रता कहते हैं।
अर्धचालकों में यह अद्वितीय गुण होता है कि उनमें इलेक्ट्रॉनों के साथ-साथ होल भी गति करते हैं। मान लें कि स्थान 1 पर एक होल है जैसा चित्र 14.5 (a) में दिखाया गया है। होलों की गति को चित्र 14.5 (b) में दिखाए ढंग से दृष्टित किया जा सकता है। नीचे वाले बाईं ओर के

अर्धचालक इलेक्ट्रॉनिकी - पदार्थ, युक्तियाँ तथा सरल परिपथ

सहसंयोजी बंध स्थान 2 से एक इलेक्ट्रॉन रिक्त स्थान 1 (होल) में कूद कर जा सकता है। इस प्रकार, ऐसी एक कूद के बाद, होल स्थान 2 पर हो गया तथा स्थान 1 में एक इलेक्ट्रॉन आ गया। इसलिए आभासी रूप में तो होल स्थान 1 से स्थान 2 पर चला गया। ध्यान दीजिए कि जो इलेक्ट्रॉन प्रारंभ में मुक्त हुआ था [चित्र 14.5 (a) देखिए], वह होल की गति की इस क्रिया में सम्मिलित नहीं है। मुक्त इलेक्ट्रॉन पूर्णतः स्वतंत्रतापूर्वक चालन इलेक्ट्रॉन के रूप में गति करता है और एक विद्युत क्षेत्र लगाने पर एक इलेक्ट्रॉन धारा $\left(I_{\mathrm{e}}\right)$ देता है। स्मरण रहे कि जब कभी क्रिस्टल में कहीं भी एक अपूरित बंध होगा तब बंधित इलेक्ट्रॉनों की वास्तविक गति होगी और इसका वर्णन करने के लिए होलों की गति केवल एक सहज उपाय है। किसी वास्तविक क्रिस्टल में विद्युत क्षेत्र की क्रिया के फलस्वरूप यह होल ऋणात्मक विभव की ओर गति करते हैं। इस प्रकार एक होल धारा I_{h} मिलती है। ऊष्मा से उत्पन्न चालन इलेक्ट्रॉनों के कारण इलेक्ट्रॉन धारा I_{e} तथा होल धारा I_{h} का योग संपूर्ण धारा I होगी -

$$
I=I_{e}+I_{h}
$$

चित्र 14.4 Si या Ge की संरचना का दो-विमीय व्यवस्थात्मक निरूपण जिसमें निम्न ताप पर सहसंयोजी आबंध दिखाए गए हैं (सभी बंध बने हुए, कोई टूटा बंध नहीं)। +4 चिह्न Si या Ge की भीतरी क्रोड़ को इंगित करता है।

यहाँ ध्यान देने योग्य बात यह है कि चालन इलेक्ट्रॉनों तथा होलों के उत्पन्न होने के साथ-साथ पुनःसंयोजन का प्रक्रम होता है जिसमें इलेक्ट्रॉन होल के साथ पुनःसंयोजित होते हैं। साम्यावस्था में आवेश वाहकों के उत्पन्न होने की दर उनके पुनःसंयोजन की दर के बराबर होती है। इस पुनःसंयोजन का कारण इलेक्ट्रॉनों का होलों से संघट्ट करना है।

चित्र 14.5 (a) मध्यम ताप पर ऊष्मीय ऊर्जा के कारण स्थान 1 पर होल तथा चालन इलेक्ट्रॉन के उत्पन्न होने का व्यवस्थापक प्रारूप। (b) किसी होल की संभावित ऊष्मीय गति का सरलीकृत निरूपण। नीचे वाले बाएँ हाथ के सहसंयोजी बंध (स्थान 2) से एक इलेक्ट्रॉन प्रारंभिक होल स्थान 1 पर चला जाता है और अपने स्थान पर एक होल छोड़ता है। इस प्रकार स्थान 1 से स्थान 2 तक होल का आभासी स्थानांतरण इंगित होता है।

-1 भौतिकी

चित्र 14.6 (a) $T=0 \mathrm{~K}$ पर कोई नैज अर्धचालक विद्युतरोधी की भाँति व्यवहार करता है। (b) $T>0 \mathrm{~K}$ पर चार तापीय उत्पन्न इलेक्ट्रॉन-होल युगल भरे वृत्त (•) इलेक्ट्रॉनों को निरूपित करते हैं तथा रिक्त वृत (O) होलों को निरूपित करते हैं।

चित्र 14.6(a) में दर्शाए अनुसार $T=0 \mathrm{~K}$ पर कोई नैज अर्धचालक किसी विद्युतरोधी की भाँति व्यवहार करता है। यह तापीय ऊर्जा ही है जिसके कारण उच्च तापों $(T>0 \mathrm{~K})$ पर कुछ इलेक्ट्रॉन उत्तेजित होकर संयोजी बैंड से चालन बैंड में पहुँचते हैं। $\mathrm{T}>0 \mathrm{~K}$ पर तापीय उत्तेंजित इलेक्ट्रॉन चालन बैंड में आंशिक रूप से स्थान ग्रहण कर लेते हैं। इसीलिए किसी नैज अर्धचालक का ऊर्जा बैंड आरेख चित्र 14.6 (b) में दर्शाए अनुसार होता है। इसमें कुछ इलेक्ट्रॉन चालन बैंड में दर्शाए गए हैं। ये यहाँ पर संयोजी बैंड से आए हैं तथा समान संख्या में वहाँ होल छोड़ आए हैं।

उदाहरण 14.1 C, Si तथा Ge की जालक (Lattice) संरचना समान होती है। फिर भी क्यों C विद्युतरोधी है जबकि Si व Ge नैज अर्धचालक (intrinsic semiconductor) हैं?

हल C, Si तथा Ge के परमाणुओं के चार बंधित इलेक्ट्रॉन क्रमशः द्वितीय, तृतीय तथा चतुर्थ कक्षा में होते हैं। अत: इन परमाणुओं से एक इलेक्ट्रॉन को बाहर निकालने के लिए आवश्यक ऊर्जा (आयनिक ऊर्जा E_{g}) सबसे कम Ge के लिए, इससे अधिक Si के लिए और सबसे अधिक C के लिए होगी। इस प्रकार Ge व Si में विद्युत चालन के लिए स्वतंत्र इलेक्ट्रॉनों की संख्या सार्थक होती है जबकि C में यह नगण्य होती है।

14.4 अपद्रव्यी अर्धचालक

किसी नैज अर्धचालक की चालकता उसके ताप पर निर्भर करती है, परंतु कक्ष-ताप पर इसकी चालकता बहुत कम होती है। इसी रूप में, कोई भी महत्वपूर्ण इलेक्ट्रॉनिक युक्ति उन अर्धचालकों द्वारा विकसित नहीं की जा सकती है। अतः इनकी चालकता में सुधार करना आवश्यक होता है। यह उन अर्धचालकों में अशुद्धियों का उपयोग करके किया जाता है।

जब किसी शुद्ध अर्धंचालक में कोई उपयुक्त अशुद्धि अत्यल्प मात्रा में जैसे कुछ भाग प्रति मिलियन (ppm) में मिलाई जाती है तो उसकी चालकता में कई गुना वृद्धि हो जाती है। इस प्रकार के पदार्थों को अपव्रव्यी अर्धचालक (Extrinsic semiconductor) अथवा अशुद्धि अर्धचालक (Impurity semiconductor) कहते हैं। वांछित अर्शुंद्धि को सावधानीपूर्वक मिश्रेत करना मादन (Doping) या अपमिश्रण कहलाता है तथा अशुद्धि परमाणु अपमिश्रक (Dopants) कहलाते हैं। इस प्रकार के पदार्थ को मादित (Doped) अर्धचालक कहते हैं। अपमिश्रक ऐसा होना चाहिए जो मूल अर्धचालक पदार्थ के जालक को विकृत न करे। उसे केवल क्रिस्टल में बहुत कम मूल अर्धचालक परमाणु स्थितियों को ही घेरना चाहिए। इसे प्राप्त करने के लिए एक आवश्यक शर्त यह है कि अपमिश्रक के अणु तथा अर्धचालक पदार्थ के अणुओं का साइज़ लगभग समान हो।

चतुः संयोजक Si अथवा Ge के मादन के लिए दो प्रकार के अपमिश्रक उपयोग किए जाते हैं। (i) पंच संयोजक (संयोजकता 5); जैसे आर्सेनिक (As), ऐंटीमनी (Sb), फ़ॉस्फोरस (P), आदि।

अब हम यह विवेचना करेंगे कि अपमिश्रण द्वारा किस प्रकार अर्धचालकों में आवेश वाहकों की संख्या में परिवर्तन होता है जिसके कारण उस अर्धचालक की चालकता परिवर्तित हो जाती है। Si अथवा Ge आवर्त सारणी के चतुर्थ समूह (वर्ग) के सदस्य हैं इसीलिए हम अपमिश्रण के लिए निकट के तीसरे अथवा पाँचवें वर्ग के तत्व का चयन यह अपेक्षा करते हुए तथा सावधानी बरतते हुए करते हैं कि अपमिश्रण किए जाने वाले तत्व के परमाणु का साइज़ Si अथवा Ge के परमाणु के साइज़ के लगभग बराबर है। रोचक तथ्य यह है कि मादन के लिए उपयोग होने वाले त्रिसंयोजक तथा पंचसंयोजक तत्व अपमिश्रण के पश्चात एक-दूसरे से पूर्णतः भिन्न प्रकार के दो अर्धचालक पदार्थों का निर्माण करते हैं जिनका वर्णन नीचे दिया गया है।

(i) n-प्रकार का अर्धचालक

मान लीजिए कि हम Si या Ge (संयोजकता 4) को एक पंचसंयोजक (संयोजकता 5) तत्व से अपमिश्रित करें जैसा चित्र 14.7 में दिखाया गया है। जब +5 संयोजकता वाला तत्व Si के एक परमाणु को प्रतिस्थापित करके अपना स्थान ग्रहण करता है तो इसके इलेक्ट्रॉनों में से चार, निकटवर्ती चार सिलिकॉन परमाणुओं से बंध बनाते हैं, जबकि पाँचवाँ इलेक्ट्रॉन जनक परमाणु से दुर्बल बंध द्वारा जुड़ा रहता है। ऐसा इसलिए, है कि पाँचवें इलेक्ट्रॉन के लिए बंध में भाग लेने वाले चारों इलेक्ट्रॉन परमाणु के प्रभावी क्रोड़ के भाग हैं। इसके परिणामस्वरूप इस इलेक्ट्रॉन को मुक्त करने के लिए आवश्यक आयनन ऊर्जा बहुत कम होती है और सामान्य कक्ष ताप पर यह अर्धचालक के जालक में मुक्त गति करने के लिए मुक्त होता है। उदाहरण के लिए, इस इलेक्ट्रॉन को परमाणु से मुक्त करने के लिए जर्मेनियम में ~ 0.01 cV तथा सिलिकॉन में लगभग 0.05 eV ऊर्जा चाहिए। इसके विपरीत किसी नैज अर्धचालक में कक्ष ताप पर किसी इलेक्ट्रॉन को वर्जित बैंड से स्थानांतरण के लिए (जर्मेनियम में लगभग 0.72 eV तथा सिलिकॉन में लगभग 1.1 eV) ऊर्जां चाहिए। इस प्रकार पंचसंयोजक अपमिश्रक विद्युत चालन के लिए एक अतिरिक्त इलेक्ट्रॉन प्रदान करता है और इसीलिए इसे दाता अशुद्धि (donor impurity) कहते हैं। अपमिश्रक परमाणु द्वारा विद्युत चालन के लिए उपलब्ध कराए गए इलेक्ट्रॉन की संख्या प्रबल रूप से अपमिश्रण पर निर्भर करती है। यह आसपास के ताप पर निर्भर नहीं करती। इसके विपरीत Si परमाणु द्वारा उत्पन्न मुक्त इलेक्ट्रॉनों की संख्या (समान संख्या में होलों के साथ) में ताप के साथ बहुत कम वृद्धि होती है।

किसी अपमिश्रित अर्धचालक में चालक इलेक्ट्रॉनों की कुल संख्या n_{e} दाताओं के योगदान तथा निजी कारणों (ऊष्मा द्वारा) से उत्पन्न इलेक्ट्रॉनों के कारण तथा होलों की कुल संख्या n_{h} केवल निजी स्रोत द्वारा उत्पन्न होलों के कारण होती है। परंतु होलों के पुनःसंयोजन की दर में वृद्धि इलेक्ट्रॉॉों की संख्या में वृद्धि के कारण हो जाती है। इसके परिणामस्वरूप होलों की संख्या में और कमी हो जाती है।

इस प्रकार अप्पामेश्रण के उांचत स्तर से चालक इलेक्ट्रॉनों को संख्या में होलों को संख्या को

-1. भौतिकी

(a) ग्राही क्रोड़

(b)

चित्र 14.8 (a) चतुर्थसंयोजी Si या Ge के जालक में त्रिसंयोजी ग्राही परमाणु (In, Al, B आदि) के अपमिश्रण से बना p - प्रकार का अर्धचालक। (b) p-प्रकार के पदार्थ का साधारणतया प्रयुक्त होने वाला व्यवस्थात्मक निरूपण जो एक प्रभावी अतिरिक्त ऋणात्मक आवेश के साथ प्रतिस्थापी ग्राही परमाणु की स्थिर क्रोड़ तथा उससे संबद्ध होल को दिखाता है।

तुलना में वृद्धि की जा सकती है। अतः पंचसंयोजक अपमिश्रक के साथ अपमिश्रण होने पर किसी नैज अर्धचालक में इल्लेक्ट्रॉन बहुसंख्यक आवेश वाहक तथा होल अल्पांश आवेश वाहक बन जाते हैं। इसीलिए इस प्रकार के अर्धचालकों को n-प्रकार के अर्धचालक कहते हैं। किसी n -प्रकार के अर्धचालक के लिए

$$
\begin{equation*}
n_{e} \gg n_{h} \tag{14.3}
\end{equation*}
$$

(ii) p-प्रकार के अर्धचालक

p-प्रकार का अर्धचालक तब बनता है जब Si या Ge (चतुर्श्रसंयोजी) में ग्रुप-III की त्रिसंयोजी अशुद्धियाँ; जैसे- $\mathrm{Al}, \mathrm{B}, \mathrm{In}$ आदि अपमिश्रित की जाती हैं, जैसा चित्र 14.8 में दिखाया गया है। अपमिश्रक में Si या Ge की अपेक्षा एक बाहरी इलेक्ट्रॉन कम होता है और इसलिए यह परमाणु तीन ओर से Si परमाणुओं से बंध बना सकता है, लेकिन चौथी ओर बंध बनाने के लिए आवश्यक इलेक्ट्रॉन उपलब्ध न होने के कारण चौथा बंध बनाने में सफल नहीं हो पाता। अतः त्रिसंयोजक परमाणु तथा चौथे निकटस्थ परमाणु के बीच बंध में एक रिक्ति अथवा होल होता है जिसे चित्र 14.8 में दर्शाया गया है। क्योंकि जालक में पड़ोसी Si परमाणु होल के स्थान पर एक इलेक्ट्रॉन चाहता है, निकट के परमाणु के बाह्य कक्ष का कोई इलेक्ट्रॉन इस रिक्ति को भरने के लिए कूदान भर सकता है जिससे उसके अपने स्थान पर एक होल बन जाता है। यही होल चालन के लिए उपलब्ध रहता है। ध्यान देने योग्य बात यह है कि, त्रिसंयोजी विजातीय परमाणु पड़ोसी Si परमाणु के साथ इलेक्ट्रॉन की साझेदारी करके प्रभावतः ऋणात्मक आवेशित हो जाता है, तथा इसके सभी संयोजी बंध पूरे हो जाते हैं। इसलिए साधारण भाषा में प्राय: p -पदार्थ के अपमिश्रक परमाणु को अपने संबद्ध होल के साथ एक ॠणात्मक आवेश का क्रोड़ कहा जाता है, जैसा चित्र $14.8(\mathrm{~b})$ में दिखाया गया है। यह स्पष्ट है कि एक ग्राही परमाणु $\left(\mathrm{N}_{A}\right)$ एक होल देता है। यह होल नैज जनित होलों के अतिरिक्त है जबकि चालन इलेक्ट्रॉनों का स्रोत केवल नैज जनन ही है। इस प्रकार, ऐसे पदार्थ के लिए, होल बहुसंख्यक वाहक तथा इलेक्ट्रॉन अल्पसंख्यक वाहक हैं। इसीलिए त्रिसंयोजक अशुद्धि से अपमिश्रित नैज अर्धचालक p -प्रकार के अर्धचालक कहलाते हैं। p -प्रकार के अर्धचालकों में पुनःसंयोजन प्रक्रिया, नैज जनित इलेक्ट्रॉनों की संख्या n_{i} घट कर n_{e} हो जाती है। अत: p-ग्रकार के अर्धचालकों के लिए

$$
\begin{equation*}
n_{h} \gg n_{c} \tag{14.4}
\end{equation*}
$$

ध्यान देने योग्य बात यह है कि क्रिस्टल एक समग्र ॠणात्मक उदासीनता बनाए रखता है क्योंकि अतिरिक्त आवेश वाहकों पर आवेश की मात्रा जालक में आयनीकृत क्रोड़ों पर आवेश की मात्रा के ही समान एवं विपरीत होती है।

अपद्रव्यी अर्धचालकों में बहुसंख्यक धारा वाहकों की प्रचुरता के कारण तापन द्वारा उत्पन्न अल्पांश वाहकों के लिए बहुसंख्यक वाहकों से मिलने के अधिक अवसर होते हैं और इस प्रकार वे नष्ट हो जाते हैं। इसीलिए अपमिश्रक एक प्रकार के अधिक धारा वाहकों को मिलाने से, जो बहुसंख्यक वाहक बन जाते हैं, अप्रत्यक्ष रूप में अल्पांश वाहकों की नैज सांद्रता को घटाने में सहायता करते हैं।

अपमिश्रण द्वारा अर्धचालकों की ऊर्जा बैंड संरचना प्रभावित होती है। बाह्य अर्धचालकों के प्रकरण में दाता अशुद्धियों के कारण अतिरिक्त ऊर्जा अवस्था $\left(E_{D}\right)$ तथा ग्राही अशुद्धियों के कारण अतिरिक्त ऊर्जा अवस्था $\left(E_{A}\right)$ भी होती है। n -प्रकार के Si अर्धचालकों के ऊर्जा बैंड आरेख में दाता ऊर्जा स्तर E_{D} चालक बैंड की तली E_{C} से कुछ नीचे होता है तथा इस स्तर से कुछ इलेक्ट्रॉन बहुत कम ऊर्जा की आपूर्ति होने पर चालन बैंड में प्रवेश कर जाते हैं। कक्ष ताप पर अधिकांश दाता परमाणु

आयनीकृत हो जाते हैं，परंतु Si के अति अल्प $\left(\sim 10^{-12}\right)$ परमाणु ही आयनीकृत होते हैं। अतः चित्र 14．9（a）में दर्शाए अनुसार चालन बैंड में अधिकांश इलेक्ट्रॉन दाता अशुद्धियों से ही आते हैं। इसी प्रकार p －प्रकार के अर्धचालकों में ग्राही ऊर्जा स्तर E_{A} संयोजी बैंड के शीर्ष से कुछ ऊपर होता है ［चित्र 14.9 （b）देखिए］। बहुत कम ऊर्जा आपूर्ति होने पर भी संयोजी बैंड से कोई इलेक्ट्रॉन E_{A} के स्तर पर कूदान भर लेता है और उसे ग्राही को ऋणात्मक आयनित कर देता है।［विकल्प के रूप में हम इस प्रकार भी कह सकते हैं कि बहुत कम ऊर्जा की आपूर्ति से होल ऊर्जा स्तर E_{A} से संयोजी बैंड में गमन कर सकता है। ऊर्जा प्राप्त करने पर इलेक्ट्रॉन ऊपर की ओर आते हैं जबकि होल नीचे की ओर आते हैं।］सामान्य कक्ष ताप पर अधिकांश ग्राही परमाणु आयनीकृत हो जाते हैं तथा संयोजी बैंड में होल बच जाते हैं। इस प्रकार कक्ष ताप पर संयोजी बैंड में होलों का घनत्व प्रमुख रूप में अपद्रव्यी अर्धचालकों में अशुद्धि के कारण होता है। तापीय साम्य में अर्धचालकों में इलेक्ट्रॉनों तथा होलों की सांद्रता इस प्रकार व्यक्त की जाती है

$$
\begin{equation*}
n_{e} n_{h}=n_{i}^{2} \tag{14.5}
\end{equation*}
$$

यद्यपि उपरोक्त विवरण समग्र रूप से सन्निकट तथा परिकल्पित है परंतु यह सरल ढंग से धातुओं，विद्युतरोधियों तथा अर्धचालकों（नैज तथा अपद्रव्यी）में अंतर को समझने में सहायक है। C, Si तथा Ge की प्रतिरोधकताओं में अंतर इनके चालन तथा संयोजी बैंडों के बीच ऊर्जा अंतराल पर निभर्भर करता है। कार्बन（डायमंड）， Si तथा Ge के लिए ऊर्जा अंतराल क्रमशः 5.4 eV ， 1.1 eV तथा 0.7 eV है। Sn भी चौथे ग्रुप का तत्व है परंतु यह धातु है क्योंकि इसके प्रकरण में ऊर्जा अंतराल 0 eV है।

चित्र 14．9 $T>0 K$ पर（a）n－प्रकार के अर्धचालक तथा
（b） p －प्रकार के अर्धचालक का ऊर्जा बैंड।
उदाहरण 14.2 मान लीजिए किसी शुद्ध Si क्रिस्टल में 5×10^{28} परमाणु m^{-3} है। इसे पंचसंयोजी As से 1 ppm सांद्रता पर अपमिश्रित किया जाता है। इलेक्ट्रॉनों तथा होलों की संख्या परिकलित कीजिए，दिया है कि $n_{\mathrm{i}}=1.5 \times 10^{16} \mathrm{~m}^{-3}$ ।
हल ध्यान दीजिए，यहाँ तापीय जनित की ऊष्मा से उत्पन्न इलेक्ट्रॉन $\left(n_{1} \sim 10^{16} \mathrm{~m}^{-3}\right)$ अपमिश्रण से उत्पन्न इलेक्ट्रॉनों की तुलना में नगण्य हैं।
इसलिए，$n_{e} \approx N_{D}$
चूँकि $n_{e} n_{h}=n_{i}^{2}$ ，इसलिए होलों की संख्या $n_{h}=\left(2.25 \times 10^{32}\right) /\left(5 \times 10^{22}\right)$

14.5 p-n संधि

$\mathrm{p}-\mathrm{n}$ संधि ($\mathrm{p}-\mathrm{n}$ junction) बहुत सी अर्धचालक युक्तियों जैसे डायोड, ट्रांजिस्टर आदि की मूल इकाई है। अन्य अर्धचालक युक्तियों के विश्लेषण के लिए संधि के व्यवहार को समझना अत्यंत महत्वपूर्ण है। अब हम यह समझने का प्रयास करेंगे कि किसी संधि का निर्माण कैसे होता है तथा बाह्य अनुप्रयुक्त वोल्टताओं (जिन्हें बायस भी कहते हैं) के प्रभाव में कोई संधि किस प्रकार व्यवहार करती है।

चित्र $14.10 \mathrm{p}-\mathrm{n}$ संधि बनने की प्रक्रिया

है। जैसे-जैसे विसरण प्रक्रिया होती जाती है, संधि के दोनों फलकों पर अंतराकाशी आवेश क्षेत्र विस्तारित होते जाते हैं। इससे विद्युत क्षेत्र की तीव्रता में वृद्धि होती है जिसके फलस्वरूप अपवाह धारा में भी वृद्धि होती है। यह प्रक्रम उस समय तक चलता रहता है जब तक कि ये दोनों धाराएँ (विसरण धारा तथा अपवाह धारा) परिमाण में समान नहीं हो जातीं। इस प्रकार एक p-n संधि बन जाती है। साम्यवास्था में p-n संधि पर कोई नेट विद्युत धारा नहीं होती।
n -क्षेत्र से इलेक्ट्रॉनों की हानि तथा p -क्षेत्र में होलों की प्राप्ति के कारण दोनों क्षेत्रों की संधि के आर-पार एक विभवांतर उत्पन्न हो जाता है। इस विभव की ध्रुवता इस प्रकार होती है कि यह आवेश वाहकों के और प्रवाह का विरोध करता है जिसके फलस्वरूप साम्यावस्था की स्थिति उत्पन्न हो जाती है। चित्र 14.11 में संधि को साम्यावस्था में तथा इसके सिरों के बीच विभवांतर दर्शाया गया है। n -पदार्थ ने इलेक्ट्रॉन खोए हैं तथा p -पदार्थ ने इलेक्ट्रॉन अर्जित किए हैं। इस प्रकार p -पदार्थ के सापेक्ष n -पदार्थ धनात्मक है। चूँकि विभव n -क्षेत्र से p -क्षेत्र की ओर इलेक्ट्रॉनों की गति को रोकने का प्रयास करता है अतः इस विभव को प्रायः रोधिका विभव (Barrier potential) कहते हैं।

(a)

(b)

चित्र 14.11 (a) डायोड साम्य में (V = 0), (b) बिना किसी बायस के संधि का विभव।

उदाहरण 14.3 क्या p-n संधि बनाने के लिए हम p -प्रकार के अर्धचालक की एक पट्टी को n -प्रकार के अर्धचालक से भौतिक रूप से संयोजित कर $\mathrm{p}-\mathrm{n}$ संधि प्राप्त कर सकते हैं? हल नहीं! कोई भी पट्टी, चाहे कितनी ही समतल हो, अंतर-परमाण्वीय क्रिस्टल अंतराल (~ 2 से $3 \AA$) से कहीं ज़्यादा खुरदरी होगी और इसलिए परमाण्वीय स्तर पर अविच्छिन्न संपर्क (अथवा संतत संपर्क) संभव नहीं होगा। प्रवाहित होने वाले आवेश वाहकों के लिए संधि एक विच्छिन्नता की तरह व्यवहार करेगी।

14.6 अर्धचालक डायोड

अर्धचालक डायोड [चित्र 14.12(a)] मूल रूप में एक p-n संधि होती है जिसके सिरों पर धात्विक संपर्क जुड़े होते हैं ताकि इस संधि पर कोई बाह्य वोल्टता अनुप्रयुक्त की जा सके। इस युक्ति के दो टर्मिनल होते हैं। अर्धचालक डायोड को प्रतीकात्मक रूप में चित्र 14.12(b) में निरूपित किया गया है।

तीरों की दिशा परिपाटी के अनुसार विद्युत धारा की दिशा साम्या रोधिका (Equilibrium barrier) को दर्शाती है। (जबकि डायोड अग्रदिशिक बायसित (Forward bias) है) विभव को डायोड के सिरों पर बाह्य वोल्टता V अनुप्रयुक्त करके परिवर्तित किया जा सकता है। $\mathrm{p}-\mathrm{n}$ संधि डायोड की बिना किसी बायस के साम्यावस्था में स्थिति चित्र

चित्र 14.12 (a) अर्धचालक डायोड, (b) p-n संधि डायोड का प्रतीक। 14.11(a) तथा (b) में दर्शायी गई है।

14.6.1 अग्रदिशिक बायस में p-n संधि डायोड

जब किसी अर्धचालक डायोड के दो सिरों के बीच कोई बाह्य वोल्टता V इस प्रकार अनुप्रयुक्त को जाती है कि बैटरी का धन टर्मिनल p-फलक से तथा ऋण टर्मिनल n-फलक से संयोजित करते हैं [चित्र 14.13(a) तथा (b)] तो इसे अग्रदिशिक बायसित कहते हैं।

अनुप्रयुक्त अधिकांश वोल्टता पात अर्धचालक डायोड के ह्रासी क्षेत्र के सिरों पर होता है तथा संधि के p -फलक तथा n -फलक पर विभवपात नगण्य होता है (इसका कारण यह है कि ह्रासी

- भौतिकी

(a)

(b)

चित्र 14.13 (a) अग्रदिशिक बायस में $\mathrm{p}-\mathrm{n}$ जंक्शन डायोड, (b) रोधक विभव
(1) बिना बैटरी में,
(2) निम्न बैटरी

वोल्टता के लिए, तथा (3) उच्च बैटरी वोल्टता के लिए।

चित्र 14.14 अग्रदिशिक बायस में अल्पांश वाहक अंतःक्षेपण (Minority current injection)।

क्षेत्र, वह क्षेत्र जहाँ कोई आवेश नहीं है, का प्रतिरोध n -फलक अथवा p -फलक के प्रतिरोधों की तुलना में अत्यधिक होता है)। अनुप्रयुक्त वोल्टता (V) की दिशा अंतःनिर्मित (built-in) विभव V_{0} के विपरीत होती है। इसके परिणामस्वरूप, ह्रासी स्तर की मोटाई घट जाती है तथा रोधिका ऊँचाई कम हो जाती है [चित्र 14.13(b)]। अग्रद्रिशिक बायस में प्रभावी रोधिका ऊँचाई $\left(V_{0}-V\right)$ होती है।

यदि अनुप्रयुक्त वोल्टता लघु है तो रोधिका विभव साम्य मान से केवल कुछ कम हो जाएगा, तथा केवल वे ही आवेश वाहक जो उच्चतम ऊर्जा स्तर पर थे, बहुत कम संख्या में संधि को पार करने के लिए आवश्यक ऊर्जा प्राप्त कर पाएँगे, अतः कम विद्युत धारा प्रवाहित होगी। यदि हम अनुप्रयुक्त वोल्टता में काफ़ी वृद्धि कर दें तो रोधिका ऊँचाई काफ़ी घट जाएगी तथा अधिक संख्या में वाहकों को संधि पार करने के लिए आवश्यक ऊर्जा प्राप्त हो जाएगी। इस प्रकार विद्युत धारा में वृद्धि हो जाएगी।

अनुप्रयुक्त वोल्टता के कारण, इलेक्ट्रॉन n -फलक ह्रासी क्षेत्र को पार कर p -फलक पर पहुँचते हैं (जहाँ वे अल्पांश वाहक हैं)। इसी प्रकार p -फलक के होल संधि को पार करके n -फलक पर पहुँचते हैं (जहाँ वे अल्पांश वाहक हैं)। अग्रादिशिक बायस में होने वाले इस प्रक्रम को अल्पांश वाहक अंतःक्षेपण (Minority carrier injection) कहते हैं। संधि की सीमा पर हर फलक पर, संधि से दूर अवस्थित अल्पांश वाहकों की सांद्रता की तुलना में, अल्पांश वाहक सांद्रता में महत्वपूर्ण वृद्धि हो जाती है। इस सांद्रता प्रवणता के कारण p -फलक की संधि के किनारे विसरित होकर p -फलक के दूसरे किनारे पर पहुँच जाते हैं। इसी प्रकार n -फलक की संधि के किनारे से विसरिंत होकर n -फलक के दूसरे सिरे पर पहुँचते हैं (चित्र 14.14)। दोनों फलकों पर आवेश वाहकों की इस गति के कारण विद्युत धारा प्रवाहित होने लगती है। कुल अग्रदिशिक डायोड धारा का मान होल विसरण धारा तथा इलेक्ट्रॉन विसरण के कारण पारंपरिक धारा का योग होता है। इस धारा का परिमाण प्रायः मिलीऐमेम्पिर में होता है।

14.6.2 पश्चदिशिक बायस में p-n संधि डायोड

जब किसी अर्धचालक डायोड के दो सिरों के बीच कोई बाह्य वोल्टता (V) इस प्रकार अनुप्रयुक्त करते हैं कि बैटरी के धन टर्मिनल को n -फलक से तथा ऋण टर्मिनल को p -फलक से जोड़ते हैं [चित्र 14.15(a)], तो डायोड को पश्चदिशिक बायसित (Reverse bias) कहते हैं। अनुप्रयुक्त वोल्टता का अधिकांश विभवपात अर्धचालक के ह्रासी क्षेत्र के सिरों पर होता है। यहाँ अनुप्रयुक्त वोल्टता की दिशा रोधिका विभव की दिशा के समान होती है। इसके परिणामस्वरूप रोधिका की ऊँचाई बढ़ जाती है तथा ह्रासी क्षेत्र की चौड़ाई में विद्युत में परिवर्तन होने के कारण वृद्धि हो जाती है। पश्चदिशिक बायसन् में प्रभावी रोधिका ऊँचाई $\left(V_{0}+V\right)$ होती है [चित्र 14.15 (b)]। यह $\mathrm{n} \rightarrow \mathrm{p}$ की ओर इलेक्ट्रॉनों के प्रवाह तथा $\mathrm{p} \rightarrow \mathrm{n}$ की ओर होलों के प्रवाह का दमन करती है। इस प्रकार, डायोड के अग्रदिशिक बायसन् की तुलना में इस स्थिति में विसरण धारा अत्यधिक कम हो जाती है।

संधि के विद्युत क्षेत्र की दिशा ऐसी होती है कि यदि p -फलक पर इलेक्ट्रॉन अथवा n -फलक पर होल अपनी यादृच्छिक गति करते समय संधि के निकट आ जाएँ, तो उन्हें उनके बहुसंख्यक क्षेत्र में भेज दिया जाएगा। आवेश वाहकों के इस अपवाह के कारण विद्युत धारा उत्पन्न होगी। यह अपवाह धारा कुछ $\mu \mathrm{A}$ कोटि की होती है। इसके अत्यल्प मान होने का कारण यह है कि आवेश वाहकों की गति उनके अल्पांश फलक से संधि के दूसरी ओर बहुसंख्यक फलक की ओर होती है। अग्र्रदेशिक बायसन् में अपवाह धारा (सामान्यत: $\mu \mathrm{A}$ में) भी होती है परंतु यह अंतः:क्षेप्त वाहकों के कारण धारा (mA में), की तुलना में नगण्य होती है।

अर्धचालक इलेक्ट्रॉनिकी - पदार्थ, युक्तियाँ तथा सरल परिपथ

अल्पांश वाहकों को संधि के एक फलक से दूसरे फलक तक पहुँचाने के लिए लघु वोल्टता ही पर्याप्त होती है। धारा अनुप्रयुक्त वोल्टता के परिणाम द्वारा सीमित नहीं होती परंतु यह संधि के दोनों फलकों पर अल्पांश वाहकों की सांद्रता के कारण सीमित होती है।

पश्चदिशिक बायस में किसी क्रांतिक पश्चदिशिक (Critical reverse) वोल्टता तक विद्युतधारा सारभूत रूप में वोल्टता पर निर्भर नहीं करती है। इस वोल्टता को भंजन वोल्टता (Breakdown voltage, $V_{b r}$) कहते हैं। जब $V=V_{b r}$ तब डायोड पश्चद्चिशिक धारा में तेज़ी से वृद्धि होती है। यहाँ तक कि बायस वोल्टता में अल्प वृद्धि करने पर भी धारा में अर्त्यधिक परिवर्तन हो जाता है। यदि पश्च्चदिशिक धारा को किसी बाह्य परिपथ द्वारा अनुमत मान (जिसे उत्पादक द्वारा निर्दिष्ट किया गया है) से नीचे सीमित न किया जाए तो $\mathrm{p}-\mathrm{n}$ संधि नष्ट हो जाएगी। यदि एक बार भी यह अनुमत मान से अधिक हो जाए तो अतितप्त होने के कारण डायोड नष्ट हो जाता है। ऐसा तब भी हो सकता है, जब डायोड अग्रदिशिक बायसित होता है तथा अग्रदिशिक धारा अनुमत मान से अधिक हो।

किसी डायोड के V-I अभिलाक्षणिक (अनुप्रयुक्त की गई वोल्टता के फलन के रूप में धारा का विचरण) का अध्ययन करने के लिए परिपथ आरेख चित्र 14.16 (a) तथा (b) में दिखाया गया है। डायोड से वोल्टता को एक पोटेंशियोमीटर (या धारा नियंत्रक) से होकर जोड़ा जाता है जिससे डायोड पर अनुप्रयुक्त की गई वोल्टता को

(b)

चित्र 14.15 (a) पश्चदिशिक बायस में डायोड (b) पश्चदिशिक बायस में रोधिका विभव। परिवर्तित किया जा सकता है। वोल्टता के विभिन्न मानों के लिए धारा का मान नोट किया जाता है। V और I के बीच एक ग्राफ़, जैसा चित्र 14.16(c) में दिखाया गया है, प्राप्त होता है। ध्यान दीजिए, अग्रदिशिक बायस मापन के लिए हम मिलीमीटर का उपयोग करते हैं क्योंकि (जैसा पिछले अनुभाग में समझाया गया था) अपेक्षित धारा अधिक है जबकि विपरीत बायस में कम धारा को नापने के लिए एक माइक्रोऐमीटर का उपयोग किया जाता है। आप चित्र

चित्र 14.16 किसी $\mathrm{p}-\mathrm{n}$ संधि डायोड का (a) अग्रदिशिक बायस, (b) पश्चदिशिक बायस में V-I अभिलाक्षणिक के अध्ययन के प्रयोगिक परिपथ, (c) किसी सिलिकॉन डायोड के प्रतिरूपी V-I अभिलाक्षणिक।

भौतिकी

(14.16) में देख सकते हैं कि अग्रदिशिक बायस में आरंभ में धारा उस समय तक बहुत धीरे-धीरे, लगभग नगण्य, बढ़ती है जब तक कि डायोड पर वोल्टता एक निश्चित मान से अधिक न हो जाए। इस अभिलाक्षणिक वोल्टता के बाद डायोड बायस वोल्टता में बहुत थोड़ी-सी ही वृद्धि करने से डायोड धारा में सार्थक (चरघातांकी) वृद्धि हो जाती है। यह वोल्टता देहली वोल्टता (Threshold voltage) या कट-इन वोल्टता कहलाती है। इस वोल्टता का मान जरमेनियम डायोड के लिए ~ 0.2 वोल्ट तथा सिलिकॉन डायोड के लिए ~ 0.7 वोल्ट है।

पश्चदिशिक बायस में डायोड के लिए धारा बहुत कम $(\sim \mu \mathrm{A})$ होती है तथा बायस में परिवर्तन के साथ लगभग स्थिर बनी रहती है। इसे प्रतीप संतृप्त धारा (Reverse saturation current) कहते है। परंतु कुछ विशेष प्रकरणों में, बहुत अधिक पश्चदिशिक बायस (भंजन वोल्टता) पर धारा में अचानक वृद्धि हो जाती है। डायोड की इस विशेष क्रिया की विवेचना आगे अनुभाग 14.8 में की गई है। साधारण उद्देश्य वाले डायोड प्रतीप संतृप्त धारा क्षेत्र के आगे उपयोग नहीं किए जाते हैं।

ऊपर दी गई विवेचना यह दिखाती है कि p-n डायोड मूल रूप से धारा के प्रवाह को केवल एक ही दिशा में (अग्रदिशिक बायस) प्रतिबंधित करता है। पश्चदिशिक बायस प्रतिरोध की तुलना में अग्रदिशिक बायस प्रतिरोध कम होता है। इस गुण का उपयोग प्रत्यावर्ती (ac) वोल्टता के दिष्टकरण के लिए किया गया है, जिसे अगले अनुभाग में समझाया गया है। डायोडों के लिए हम एक अन्य भौतिक राशि जिसे गतिक प्रतिरोध कहते हैं, को "वोल्टता में लघु परिवर्तन ΔV तथा विद्युत धारा में लघु परिवर्तन ΔI के अनुपात" के रूप में परिभाषित करते हैं:

$$
\begin{equation*}
r_{d}=\frac{\Delta V}{\Delta I} \tag{14.6}
\end{equation*}
$$

उदाहरण 14.4 किसी सिलिकॉन डायोड का $V-I$ अभिलाक्षणिक चित्र 14.17 में दर्शाया गया है। डायोड का प्रतिरोध (a) $I_{D}=15 \mathrm{~mA}$ तथा (b) $V_{D}=-10 \mathrm{~V}$ पर परिकलित कीजिए।

हल डायोड अभिलाक्षणिक को $I=10 \mathrm{~mA}$ से $I=20 \mathrm{~mA}$ के बीच सरल रेखा की भाँति मानते हुए जो मूल बिंदु से गुज़रती है, हम ओम के नियम का पालन करते हुए प्रतिरोध का परिकलन कर सकते हैं।
(a) वक्र से $I=20 \mathrm{~mA}, V=0.8 \mathrm{~V} ; I=10 \mathrm{~mA}, V=0.7 \mathrm{~V}$ पर $r_{f b}=\Delta V / \Delta I=0.1 \mathrm{~V} / 10 \mathrm{~mA}=10 \Omega$
(b) वक्र से $\mathrm{V}=-10 \mathrm{~V}, I=-1 \mu \mathrm{~A}$ है

अत:

$$
r_{r b}=10 \mathrm{~V} / 1 \mu \mathrm{~A}=1.0 \times 10^{7} \Omega
$$

14.7 संधि डायोड का दिष्टकारी के रूप में अनुप्रयोग

किसी संधि डायोड के V-I अभिलाक्षणिक में हम यह देखते हैं कि वह केवल तभी विद्युत धारा प्रवाहित होने देता है जब वह अग्रदिशिक बायसित होता है। अत: यदि किसी डायोड के सिरों पर कोई प्रत्यावर्ती वोल्टता अनुप्रयुक्त की जाए तो चक्र के केवल उसी भाग में परिपथ में धारा प्रवाहित होगी जब डायोड अग्रदिशिक बायसित है। डायोड के इस गुण का उपयोग प्रत्यावर्ती वोल्टता का दिष्टकरण करने में किया जाता है तथा इस कार्य के लिए जिस परिपथ का उपयोग करते हैं उसे दिष्टकारी कहते हैं।

यदि डायोड के सिरों पर कोई प्रत्यावर्ती (ac) वोल्टता श्रेणीक्रम में संयोजित लोड प्रतिरोध R_{L} के साथ अनुग्रयुक्त की जाए तो लोड के सिरों पर केवल ac निवेश के उस अर्धचक्र में जिसमें डायोड अग्रदिशिक बायसित है, एक स्पंदमान वोल्टता दृष्टिगोचर होगी। इस प्रकार का विद्युत परिपथ चित्र 14.18 के विद्युत परिपथ में दर्शाया गया है जिसे अर्ध-तरंग दिष्टकारी परिपथ कहते हैं। ट्रांसफ़ार्मर की द्वितीयक कुंडली टर्मिनल A तथा B पर वांछित ac वोल्टता की आपूर्ति करती है। जब A पर वोल्टता धनात्मक होती है तो डायोड अग्रदिशिक बायसित होता है तथा यह विद्युत धारा का चालन करता है। जब A पर वोल्टता ॠणात्मक होती है तो डायोड पश्चदिशिक बायसित होता है और वह विद्युत चालन नहीं करता। पश्चदिशिक बायस में डायोड की संतृप्त प्रतीप धारा नगण्य होती है तथा इसे व्यावहारिक कार्यों के लिए शून्य माना जा सकता है। (डायोड की प्रतीप भंजन वोल्टता का मान ट्रांसफ़ार्मर की द्वितीयक कुंडली पर शिखर ac वोल्टता की तुलना में काफ़ी अधिक होना चाहिए ताकि डायोड प्रतीप भंजन से सुरक्षित रह सके।)

इसलिए ac वोल्टता के धनात्मक अर्धचक्र में लोड प्रतिरोध R_{L}

(b)

चित्र 14.18 (a) अर्धतरंग दिष्टकारी परिपथ, (b) दिष्टकारी परिपथ से निवेशी ac और निर्गत वोल्टता के तरंग रूप। से विद्युत धारा प्रवाहित होगी और हमें चित्र 14.18(b) में दर्शाए अनुसार निर्गत वोल्टता प्राप्त होगी। परंतु ऋणात्मक अर्धचक्र में विद्युत धारा प्राप्त नहीं होगी। अगले धनात्मक अर्धचक्र में हमें फिर निर्गत वोल्टता प्राप्त होगी। इस प्रकार, निर्गत वोल्टता यद्यपि अभी भी परिवर्तनीय है परंतु यह केवल एक ही दिशा में प्रतिबंधित होने के कारण दिष्टकारी कहलाती है। चूँकि हमें ac तरंग के केवल एक ही अर्धंचक्र में निर्गत वोल्टता प्राप्त हो रही है, अत: इस परिपथ को अर्ध-तरंग दिष्टकारी कहते हैं।

चित्र 14.19(a) में दर्शाए गए परिपथ में दो डायोडों का उपयोग करके एक ऐसी परिपथ व्यवस्था की गई है जिससे ac चक्र के धनात्मक एवं ऋणात्मक दोनों ही अर्धंचक्रों में तदनुरूपी दिष्टकृत निर्गत वोल्टता प्राप्त होती है। इसीलिए इस परिपथ को पूर्ण तरंग दिष्टकारी कहते हैं। इसमें दोनों डायोडों के n -फलकों को एक साथ संयोजित कर देते हैं तथा निर्गत को डायोडों के इस उभयनिष्ठ बिंदु तथा ट्रांसफ़ार्मर की द्वितीयक कुंडली के मध्य बिंदु के बीच प्राप्त किया जाता है। अतः किसी पूर्ण तरंग दिष्टकारी के लिए ट्रांसर्फामर की द्वितीयक कुंडली के मध्य में एक अंशनिष्कासी बिंदु (Tapping point) प्रदान किया जाता है और इसीलिए इस ट्रांसफ़ार्मर को मध्य निष्कासी ट्रांसफ़ार्मर (centre-tap transformer) कहते हैं। जैसा कि चित्र 14.19(c) से स्पष्ट है कि प्रत्येक डायोड द्वारा दिष्टकृत वोल्टता कुल द्वितीयक कुंडली से प्राप्त वोल्टता को केवल आधी ही है। प्रत्येक डायोड केवल आधे चक्र का दिष्टकरण करता है, परंतु दो डायोड प्रत्यावर्ती चक्रों का दिष्टकरण करते हैं। इस प्रकार डायोडों के उभयनिष्ठ बिंदु तथा मध्य निष्कासी ट्रांसफ़ार्मर के अंश निष्कासी बिंदु के बीच प्राप्त निर्गत वोल्टता पूर्ण तरंग दिष्टकारी वोल्टता होती है। (ध्यान

ह. भौतिकी

मध्य निष्कासी

(b)

चित्र 14.19 (a) पूर्ण तरंग दिष्टकारी परिपथ; (b) A पर डायोड D_{1} के और B पर डायोड D_{2} के दिए गए निवेश के तरंग रूप; (c) पूर्ण तरंग दिग्टकारी परिपथ में जोड़े गए लोड R_{L} पर निर्गत वोल्टता का तरंगरूप।

दीजिए कि पूर्ण तरंग दिष्टकारी के लिए एक अन्य परिपथ भी होता है जिसके लिए मध्य निष्कासी ट्रांसफ़ार्मर की आवश्यकता नहीं होगी परंतु उसे चार डायोड चाहिए)। मान लीजिए किसी क्षण मध्य निष्कासी के A पर निवेश वोल्टता धनात्मक है। यह स्पष्ट है कि इस क्षण पर कला असंगत होने के कारण B पर वोल्टता ऋणात्मक होती है जैसा कि चित्र 14.19(b) में दर्शाया गया है। अतः डायोड D_{1} अग्रदिशिक बायस होकर विद्युत चालन करता है (जबकि D_{2} पश्चदिशिक बायस होने के कारण चालन नहीं करता)। अत: इस धनात्मक अर्धचक्र में हमें चित्र 14.19(c) में दर्शाए अनुसार एक निर्गत धारा (तथा लोड प्रतिरोध R_{L} के सिरों पर निर्गत वोल्टता) प्राप्त होती है। इसी प्रकार किसी अन्य क्षण पर, जब A पर वोल्टता ऋणात्मक हो जाती है तब B पर वोल्टता धनात्मक होगी। इसलिए डायोड D_{1} चालन नहीं करता, लेकिन डायोड D_{2} चालन करता है। इस प्रकार निवेशी ac के ऋणात्मक अर्ध चक्र में भी निर्गत धारा (तथा R_{L} पर निर्गत वोल्टता) मिलती है। इस प्रकार, हमें धनात्मक तथा ऋणात्मक दोनों ही अर्ध चक्र में (अर्थांत, दूसरे शब्दों में, पूर्ण तरंग के समय में) निर्गत वोल्टता मिलती है। स्पष्टतया, दिष्ट वोल्टता या धारा प्राप्त करने के लिए यह अर्ध तरंग दिष्टकारी से अधिक दक्ष परिपथ है।

इस प्रकार प्राप्त दिष्टकृत वोल्टता अर्ध ज्यावक्रीय (Half sinusoid) आकृति की होती है। यद्यपि यह एकदिशिक होती है परंतु इसका मान स्थायी नहीं होता। स्पंदमान वोल्टता से dc निर्गत प्राप्त करने के लिए निर्गत टर्मिनलों के सिरों पर $\left(R_{\mathrm{L}}\right.$ के पार्श्व में) सामान्यतः कोई संधारित्र संयोजित कर देते हैं। इसी कार्य को करने के लिए लोड प्रतिरोध R_{L} के श्रेणीक्रम में कोई प्रेरक भी संयोजित किया जा सकता है। चूँकि ये अतिरिक्त $a c$ उर्मिकाओं को बाहर फिल्टरन करके शुद्ध dc वोल्टता प्रदान करते प्रतीत होते हैं, अतः इन्हें फिल्टर कहते हैं।

अब हम फिल्टरन में संधारित्र की भूमिका की विवेचना करेंगे। जब संधारित्र के सिरों पर वोल्टता में वृद्धि हो रही होती है तो वह आवेशित हो जाता है। यदि परिपथ में कोई बाह्य लोड नहीं है तो यह दिष्टकृत निर्गत की शिखर वोल्टता तक आवेशित रहता है। यदि परिपथ में कोई लोड है तो यह लोड से होकर विसर्जित होने लगता है तथा इसके सिरों पर वोल्टता कम होने लगती है। दिष्टकृत निर्गत के अगले अर्ध चक्र में यह फिर अपनी शिखर वोल्टता तक आवेशित होता है (चित्र 14.20)। संधारित्र के सिरों पर वोल्टता में कमी होने की दर संधारित्र की धारिता C तथा परिपथ में लगे प्रभावी प्रतिरोधक R_{L} के प्रतिरोध गुणनफल जिसे कालांक कहते हैं, पर निर्भर करता है। कालांक का मान अधिक होने के लिए C का मान अधिक होना चाहिए। अतः संधारित्र निवेश फिल्टरों का उपयोग करने पर प्राप्त निर्गत वोल्टता दिष्टकृत वोल्टता के शिखर मान के निकट होती है। विद्युत प्रदायों में व्यापक रूप में इसी प्रकार के फिल्टर उपयोग किए जाते हैं।

चित्र 14.20 (a) संधारित्र फिल्टर के साथ पूर्ण तंरग दिष्टकारी, (b) में दिष्टकारी की निवेश तथा निर्गत वोल्टता।

14.8 विशिष्ट प्रयोजन p-n संधि डायोड

इस अनुभाग में हम कुछ ऐसी युक्तियों की विवेचना करेंगे जो मूल रूप से संधि डायोड हैं परंतु उनका विकास विभिन्न अनुप्रयोगों के लिए किया गया है।

14.8.1 ज़ेनर डायोड

यह एक विशिष्ट प्रयोजन अर्धचालक डायोड है जिसका नाम उसके आविष्कारक सी.ज़ेनर के नाम पर रखा गया है। इसे भंजन क्षेत्र में पश्चदिशिक बायस में प्रचालित करने के लिए डिज़ाइन किया गया है तथा इसका उपयोग वोल्टता नियंत्रक के रूप में किया जाता है। ज़ेनर डायोड का प्रतीक चित्र 14.21(a) में दर्शांया गया है।

ज़ेनर डायोड संधि के p - तथा n - दोनों फलकों को अत्यधिक अपमिश्रित (Heavily doped) कर विकसित किया जाता है। इसके कारण बनने वाला ह्रासी क्षेत्र अत्याधेक पतला $\left(<10^{-6} \mathrm{~m}\right)$ होता है तथा संंधे का विद्युत क्षेत्र लगभग 5 V तक के लघु पश्चर्दिशिक बायस होने पर भी अति उच्च $\left(\sim 5 \times 10^{6} \mathrm{~V} / \mathrm{m}\right)$ होता है। किसी ज़ेनर डायोड का I-V अभिलाक्षणिक चित्र 14.21 (b) में दर्शाया गया है। इसमें यह दर्शाया गया है कि जब अनुप्रयुक्त पश्र्चादोशिक बायस वोल्टता (V) ज़ेनर डायोड की भंजन वोल्टता $\left(V_{Z}\right)$ के समान हो जाती है, तो परिपथ में विद्युत धारा में बहुत अधिक परिवर्तन होता जाता है। ध्यान देने योग्य बात यह है कि भंजन वोल्टता V_{z} के पश्चात, पश्च्चद्दिशिक वोल्टता में कोई सार्थक परिवर्तन किए बिना ही अर्त्याधिक धारा उत्पन्न की जा सकती है। दूसरे शब्दों में, ज़ेनर डायोड से प्रवाहित होने वाली धारा में अत्याधिक परिवर्तन होने पर भी ज़ेनर वोल्टता नियत रहती है। ज़ेनर डायोड के इस गुण का उपयोग विद्युत आर्पूर्तियों की वोल्टताओं को निर्यंत्रित करने में किया जाता है तथा आपूर्तियों से नियत वोल्टता पर विद्युत प्राप्त होती है।

आइए अब यह समझने का प्रयास करे कि भंजन वोल्टता पर विद्युत धारा अचानक कैसे बढ़ जाती है। हम जानते हैं कि प्रतीप धारा इलेक्ट्रॉनों (अल्पांश आवेश वाहकों) के $\mathrm{p} \rightarrow \mathrm{n}$ तथा होलों के $\mathrm{n} \rightarrow \mathrm{p}$ ओर प्रवाह के कारण होती है। जैसे ही पश्चद्दिशिक बायस में वृद्द्ध होती है. संधि पर विद्युत क्षेत्र महत्वपूर्ण हो जाता है। जब पश्चर्देशिक बायस वोल्टता $\mathrm{V}=V_{z}$ है तो विद्युत क्षेत्र तीव्रता p -फलक पर आथितेय परमाणुओं से उन संयोजकता इलेक्ट्राॅनों को जो n -फलक की ओर त्वरित थे, खींचने के लिए पर्याप्त होती है। यही इलेक्ट्रॉन भंजन के समय प्रेक्षित उच्च धारा के लिए उत्तरदायी होते हैं। उच्च विद्युत क्षेत्र के कारण आथितेय परमाणुओं से इलेक्ट्रॉनों का उत्सर्जित होना आंतरिक क्षेत्रीय उत्सर्जन अथवा क्षेत्रीय आयनन कहलाता है। क्षेत्रीय

चित्र 14.21 (a) किसी ज़ेनर डायोड का प्रतीकात्मक निरूपण तथा (b) किसी ज़ेनर डायोड का $I-V$ अभिलाक्षणिक वक्र। आयनन के लिए आवश्यक विद्युत क्षेत्र $10^{6} \mathrm{~V} / \mathrm{m}$ कोटि का होता है।

भौतिकी

वोल्टता नियंत्रक के रूप में ज़ेनर डायोड

हम जानते हैं कि किसी दिष्टकारी की निवेश वोल्टता में घट-बढ़ होती है तो उसकी दिष्टकृत वोल्टता में भी घट-बढ़ होती है। किसी दिष्टकारी के निर्गत से प्राप्त अनियंत्रिक dc वोल्टता से स्थायी (नियत) dc वोल्टता प्राप्त करने के लिए हम ज़ेनर डायोड का उपयोग करते हैं। ज़ेनर डायोड का उपयोग करके बनाए गए वोल्टता नियंत्रक का विद्युत परिपथ आरेख चित्र 14.22 में दर्शाया गया है।

किसी अनियंत्रित dc वोल्टता (दिष्टकारी का फिल्टरित निर्गत) को श्रेणी क्रम में संयोजित प्रतिरोध R_{s} से होते हुए ज़ेनर डायोड से इस प्रकार संयोजित करते हैं कि ज़ेनर डायोड पश्चदिशिक बायस हो। यदि निवेशी वोल्टता में वृद्धि होती है तो R_{s} तथा ज़ेनर डायोड से प्रवाहित विद्युत धारा में भी वृद्धि हो जाती है। इससे ज़ेनर डायोड के सिरों पर वोल्टता में कोई 9ी परिवर्तन हुए बिना ही R_{s} के सिरों पर वोल्टता गें वृद्धि हो जाती है। इसका कारण यह है कि भंजन क्षेत्र में ज़ेनर वोल्टता नियत रहती है, यद्यापि ज़ेनर डायोड से प्रवाहित धारा में परिवर्तन होता है। इसी प्रकार यदि निवेशी वोल्टता घटती है तो R_{s} तथा ज़ेनर डायोड से प्रवाहित विद्युत धारा भी घट जाती है। ज़ेनर डायोड के सिरों पर वोल्टता में कोई परिवर्तन हुए बिना R_{s} के सिरों पर विभवपात घट जाता है। इस प्रकार निवेशी वोल्टता में होने वाली किसी भी कमी अथवा वृद्धि के कारण, ज़ेनर डायोड के सिरों पर वोल्टता में बिना कोई परिवर्तन हुए, R_{s} के सिरों पर तदनुरूपी कमी अथवा वृद्धि हो
नि जाती है। इस प्रकार ज़ेनर डायोड एक वोल्टता नियंत्रक की भाँति कार्य करता है। हमें आवश्यक निर्गत वोल्टता के अनुसार ही ज़ेनर डायोड तथा श्रेणी प्रतिरोधक R_{s} का चयन करना होता है।

चित्र 14.22 वोल्टता नियंत्रक के रूप में ज़ेनर डायोड। उदाहरण $\mathbf{1 4 . 5}$ किसी ज़ेनर नियंत्रित विद्युत आपूर्ति में नियंत्रण के लिए $V_{z}=6.0 \mathrm{~V}$ के साथ ज़ेनर डायोड का उपयोग किया जाता है। लोड धारा का मान 4.0 mA रखा जाना है तथा अनियंत्रित निवेश वोल्टता 10.0 V है। श्रेणी प्रतिरोधक R_{S} का मान क्या होना चाहिए?
हल श्रेणी प्रतिरोधक R_{S} का मान इस ग्रकार होना चाहिए कि ज़ेनर डायोड से प्रवाहित धारा लोड धारा की तुलना में काफ़ी अधिक हो। ऐसा अच्छे लोड नियंत्रण के लिए किया जाता है। ज़ेनर धारा का चयन लोड धारा का पाँच गुना करना चाहिए, अर्थात $I_{z}=20 \mathrm{mAl}$ अत: R_{S} से प्रवाहित कुल धारा $24 \mathrm{~m} \Lambda$ है। R_{S} के सिरों पर विभवणात $=10.0-6.0=4.0 \mathrm{~V}$ । इसारे हमें ग्राप्त होता है $R_{S}=4.0 \mathrm{~V} /\left(24 \times 10^{-3}\right) \mathrm{A}=167 \Omega$ । कार्बन प्रतिरोधक का उसके निकटतम मान 150Ω है। अतः, इसके लिए 150Ω का श्रेणी प्रतिरोधक उपयुक्त होगा। ध्यान दीजिए, यहाँ प्रतिरोधक के मान में थोड़ा बहुत परिवर्तन इसमें महत्व नहीं रखता, यहाँ यह सबसे अधिक महत्वपूर्ण है कि धारा I_{Z} का मान सदैव ही I_{L} से काफ़ी अधिक होना चाहिए।

14.8.2 ऑप्टोइलेक्ट्रॉनिक संधि युक्तियाँ

हमने अब तक यह देखा है कि अनुप्रयुक्त वैद्युत निवेशों के साथ अर्धचालक डायोड किस प्रकार व्यवहार करते हैं। इस अनुभाग में, हम ऐसे अर्धचालक डायोडों के विषय में अध्ययन करेंगे जिनमें आवेश वाहकों की उत्पत्ति फोटॉनों (प्रकाशिक उत्तेजन) द्वारा होती है। इस प्रकार की सभी युक्तियों को ऑप्टोइलेक्ट्रॉनिक युक्तियाँ कहते हैं। हम निम्नलिखित ऑप्टोइलेक्ट्रॉनिक युक्तियों की कार्यविधि का अध्ययन करेंगे।
(i) प्रकाश चालकीय डायोड (फोटोडायोड) जिनका उपयोग प्रकाशित संकेतों (सिग्नलों) के संसूचन में (प्रकाश संसूचक) होता है।
(iii) फ़ोटोवोल्टीय युक्तियाँ, जो प्रकाशिक विकिरणों को विद्युत में रूपांतरित (सौर सेल) करती हैं।

(i) फ़ोटोडायोड

फ़ोटोडायोड भी एक विशिष्ट प्रयोजन $\mathrm{p}-\mathrm{n}$ संधि डायोड है जिसमें एक पारदर्शी खिड़की होती है, जिससे प्रकाश-किरणें डायोड पर पड़ सकती हैं। यह पश्चदिशिक बायस में प्रचालित होता है। जब फ़ोटोडायोड $(h v)$ ऊर्जा, जो कि अर्धचालक के ऊर्जा अंतराल $\left(E_{g}\right)$ से अधिक है, के फ़ोटॉनों (प्रकाश) द्वारा प्रदीप्त होता है तो फ़ोटॉनों के अवशोषण के कारण इलेक्ट्रॉन-होल के युगल उत्पन्न होते हैं। डायोड इस प्रकार बनाए जाते हैं कि $e-h$ युगलों का जनन डायोड के ह्रासी क्षेत्र में या इसके समीप होता है। संधि के विद्युत क्षेत्र के कारण इलेक्ट्रॉन तथा होल पुनःसंयोजन से पूर्व पृथक हो जाते हैं। विद्युत क्षेत्र की दिशा इस प्रकार होती है कि इलेक्ट्रॉन n-फलक पर तथा होल p-फलक पर पहुँचते हैं, जिसके कारण एक emf उत्पन्न होता है। जब इसके साथ कोई बाह्य लोड संयोजित कर देते हैं तो विद्युत धारा प्रवाहित होने लगती है। इस प्रकाश विद्युत धारा का परिमाण आपतित प्रकाश की तीव्रता पर निर्भर करता है (प्रकाश विद्युत धारा आपतित प्रकाश की तीव्रता के अनुक्रमानुपाती होती है)।

यह आसानी से प्रेक्षण किया जा सकता है कि यदि पश्चद्दिशक बायस है तो प्रकाश की तीव्रता में परिवर्तन के साथ विद्युत धारा में किस प्रकार परिवर्तन होता है। इस प्रकार किसी फ़ोटोडायोड का उपयोग प्रकाशिक सिग्नलों के संसूचन के लिए प्रकाश संसूचक (फोटोसंसूचक) की भाँति किया जा सकता है। चित्र 14.23 में किसी फ़ोटोडायोड का $I-V$ अभिलाक्षणिक की माप के लिए विद्युत परिपथ आरेख दर्शाया गया है।

चित्र 14.23 (a) पश्चदिशिक बायस में प्रदीप्त फ़ोटोडायोड
(b) विभिन्न प्रदीप्त तीव्रताओं $I_{1}>I_{3}>I_{2}>I_{1}$ के लिए पश्चदिशिक बायस धाराएँ।

उदाहरण 14.6 यह ज्ञात है कि पश्चदिशिक बायस की धारा (\sim माइक्रो ऐम्पियर) की तुलना में अग्रदिशिक बायस की धारा (\sim मिली ऐम्पियर) अधिक होती है तो फिर फोटोडायोड को पश्चदिशिक बायस में प्रचालित करने का क्या कारण है?
हल n - प्रकार के अर्धचालक पर विचार करें। स्पष्टतया, बहुसंख्यक वाहकों का घनत्व (n) अल्पांश होल घनत्व p से बहुत अधिक है ($n \gg p$)। मान लीजिए प्रदीप्त करने पर, दोनों प्रकार के वाहकों की संख्या में वृद्धि क्रमशः Δn तथा Δp है, तब

$$
\begin{aligned}
& n^{\prime}=n+\Delta n \\
& p^{\prime}=p+\Delta p
\end{aligned}
$$

यहाँ पर n^{\prime} तथा p^{\prime} क्रमशः किसी विशिष्ट प्रदीप्त पर इलेक्ट्रॉन तथा होल सांद्रताएँ हैं तथा n व p उस समय की वाहक सांद्रताएँ हैं जब कोई प्रदीप्त नहीं है।

* ध्यान देने योग्य बात यह है कि कोई e-h युगल उत्पन्न करने के लिए हमें कुछ ऊर्जा (प्रकांशिक उत्तेजन, ऊष्मीय उत्तेजन आदि) खर्च करनी पड़ती है। अतः, जब कोई इलेक्ट्रॉन तथा होल पुनर्योजित होते हैं, तो प्रकाश (विक्रिरणी पुनर्योंजन) अथवा ऊष्मा (अविकिरणी पुनर्योजन) के रूप में ऊर्जा मुक्त होती है। यह अर्धचालक तथा $\mathrm{p}-\mathrm{n}$ संधि के निर्माण की विधि पर निर्भर करती है। LEDs अर्धचालकों के निर्माण के लिए GaAs, GaAs-GaP जैसे अर्धचालक उपयोग किए जाते हैं जिनमें विकिरणी पुनर्योंजन

भौतिकी

याद रखें कि $\Delta n=\Delta p$ और $n \gg p$ । इसलिए बहुसंख्यक वाहकों में भिन्नात्मक अंतर $(\Delta n / n)$ अल्पांश वाहकों $(\Delta p / p)$ की तुलना में बहुत कम होगा। आमतौर पर हम यह कह सकते हैं कि प्रकाश-प्रभावों के कारण अल्पांश वाहकों द्वारा पश्चदिशिक बायस धारा में भिन्नात्मक अंतर, अग्रदिशिक बायस धारा के भिन्नात्मक अंतर की अपेक्षा अधिक आसानी से नापा जा सकता है। इसलिए, प्रकाश की तीव्रता नापने के लिए फोटोडायोड को वरीयता से पश्चदिशिक बायस स्थिति में उपयोग किया जाता है।

(ii) प्रकाश उत्सर्जक डायोड

यह एक अत्यधिक अपमिश्रित p-n संधि डायोड होता है जो अग्रदिशिक बायस में स्वतः विकिरणों का उत्सर्जन करता है। यह डायोड पारदर्शी आवरण में बंद होता है ताकि इसके द्वारा उत्सर्जित विक्रिरण (प्रकाश) बाहर आ सके।

जब डायोड अग्रदिशिक बायसित होता है तो इलेक्ट्रॉन $n \rightarrow p$ की ओर (जहाँ वे अल्पांश वाहक हैं) तथा होल $\mathrm{p} \rightarrow \mathrm{n}$ की ओर (जहाँ वे अल्पांश वाहक हैं) भेजे जाते हैं। संधि की सीमा पर अल्पांश वाहकों की सांद्रता साम्यावस्था की सांद्रता (अर्थात जब कोई बायस नहीं है) की तुलना में अधिक हो जाती है। इस प्रकार संधि सीमा के दोनों फलकों, अल्पांश वाहकों की अधिकता हो जाती है जो संधि के निकट वाहकों के साथ पुनर्योजित हो जाते हैं। पुनर्योजित होने पर फोटॉनों के रूप में ऊर्जा मुक्त होती है। उत्सर्जित फोटॉनों की ऊर्जा बैड अन्तराल के बराबर अथवा इससे कुछ कम होती है। जब डायोड की अग्रदिशिक धारा अल्प होती है तो उत्सर्जित प्रकाश की तीव्रता कम होती है। जैसे-जैसे अग्रदिशिक धारा में वृद्धि होती जाती है, प्रकाश की तीव्रता में भी वृद्धि होती जाती है और यह अधिकतम हो जाती है। इसके आगे अर्ग्रदिशिक धारा में अधिक वृद्धि होने पर प्रकाश की तीव्रता घटने लगती है। प्रकाश उत्सर्जक डायोडों (LED) को इस प्रकार बार्यासेत किया जाता है कि इनकी प्रकाश उत्सर्जन दक्षता अधिकतम हो।

LED का V-I अभिलाक्षणिक सिलिकॉन संधि डायोड के अभिलाक्षणिक के समान होता है। परंतु इनकी देहली वोल्टता तुलना में कहीं अधिक तथा प्रत्येक वर्ण के लिए थोड़ी भिन्न होती है। LED की पश्च भंजन वोल्टता बहुत कम, प्रतीकात्मक रूप में लगभग 5 V होती है। अत: यह सावधानी बरतनी चाहिए कि इनके पार उच्च पश्चर्देशिक वोल्टताएँ न हों।

ऐसे LEDs जो लाल, पीला, नारंगी, हरा तथा नीला प्रकाश उत्स्सर्जित कर सकते हैं, बाज़ारों में उपलब्ध हैं। जिन अर्धचालकों का उपयोग दृश्य LED के निर्माण में होता है उनका बैंड अंतराल कम-से-कम 1.8 eV होना चाहिए (दृश्य प्रकाश का स्पेक्ट्रमी पारेसर लगभग $0.4 \mu \mathrm{~m}$ से $0.7 \mu \mathrm{~m}$ है अर्थात लगभग 3 eV से 1.8 eV तक होता है।। यौगिक अर्धचालक गैलियम आर्सेनाइड-फ़ोस्फ़ाइड $\left(\mathrm{GaAs}_{1-x} \mathrm{P}_{x}\right)$ का उपयोग विभिन्न वर्णों के LED के निर्माण में होता है। $\mathrm{GaAs}_{0.6} \mathrm{P}_{0.4}$ $\left(E_{g} \sim 1.9 \mathrm{cV}\right)$ का उपयोग लाल LED बनाने में होता है। $\mathrm{GaAs}\left(E_{g} \sim 1.4 \mathrm{cV}\right)$ का उपयोग अवरक्त LED बनाने में होता है। इन LED का बृहत रूप में उपयोग सुदूर नियंत्रण, चोर घंटी संयंत्रों, प्रकाशिक संचार आद्ये में किया जाता है। श्वेत LED विर्कसित करने के लिए विस्तारेत अनुसंधान किए जा रहे हैं। ये LED तापदीप्त लैंपों को प्रतिस्थापित कर सकते हैं।

LED के कम शक्ति पारंपरिक तापदीप्त लैंपों की तुलना में निम्नार्लिखित लाभ हैं-
(i) निम्न प्रचालन वोल्टता तथा अपेक्षाकृत कम शाक्ति।
(ii) शीघ्र क्रिया, गरम होने के लिए कोई समय नहीं चाहिए।
(iii) उत्सार्जित प्रकाश की बैंड चौड़ाई $100 \AA$ से $500 \AA$, अथवा दूसरे शब्दों में यह लगभग (परंतु यथार्थ रूप में नहीं) एक-वर्णी प्रकाश उत्सर्जित करता है।
(iv) अधिक आयु तथा सुदृढ़
(v) तीव्र 'ऑन-ऑफ़' होने की क्षमता

(iii) सौर सेल

सौर सेल मूल रूप में एक ऐसी $\mathrm{p}-\mathrm{n}$ संधि होती है जो सौर-विकिरणों के आपतित होने पर emf

उत्पन्न करती है। यह फ़ोटोडायोड के सिद्धांत (फ़ोटोवोल्टीय प्रभाव) पर ही कार्य करता है। केवल इतना ही अंतर है कि कोई बाह्य बायस अनुप्रयुक्त नहीं की जाती तथा संधि का क्षेत्रफल सौर विकिरणों के आपतन के लिए काफ़ी अधिक रखा जाता है, इसका कारण यह है कि हमारी रुचि अधिक शक्ति प्राप्त करने में होती है।

चित्र 14.24 में एक सरल $\mathrm{p}-\mathrm{n}$ संधि सौर सेल दर्शाया गया है। लगभग $300 \mu \mathrm{mI}$ मोटी $\mathrm{p}-\mathrm{Si}$ पटलिका ली जाती है जिसके एक फलक पर $\mathrm{n}-\mathrm{Si}$ की एक पतली $(\sim 0.3 \mu \mathrm{~m})$ परत विसरण प्रक्रिया द्वारा वर्धित की जाती है। $\mathrm{p}-\mathrm{Si}$ के दूसरे फलक पर कोई धातु का लेपन (पश्च स्पर्श) किया जाता है। $\mathrm{n}-\mathrm{Si}$ सतह के शीर्ष पर धातु फिंगर इलेक्ट्रोड (Metallised finger electrode अथवा घात्विक ग्रिड) निक्षेपित करते हैं। यह अग्र संपर्क की भाँति कार्य करता है। घात्विक ग्रिड सेल के क्षेत्रफल का बहुत थोड़ा भाग $(<15 \%)$ घेरती है ताकि सेल पर प्रकाश शीर्ष से आपतित हो सके।

प्रकाश पड़ने पर सौर सेल द्वारा emf उत्पन्न होना निम्नलिखित

चित्र 14.24 (a) एक प्रतिरूपी $p-n$ संधि सौर सेल, (b) सौर सेल का परिच्छेद दृश्य। तीन मूल प्रक्रियाओं के कारण है, ये तीन प्रक्रियाएँ हैं - जनन, पृथकन तथा संग्रह- (i) संधि के निकट प्रकाश ($h \nu>E_{g}$ के साथ) के कारण इलेक्ट्रॉन होल ($e h$) युगलों का जनन; (ii) ह्रासी क्षेत्र के विद्युत क्षेत्र के कारण इलेक्ट्रॉनों व होलों का पृथकन। प्रकाश जनित इलेक्ट्रॉन n -फलक की ओर तथा होल p -फलक की ओर चलते हैं; (iii) n -फलक पर पहुँचने वाले इलेक्ट्रॉन अग्र संपर्क द्वारा संग्रह किए जाते हैं तथा p -फलक पर पहुँचने वाले होल पश्च संपर्क द्वारा संग्रह किए जाते हैं। इस प्रकार p -फलक धनात्मक तथा n -फलक ऋणात्मक हो जाता है जिसके फलस्वरूप फ़ोटोवोल्टता प्राप्त (उत्पन्न) होती है।

जब चित्र 14.25(a) में दर्शाए अनुसार कोई बाह्य लोड संयोजित किया जाता है तो लोड से एक प्रकाश धारा I_{L} प्रवाहित होती है। चित्र 14.25 (b) में किसी सौर सेल का प्रतिरूपी $I-V$ अभिलाक्षणिक वक्र दर्शाया गया है।

ध्यान देने योग्य बात यह है कि सौर सेल के $I-V$ अभिलाक्षणिक को निर्देशांक अक्षों के चौथे चतुर्थांश में खींचा गया है। इसका कारण यह है कि सौर सेल कोई विद्युत धारा नहीं लेता वरन यह लोड को विद्युत धारा की आपूर्ति करता है।

सौर सेलों के निर्माण के लिए आदर्श पदार्थ के रूप में उन अर्धचालकों को लेते हैं जिनका बैंड अंतराल 1.5 eV के निकट होता है। सौर सैलों के निर्माण के लिए प्रयुक्त होने वाले अर्धचालक पदार्थ जैसे $\mathrm{Si}\left(E_{g}=1.1 \mathrm{eV}\right)$, $\operatorname{GaAs}\left(E_{g}=1.43 \mathrm{cV}\right), \mathrm{CdTc}\left(E_{g}=1.45 \mathrm{cV}\right), \mathrm{CuInSc}_{2}\left(E_{g}=\right.$ 1.04 eV) आदि हैं। सौर सैलों के निर्माण के लिए पदार्थों के चयन के लिए मुख्य कसौटियाँ हैं : (i) बैंड अंतराल (~ 1.0 से 1.8 eV), (ii) अधिक प्रकाश अवशोषण क्षमता ($\sim 10^{4} \mathrm{~cm}^{-1}$), (iii) वैद्युत चालकता, (iv) कच्चे पदार्थ की उपलब्धता, तथा (v) लागत। ध्यान दीजिए, सौर सेलों को सदैव ही तेज सूर्य के प्रकाश की आवश्यकता नहीं होती। कोई भी प्रकाश जिसकी

(a)

(b)

चित्र 14.25 (a) एक प्रतिरूपी प्रदीप्त $p-n$ संधि, (b) सौर सेल का V-I अभिलाक्षणिक वक्र। ऊर्जा बैंड अंतराल से अधिक हो, उपयोगी हो सकता है। सौर सेलों का उपयोग उपग्रहों में उपयोग होने वाली इलेक्ट्रॉनिक युक्तियों, अंतरिक्ष यानों तथा कुछ कैलकुलेटरों की विद्युत आपूर्ति के लिए भी किया जाता है। बृहत पैमाने पर सौर ऊर्जा का उपयोग करने के लिए कम लागत के फ़ोटोवोल्टीय सेलों का उत्पादन अनुसंधान का विषय है।

उदाहरण 14.7 सौर सेलों के लिए Si और GaAs अधिक पसंद वाले पदार्थ क्यों हैं? हल हमें प्राप्त होने वाला सौर विकिरण स्पेक्ट्रम चित्र 14.26 में दिखाया गया है।

अधिकतम तीव्रता 1.5 इलेक्ट्रॉन वोल्ट के पास है। प्रकाश-उत्तेजन के लिए, $h v>E_{\mathrm{g}}$ । इसलिए ऐसे अर्धचालकों जिनका बैंड अंतराल ~ 1.5 इलेक्ट्रॉन वोल्ट या उससे कम हो, के लिए सौर ऊर्जा के रूपांतरण की दक्षता अच्छी होने की संभावना है। सिलिकॉन के लिए $E_{\mathrm{g}} \sim 1.1 \mathrm{eV}$ (इलेक्ट्रॉन वोल्ट) जबकि GaAs के लिए यह ~ 1.53 इलेक्ट्रॉन वोल्ट है। वास्तव में, अपेक्षाकृत अधिक अवशोषण गुणांक के कारण GaAs (अधिक बैंड अंतराल होने पर भी) Si से ज़्यादा अच्छा है। यदि हम Cds या $\mathrm{Cd} \mathrm{Se}\left(E_{\mathrm{g}} \sim 2.4 \mathrm{eV}\right)$ जैसे पदार्थों को चुनें तो प्रकाश-रूपांतरण के लिए हम सौर ऊर्जा के केवल उच्च ऊर्जा घटक का इस्तेमाल कर सकते हैं और ऊर्जा के एक सार्थक भाग का कोई उपयोग नहों हो पाएगा। प्रश्न यह उठता है कि हम PbS ($E_{\mathrm{g}} \sim 0.4$ इलेक्ट्रॉन वोल्ट) जैसे पदार्थ क्यों नहीं उपयोग करते, जो सौर विकिरण के स्पेक्ट्रम के तदनुरूपी उच्चिष्ठ v के लिए $h v>E_{\mathrm{g}}$ का प्रतिबंध संतुष्ट करते हैं? यदि हम ऐसा करेंगे तो सौर विकिरण का अधिकांश भाग सौर सेल की ऊपरी परत पर ही अवशोषित हो जाएगा और ह्रासी क्षेत्र में या उसके पास नहीं पहुँचेगा। संधि क्षेत्र के कारण इलेक्ट्रॉन होल के प्रभावी पृथकन के लिए हम चाहते हैं कि प्रकाश जनन केवल संधि क्षेत्र में ही हो।

14.9 संधि ट्रांज़िस्टर

सन् 1947 में ट्रांज़िस्टर के आविष्कार का श्रेय बेल टेलीफ़ोन प्रयोगशाला U.S.A. के जे. बारडीन तथा डब्ल्यू. एच. ब्रेटन को जाता है। यह ट्रांज़िस्टर एक बिंदु सम्पर्क ट्रांज़िस्टर था। पहले संधि ट्रांज़िस्टर का आविष्कार 1951 में विलियम शॉकले ने दो p-n संधियों को एक-दूसरे के पश्च फलकों को जोड़कर किया था।

जब तक केवल संधि ट्रांज़िस्टर ज्ञात था, इसे केवल ट्रांज़िस्टर कहकर जाना जाता था। परंतु समय के साथ नए-नए ट्रांज़िस्टरों का आविष्कार हुआ तथा नए ट्रांज़िस्टर को पुरानों से भेद करने के लिए इन्हें अब द्विध्रुवी संधि ट्रांज़िस्टर (Bipolar junction transistor, BJT) कहते हैं।

आज जब कोई भ्रांति नहीं है तब भी प्राय: BJT को ट्रांज़िस्टर ही कहते हैं। चूँकि हमारा अध्ययन केवल BJT तक ही सीमित है, इसलिए हम बिना किसी संदिग्धता के BJT के लिए ट्रांज़िस्टर शब्द का ही उपयोग करेंगे।

14.9.1 ट्रांज़िस्टर : संरचना तथा क्रिया

किसी ट्रांज़िस्टर में तीन अपमिश्रित क्षेत्र होते हैं जो मिलकर अपने बीच में दो $\mathrm{p}-\mathrm{n}$ संधियाँ बनाते हैं। अतः स्पष्ट है कि ट्रांज़िस्टर चित्र 14.27 में दर्शाए अनुसार दो प्रकार के होते हैं।
(i) n-p-n ट्रांज़िस्टर - इसमें n -प्रकार के अर्धचालक के दो खंड (उत्सर्जक तथा संग्राहक) p -प्रकार के अर्धचालक के एक खंड (आधार) द्वारा पृथक किए जाते हैं।
(ii) p-n-p ट्रांज़िस्टर - इसमें p -प्रकार के अर्धचालक के दो खंड (उत्सर्जक तथा संग्राहक) n -प्रकार के अर्धचालक के एक खंड (आधार) द्वारा पृथक किए जाते हैं।

चित्र 14.27(a) में किसी p-n-p तथा n-p-n विन्यास के व्यवस्थात्मक निरूपण दर्शाए गए हैं। किसी ट्रांज़िस्टर के तीनों खंडों की मोटाई भिन्न-भिन्न होती है। उनके अपमिश्रण स्तर भी भिन्न होते हैं। $\mathrm{p}-\mathrm{n}-\mathrm{p}$ तथा $\mathrm{n}-\mathrm{p}-\mathrm{n}$ ट्रांज़िस्टरों को निरूपित करने वाले व्यवस्थात्मक प्रतीकों में [चित्र $14.27(\mathrm{~b})$] तीर के चिह्न ट्रांज़िस्टर में प्रवाहित रूढ़ धारा की दिशा दर्शाते हैं। इन ट्रांज़िस्टरों के संक्षिप्त वर्णन नीचे दिए गए हैं :

- उत्सर्जक (Emitter) - यह चित्र 14.27(a) में दर्शाए अनुसार ट्रांज़िस्टर की एक ओर का खंड होता है। यह मध्यम साइज़ का परंतु अत्यधिक अपमिश्रित होता है। यह ट्रांज़िस्टर में प्रवाहित धारा के लिए बहुसंख्यक आवेश वाहक की अत्यधिक मात्रा में आपूर्ति करता है।
- आधार (Base) - यह केंद्रीय खंड होता है। यह अत्यंत पतला तथा कम अपमिश्रित होता है।
- संग्राहक (Collector) - यह खंड उत्सर्जक द्वारा प्रदान किए गए बहुसंख्यक आवेश वाहकों के अधिकांश भाग का संग्रहण करता है। संग्राहक फलक साधारण अपमिश्रित होता है परंतु साइज़ में यह उत्सर्जक से बड़ा होता है।
हम पहले यह देख चुके हैं कि किसी $\mathrm{p}-\mathrm{n}$ संधि के प्रकरण में संधि के आर-पार एक ह्रासी क्षेत्र बन जाता है। किसी ट्रांज़िस्टर में उत्सर्जक-आधार संधि तथा आधार-संग्राहक संधि पर ह्नासी क्षेत्र बनते हैं। किसी ट्रांज़िस्टर की कार्य प्रणाली को समझने के लिए हमें इन संधियों पर बने ह्रासी क्षेत्रों की प्रकृति को जानना होगा। जब किसी ट्रांज़िस्टर के टर्मिनलों पर उचित वोल्टता अनुप्रयुक्त की जाती है तो ट्रांज़िस्टर के विभिन्न क्षेत्रों में आवेश वाहक गति करते हैं। ट्रांज़िस्टर का बायसन् भिन्न-भिन्न प्रयोजनों के लिए भिन्न-भिन्न प्रकार से किया जाता है।

ट्रांज़िस्टर का उपयोग स्पष्ट रूप से दो प्रकार से किया जा सकता है। मूल रूप से इसका आविष्कार प्रवर्धक की भाँति कार्य करने के लिए किया गया था जो किसी सिग्नल की आवर्धित प्रति उत्पन्न करता है। परंतु शनैः-शनै: इसका स्विच के रूप में भी समान उपयोग किया जाने लगा। हम इन दोनों ही प्रकार्यों के विषय में अध्ययन करके यह सीखेंगे कि किस प्रकार ट्रांज़िस्टर को बायसित करके ये पारस्परिक एकांतरिक प्रकार्य कार्यान्वित किए जाते हैं।

सर्वप्रथम हम यह जानने का प्रयास करेंगे कि ट्रांज़िस्टरों को प्रवर्धन क्षमताएँ कौन प्रदान करता है। ट्रांज़िस्टर अपने उत्सर्जक-आधार संधि के अग्रदिशिक बायसन्, तथा आधार-संग्राहक संधि के पश्चदिशिक बायसन् में प्रवर्धक की भाँति कार्य करता है। इस स्थिति में चित्र 14.28 में इन बायसों को क्रमशः $V_{C C}$ तथा $V_{E E}$ द्वारा उत्पन्न करते हुए दर्शाया गया है। जब ट्रांज़िस्टर को इस ढंग से बायसित किया जाता है तो इसे इसकी सक्रिय अवस्था कहते हैं। हम उत्सर्जक तथा आधार के बीच वोल्टता को $V_{E B}$ तथा संग्राहक तथा आधार के बीच की वोल्टता को $V_{C B}$ द्वारा निरूपित

चित्र 14.27 (a) n-p-n ट्रांज़िस्टर तथा p-n-p ट्रांज़िस्टर का व्यवस्थात्मक निरूपण और
(b) $\mathrm{n}-\mathrm{p}-\mathrm{n}$ तथा $\mathrm{p}-\mathrm{n}-\mathrm{p}$ ट्रांज़िस्टर के लिए संकेत।

-1. भौतिकी

चित्र 14.28 बायस वोल्टता का अनुप्रयोग : (a) p-n-p ट्रांजिस्टर तथा (b) n-p-n ट्रांजिस्टर।

करते हैं। चित्र 14.28 में दोनों विद्युत प्रदाय उभयनिष्ठ टर्मिनल आधार से संयोजित हैं, जबकि इनके अन्य टर्मिनल क्रमशः उत्सर्जिक तथा संग्राहक से संयोजित हैं। अतः इन दो विद्युत प्रदायों को क्रमशः $V_{E E}$ तथा $V_{C C}$ द्वारा निरूपित करते हैं। उन परिपथों जिनमें उत्सर्जक उभयनिष्ठ टर्मिनल होता है, उनमें आधार तथा उत्सर्जक के बीच संयोजित विद्युत प्रदाय को $V_{B B}$ तथा संग्राहक उत्पर्जक के बीच संयोजित विद्युत प्रदाय को $V_{C C}$ द्वारा निरूपित किया जाता है।

आइए अब हम ट्रांज़िस्टर में धारा वाहकों के पथों के विषय में जानकारी प्राप्त करें जो उत्सर्जक-आधार संधि पर अग्रदिशिक वायसित तथा आधार-संग्राहक संधि पर पश्चदिशिक बायसित है। अत्यधिक अपमिश्रित उत्सर्जक में बहुसंख्यक वाहकों की उच्च सांद्रता होती है, जिसमें होल $\mathrm{p}-\mathrm{n}-\mathrm{p}$ ट्रांज़िस्टरों में तथा इलेक्ट्रॉन $n-p-n$ ट्रांज़िस्टरों में बहुसंख्यक वाहक होते हैं। ये बहुसंख्यक वाहक आधार क्षेत्र में अत्यधिक संख्या में प्रवेश करते हैं। आधार अत्त्यधिक पतला तथा कम मात्रा में अपमिश्रित होता है। अतः वहाँ पर बहुसंख्यक वाहकों की संख्या कम होती है। p-n-p ट्रांज़िस्टर में, आधार में क्योंकि यह n-प्रकार का अर्धचालक है, अतः बहुसंख्यक वाहक इलेक्ट्रॉन होते हैं। उत्सर्जक से आधार में प्रवेश करने वाले अधिकांश होल वहाँ उपस्थित इलेक्ट्रॉन की कम संख्या को अपने में समा लेते हैं। चूँकि आधार-संग्राहक संधि पश्चदिशिक बायस होती है, ये होल, जो इस संधि पर अल्पांश वाहक के रूप में प्रतीत होते हैं, संधि को आसानी से पार करके संग्राहक में पहुँच जाते हैं। आधार में उपस्थित होल या तो बाहर से आने वाले इलेक्ट्रॉनों से संयोग करने के लिए आधार टर्मिनल की ओर गाति करते हैं अथवा संग्राहक में प्रवेश करने के लिए संधि को पार करके संग्राहक टर्मिनल पर पहुँच जाते हैं। आधार को इसलिए पतला बनाया जाता है ताकि होल स्वयं को पश्चदिशिक बायसित आधार संग्राहक संधि के निकट पाकर आधार टर्मिनल पर न जाकर संधि को पार कर लें।

यहाँ ध्यान देने योग्य रोचक बात यह है कि अग्रदिशिक बायस होने के कारण एक बृहत धारा उत्सर्जक-आधार संधि में प्रवेश करती है, परंतु उसके अधिकांश भाग को संलग्न पश्चदिशिक बायसित आधार-संग्राहिक संधि की ओर मोड़ दिया जाता है तथा आधार से आने वाली धारा संधि में प्रवेश करने वाली धारा का एक बहुत छोटा अंश ही होती है। यदि हम अग्र्दिशिक बायस संधि को पार करने वाली होल धारा तथा इलेक्ट्रॉन धारा को क्रगशः I_{h} तथा I_{e} से निरूपित करें तो अग्रदिशिक बायस डायोड में प्रवाहित कुल धारा का योग $I_{h}+I_{e}$ होगा। हम यह पाते हैं कि उत्सर्जक धारा $I_{\mathrm{E}}=I_{h}+I_{e}$ परंतु आधार धारा $I_{\mathrm{B}} \ll I_{h}+I_{e}$ क्योंकि I_{e} का अधिकांश भाग आधार टर्मिनल से बाहर आने की बजाय संग्राहक में चला जाता है। अतः आधार धारा उत्सर्जक धारा का एक बहुत छोटा अंश होती है।

बाहर से उत्सर्जक में प्रवेश करने वाली धारा उत्सर्जक धारा I_{E} के बराबर होती है। इसी प्रकार आधार टर्मिनल से निर्गत धारा I_{B} है तथा संग्राहक टर्मिनल से निर्गत धारा I_{C} है। अतः ऊपर दिए गए तर्क से स्पष्ट है [तथा चित्र 14.28(a) में किरखोफ़ नियम के संधि अनुप्रयोग द्वारा भी] कि

उत्सर्जक धारा I_{E}, संग्राहक धारा I_{C} तथा आधार धारा I_{B} का योग है। अर्थात-

$$
\begin{equation*}
I_{E}=I_{C}+I_{B} \tag{14.7}
\end{equation*}
$$

हम यह भी पाते हैं कि $I_{C} \approx I_{E}$
यहाँ पर होलों की गति की दिशा का विवरण रूढ़ धारा की दिशा के सर्वसम है। परंतु इलेक्ट्रॉनों की गति की दिशा धारा की दिशा के ठीक विपरीत है। इस प्रकार किसी p-n-p ट्रांज़िस्टर में धारा उत्सर्जक से आधार में प्रवेश करती है जबकि n-p-n ट्रांज़िस्टर में धारा आधार से उत्सर्जक में प्रवेश करती है। उत्सर्जक में तीरशीर्ष रूढ़ धारा की दिशा को दर्शाते हैं।

किसी n-p-n ट्रांज़िस्टर में बहुसंख्यक तथा अल्पांश वाहकों द्वारा अपनाए गए पथों के विवरण p-n-p ट्रांज़िस्टर के समान ही हैं। परंतु चित्र 14.28 में दर्शाए अनुसार धारा के पथ एक-दूसरे के ठीक विपरीत है। चित्र 14.28 (b) इलेक्ट्रॉन बहुसंख्यक वाहक हैं जिनकी आपूर्ति n -प्रकार के क्षेत्र द्वारा की जाती है। ये पतले p -प्रकार के आधार क्षेत्र को पार करते हैं और संग्राहक पर पहुँच कर संग्राहक धारा I_{C} देते हैं। उपरोक्त विवरण से हम यह निष्कर्ष निकाल सकते हैं कि ट्रांज़िस्टर की सक्रिय अवस्था में उत्सर्जक आधार संधि एक कम प्रतिरोध के रूप में कार्य करती है जबकि आधार-संग्राहक संधि उच्च प्रतिरोध के रूप में कार्य करती है।

14.9.2 मूल ट्रांज़िस्टर परिपथ विन्यास तथा ट्रांज़िस्टर अभिलाक्षणिक

किसी ट्रांज़िस्टर में केवल तीन टर्मिनल उपलब्ध होते हैं-उत्सर्जक (E), आधार (B) तथा संग्राहक (C)। अतः किसी परिपथ में निवेश/निर्गत संयोजन इस प्रकार के होने चाहिए कि इनमें से कोई एक (E, या B या C) निवेश तथा निर्गत में उभनिष्ठ हो। इसलिए किसी ट्रांज़िस्टर को निम्नलिखित तीन विन्यासों में से किसी एक विन्यास में संयोजित किया जा सकता है।
उभयनिष्ठ उत्सर्जक (CE), उभयनिष्ठ आधार (CB), तथा उभयनष्ठि संग्राहक (CC)
ट्रांज़िस्टरों का अधिक व्यापक उपयोग उभयनिष्ठ उत्सर्जक CE विन्यास में किया जाता है अत: हम अपनी चर्चा को केवल इसी विन्यास तक ही सीमित रखेंगे। चूँकि n-p-n सिलिकॉन ट्रांज़िस्टरों का उपयोग अधिक सामान्य है। हम अपनी चर्चा इसी ट्रांज़िस्टर तक ही सीमित रखेंगे। p-n-p ट्रांज़िस्टर से व्यवहार करते समय बाह्य विद्युत आपूर्ति की ध्रुवता उत्क्रमित करनी होती है।

उभयनिष्ठ उत्सर्जक ट्रांज़िस्टर अभिलाक्षणिक

जब ट्रांज़िस्टर का उपयोग CE विन्यास में करते हैं तो निवेश आधार तथा उत्सर्जक के बीच तथा निर्गत संग्राहक तथा उत्सर्जक के बीच होता है। आधार उत्सर्जक वोल्टता में $V_{B E}$ परिवर्तन के साथ आधार धारा I_{B} में परिवर्तन होना निवेश अभिलाक्षणिक कहलाता है। इसी प्रकार संग्राहक-उत्सर्जक वोल्टता V_{CE} में परिवर्तन के साथ संग्राहक धारा I_{C} में परिवर्तन होना निर्गत अभिलाक्षणिक कहलाता है। आप यह देखेंगे कि निर्गत अभिलाक्षणिकों को निवेश अभिलाक्षणिक नियंत्रित करते हैं। इससे यह ध्वनित होता है कि आधार धारा के साथ संग्राहक धारा में भी परिवर्तन होता है।

चित्र 14.29 में दर्शाए गए परिपथ का उपयोग करके किसी $\mathrm{n}-\mathrm{p}-\mathrm{n}$ ट्रांज़िस्टर के निवेश अभिलाक्षणिक तथा निर्गत अभिलाक्षणिक का अध्ययन किया जा सकता है।

चित्र 14.29 उभयनिष्ठ उत्सर्जक विन्यास में $\mathrm{n}-\mathrm{p}-\mathrm{n}$ ट्रांज़िस्टर के निर्गत तथा निवेश अभिलाक्षणिक के अध्ययन के लिए परिपथ-व्यवस्था।

- भौतिकी

(a)

(b)

चित्र 14.30 (a) प्ररूपी निवेश अभिलाक्षणिक तथा (b) प्ररूपी निर्गत अभिलाक्षणिक।

आधार धारा I_{B} तथा आधार-उत्सर्जक वोल्टता $V_{B E}$ के बीच ग्राफ़ (एक वक्र) खींचा जाता है। $V_{B E}$ पर I_{B} की निर्भरता का अध्ययन करने के लिए संग्राहक उत्सर्जक-वोल्टता $V_{C E}$ को नियत रखा जाता है। हमारी रुचि उस समय निवेश अभिलाक्षणिक प्राप्त करने में होती है जब ट्रांज़िस्टर सक्रिय अवस्था में हो। अतः संग्राहक-उत्सर्जक वोल्टता $V_{C E}$ को इतना अधिक रखा जाता है कि आधार संग्राहक संधि पश्चदिशिक बायसित रहे। चूँकि $V_{C E}=V_{C B}+V_{B E}$ तथा Si ट्रांज़िस्टर के लिए $V_{B E}$ का मान 0.6 से 0.7 V होता है। अतः $V_{C E}, 0.7 \mathrm{~V}$ से काफ़ी अधिक होना चाहिए। चूँकि $V_{C E}$ के बड़े परिसर में ट्रांज़िस्टर का प्रचालन प्रवर्धक रूप में किया जाता है, अतः अधिकांश समय तक आधार-संग्राहक संधि उच्च पश्चदिशिक बायसित रहती है। अतः $V_{C E}$ के मान लगभग 3 V से 20 V के परास में रखकर निवेश अभिलाक्षणिक प्राप्त किए जा सकते हैं। चूँकि $V_{C E}$ में वृद्धि $V_{C B}$ में वृद्धि के रूप में प्रतीत होती है, इसका I_{B} पर प्रभाव नगण्य है। इसके परिणामस्वरूप, $V_{C E}$ के विभिन्न मानों के लिए निवेश अभिलाक्षणिकों के वक्र लगभग सर्वसम होते हैं। अतः केवल एक निवेश अभिलाक्षणिक निर्धारित (खींचना) ही पर्याप्त होता है। चित्र 14.30(a) में किसी ट्रांज़िस्टर का प्रारूपी निवेश अभिलाक्षणिक दर्शाया गया है।
I_{B} को नियत रखकर $V_{C F}$ में परिवर्तन के साथ I_{C} में परिवर्तन का प्रेक्षण करने पर निर्गत अभिल़ाक्षणिक प्राप्त किया जा सकता है। यह स्पष्ट है कि जब $V_{B E}$ में लघु वृद्धि करते हैं तो उत्सर्जक क्षेत्र से होल धारा तथा आधार क्षेत्र से इलेक्ट्रॉन धारा दोनों में वृद्धि होती है। इसके परिणामस्वरूप I_{B} तथा I_{C} दोनों में आनुपातिक रूप में वृद्धि होती है। इससे यह प्रदर्शित होता है कि जब I_{B} में वृद्धि होती है तो I_{C} में भी वृद्धि होती है। I_{B} के विभिन्न नियत मानों पर I_{C} तथा $V_{C E}$ के बीच खींचे गए वक्रों से हमें निर्गत अभिलाक्षणिक प्राप्त होते हैं। अतः चित्र $14.30(\mathrm{~b})$ में दर्शाए अनुसार आधार धारा I_{B} के विभिन्न मानों के लिए भिन्न-भिन्न निर्गत अभिलाक्षणिक होते हैं।

इन दोनों-निवेश तथा निर्गत अभिलाक्षणिकों के रैखिक खंडों का उपयोग ट्रांज़िस्टरों के कुछ महत्वपूर्ण ac प्राचलों के परिकलन में नीचे दिए अनुसार किया जा सकता है।
(i) निवेश प्रतिरोध $\left(r_{i}\right)$: इसे इस प्रकार परिभाषित किया जाता है, नियत संग्राहक-उत्सर्जक वोल्टता $\left(V_{C E}\right)$ पर आधार-उत्सर्जक वोल्टता में परिवर्तन $\left(\Delta V_{B E}\right)$ के परिणामस्वरूप आधार धारा में परिणामी अंतर $\left(\Delta I_{B}\right)$ के अनुपात को निवेश प्रतिरोध कहते हैं। यह परिवर्तनात्मक (ac प्रतिरोध) है तथा इसे निवेश अभिलाक्षणिक द्वारा पता भी लगाया जा सकता है कि इसका मान ट्रांज़िस्टर की प्रचालन धारा के साथ परिवर्तित होता है।
$r_{i}=\left(\frac{\Delta V_{D E}}{\Delta I_{B}}\right)_{V_{C E}}$
(ii) निर्गत प्रतिरोध $\left(\boldsymbol{r}_{\mathrm{o}}\right)$: इसे इस प्रकार परिभाषित किया जाता है, नियत आधार धारा I_{B} पर संग्राहक-उत्सर्जन वोल्टता में अंतर $\left(\Delta V_{C E}\right)$ तथा संग्राहक धारा में परिणामी अंतर $\left(\Delta I_{C}\right)$ के अनुपात को निर्गत प्रतिरोध $\left(r_{o}\right)$ कहते हैं।

$$
\begin{equation*}
r_{o}=\left(\frac{\Delta V_{C E}}{\Delta I_{C}}\right)_{I_{B}} \tag{14.9}
\end{equation*}
$$

निर्गत अभिलाक्षणिक यह दर्शाते हैं कि आरम्भ में $V_{C E}$ के अति लघु मानों के लिए I_{C} में लगभग रैखिकतः वृद्धि होती है। इसका कारण यह है कि आधार-संग्राहक संधि पश्चद्विशिक बायसित नहीं है तथा ट्रांज़िस्टर सक्रिय अवस्था में नहीं है। वास्तव में, ट्रांज़िस्टर संतृप्त अवस्था में है तथा अभिलाक्षणिक के इस भाग में, धारा को आपूर्ति वोल्टता $V_{C C}\left(=\mathrm{V}_{C E}\right)$ द्वारा नियंत्रित किया जाता है। जब $V_{C E}$ का मान आधार-संग्राहक संधि को पश्चदिशिक बायसित करने के लिए आवश्यक वोल्टता से अधिक होता है तो $V_{C E}$ में परिवर्तन के साथ I_{C} में बहुत कम वृद्धि होती है। निर्गत अभिलाक्षणिक के रैखिक भाग के ढलान का प्रतिलोम निर्गत प्रतिरोध r_{o} प्रदान करता है। ट्रांज़िस्टर के निर्गत प्रतिरोध को मुख्यतः आधार-संग्राहक संधि के बायस द्वारा नियंत्रित किया जाता है। निर्गत प्रतिरोध के उच्च परिमाण ($100 \mathrm{k} \Omega$ कोटि का) होने का कारण इस डायोड का पश्चदिशिक बायसित होना है। इससे यह भी स्पष्ट होता है कि निर्गत अभिलाक्षणिक के आरम्भिक भाग पर जबकि ट्रांज़िस्टर संतृप्त अवस्था में है, प्रतिरोध बहुत कम क्यों होता है।
(iii) धारा प्रवर्धक गुणांक (β) : इसे इस प्रकार परिभाषित किया जाता है, नियत संग्राहक-उत्सर्जक वोल्टता $\left(V_{C E}\right)$ पर संग्राहक धारा में परिवर्तन $\left(\Delta I_{C}\right)$ और आधार धारा में परिणामी परिवर्तन $\left(\Delta I_{B}\right)$ के अनुपात को धारा प्रवर्धक गुणांक (β) कहते हैं।

$$
\begin{equation*}
\rho_{a c}=\left(\frac{\Delta I_{C}}{\Delta I_{B}}\right)_{V_{c E}} \tag{14.10}
\end{equation*}
$$

इसे लघु सिग्नल धारा लब्धि भी कहते हैं तथा इसका मान अत्यधिक होता है। यदि हम केवल I_{C} तथा I_{B} का अनुपात ज्ञात करें तो हमें ट्रांज़िस्टर का $\mathrm{dc} \beta$ प्राप्त होता है। अत:

$$
\begin{equation*}
\beta_{d c}=\frac{I_{C}}{I_{B}} \tag{14.11}
\end{equation*}
$$

चूँकि I_{C} में I_{B} के साथ लगभग रैखिकतः वृद्धि होती है तथा जब $I_{B}=0$ है तो $I_{C}=0$ होता है, $\beta_{d c}$ तथा $\beta_{a c}$ के मान लगभग बराबर होते हैं। अतः अधिकांश परिकलनों के लिए $\beta_{d c}$ का उपयोग किया जा सकता है। $V_{C E}$ तथा $I_{B}\left(\right.$ या $\left.I_{C}\right)$ में परिवर्तन के साथ $\beta_{a c}$ तथा $\beta_{d c}$ दोनों में थोड़ा परिवर्तन होता है।

उदाहरण 14.8 चित्र 14.30 (b) में दर्शाए गए निर्गत अभिलाक्षणिक से किसी ट्रांज़िस्टर के $\beta_{a c}$ तथा $\beta_{d c}$ के मान परिकलित कीजिए जबकि $V_{C E}=10 \mathrm{~V}$ है तथा $I_{C}=4.0 \mathrm{~mA}$ है।
हल

$$
\beta_{a c}=\left(\frac{\Delta I_{C}}{\Delta I_{B}}\right)_{V_{c E}} ; \beta_{a c}=\frac{I_{C}}{I_{B}}
$$

$V_{C E}$ तथा I_{C} के दिए गए मानों पर $\beta_{a c}$ तथा $\beta_{d c}$ के मानों को ज्ञात करने के लिए हम इस प्रकार आगे बढ़ सकते हैं। I_{C} के दिए गए मान से कुछ कम तथा कुछ अधिक I_{B} के दो मानों के लिए किन्हीं दो अभिलाक्षणिकों पर विचार करते हैं। यहाँ $I_{C}=4.0 \mathrm{~mA}$. $\left(I_{B}=30\right.$ तथा $20 \mu \mathrm{~A}$ के लिए अभिलाक्षणिकों का चयन कीजिए) $V_{C E}=10 \mathrm{~V}$ पर हम ग्राफ़ से I_{C} के दो मान प्राप्त करते हैं।

- भौतिकी

$$
\begin{aligned}
& \Delta I_{\mathrm{B}}=(30-20) \mu \mathrm{A}=10 \mu \mathrm{~A}, \Delta I_{\mathrm{C}}=(4.5-3.0) \mathrm{mA}=1.5 \mathrm{~mA} \\
& \text { अत:, } \beta_{\mathrm{ac}}=1.5 \mathrm{~mA} / 10 \mu \mathrm{~A}=150 \\
& \beta_{\mathrm{dc}} \text {, का मान ज्ञात करने के लिए या तो } V_{\mathrm{CE}}=10 \mathrm{~V} \text { पर } I_{C}=4.0 \mathrm{~mA} \text { के तदनुरूपी } I_{\mathrm{B}} \text { के मान } \\
& \text { का अनुमान लगाइए अथवा चयन किए गए दो अभिलाक्षणिकों के लिए } \beta_{d c} \text { के दो मान परिकलित } \\
& \text { कीजिए तथा इनका औसत ज्ञात कीजिए। } \\
& \text { अत:, } I_{\mathrm{C}}=4.5 \mathrm{~mA} \text { और } I_{\mathrm{B}}=30 \mu \mathrm{~A} \text { के लिए } \\
& \beta_{\mathrm{dc}}=4.5 \mathrm{~mA} / 30 \mu \mathrm{~A}=150 \\
& \text { तथा } I_{\mathrm{C}}=3.0 \mathrm{~mA} \text { तथा } I_{B}=20 \mu \mathrm{~A} \text { के लिए } \\
& \beta_{\mathrm{dc}}=3.0 \mathrm{~mA} / 20 \mu \mathrm{~A}=150 \\
& \text { इस प्रकार } \beta_{\mathrm{dc}}=(150+150) / 2=150
\end{aligned}
$$

14.9.3 ट्रांज़िस्टर एक युक्ति के रूप में

उपयोग किए जाने वाले विन्यास (जैसे CB, CC तथा CE), E-B तथा B-C संधियों के बायस तथा प्रचालन क्षेत्र जैसे अंतक, सक्रिय क्षेत्र तथा संतृप्त के आधार पर ट्रांज़िस्टर का उपयोग एक युक्ति के रूप में किया जा सकता है। जैसा कि हम पहले ही वर्णन कर चुके हैं हम केवल CE विन्यास तक ही सीमित रहेंगे तथा किसी युक्ति की कार्य प्रणाली को समझने के लिए उस युक्ति के प्रचालन क्षेत्र तथा बायसन तक ही अपना ध्यान केंद्रित रखेंगे।

(a)

(b)

चित्र 14.31 (a) CE विन्यास में आधार बायसित ट्रांजिस्टर (b) अंतरण अभिलक्षण।

जब ट्रांज़िस्टर का उपयोग अंतक अथवा संतृप्त अवस्था में किया जाता है तो यह एक स्विच की भाँति कार्य करता है। इसके विपरीत किसी ट्रांज़िस्टर को एक प्रवर्धक के रूप में उपयोग करने के लिए इसे सक्रिय क्षेत्र में प्रचालित करना होगा।

(i) ट्रांज़िस्टर स्विच के रूप में

हम चित्र 14.31(a) में दर्शाए CE विन्यास में आधार बायसित ट्रांज़िस्टर के व्यवहार का विश्लेषण करके ट्रांज़िस्टर का स्विच के रूप में प्रचालन समझने का प्रयास करेंगे।

इस परिपथ के निवेश तथा निर्गत पक्षों पर किरख़ोफ वोल्टता नियम का अनुप्रयोग करने पर हमें प्राप्त होता है

$$
\begin{equation*}
V_{B B}=I_{B} R_{B}+V_{B E} \tag{14.12}
\end{equation*}
$$

तथा
$V_{C E}=V_{C C}-I_{C} R_{C}$
यहाँ हम $V_{B B}$ को dc निवेश वोल्टता V_{i} तथा $V_{C E}$ को dc निर्गत वोल्टता V_{o} समझेंगे। अत:

$$
\begin{aligned}
& V_{i}=I_{B} R_{B}+V_{B E} \text { तथा } \\
& V_{o}=V_{C C}-I_{C} R_{C} .
\end{aligned}
$$

आइए यह देखें कि V_{i} के शून्य से आगे बढ़ने पर V_{n} में क्या परिवर्तन होते हैं। सिलिकॉन ट्रांज़िस्टरों में जब तक V_{i} का मान 0.6 V से कम होता है ट्रिंज़िस्टर अंतक अवस्था गें रहता है तथा I_{C} शून्य होती है।
अत: $V_{n}=V_{C C}$

निर्गत में कुछ धारा I_{C} होती है। तथा पद $I_{C} R_{C}$ का मान बढ़ने पर निर्गत वोल्टता V_{o} घटती है। V_{i} में वृद्धि होने पर I_{C} में लगभग रैखिकतः वृद्धि होती है और इसीलिए V_{0} का मान रैखिकतः उस समय तक घटता जाता है जब तक कि मान लगभग 1.0 V से कम नहीं हो जाता।

इससे आगे, परिवर्तन अरैखित हो जाता है तथा ट्रांज़िस्टर संतृप्त अवस्था में पहुँच जाता है। V_{i} के मान में और वृद्धि करने पर निर्गत वोल्टता में और कमी होती है तथा यह शून्य की ओर बढ़ने लगती है। तथापि यह शून्य कभी नहीं होती। यदि हम V_{o} तथा V_{i} के बीच ग्राफ़ खींचे, [जिसे 'आधार बायसित ट्रांज़िस्टर का अंतरण अभिलक्षण' भी कहते हैं [चित्र 14.31 (b)] तो हम यह पाते हैं कि अंतक अवस्था तथा सक्रिय अवस्था के बीच और संक्रिय अवस्था तथा संतृप्त अवस्था के बीच भी ऐसे क्षेत्र होते हैं जहाँ पर परिवर्तन में रैखिकता नहीं होती जो यह दर्शाता है कि अंतक अवस्था से सांक्रिय अवस्था में तथा संक्रिय अवस्था से संतुप्त अवस्था में संक्रमण बहुत स्पष्ट नहीं होते। आइए, अब हम यह देखें कि ट्रांज़िस्टर स्विच की भाँति कैसे कार्य करता है। जब तक V_{i} का मान कम होता है और यह ट्रांज़िस्टर को अग्रदिशिक बायसित नहीं करता, V_{o} का मान अधिक ($V_{C C}$ पर) होता है। यदि V_{i} का मान इतना अधिक है कि यह ट्रांज़िस्टर को संतृप्त स्थिथित में प्रचालित करने के लिए पर्याप्त हो तो V_{o} का मान बहुत कम, शून्य के अति निकट होता है। जब ट्रांज़िस्टर चालन करने की अवस्था में नहीं होता तो इसे 'स्विच ऑफ़' की स्थिति में कहते हैं तथा जब यह संतृप्त स्थिति में चला जाता है तो इसे 'स्विच ऑन' में कहा जाता है। इससे यह प्रकट होता है कि यदि हम लघु (कम) या उच्च (अधिक) अवस्था को ट्रांज़िस्टर की अंतक तथा संतृप्त अवस्था के तदनुरूपी स्तरों की किसी निश्चित वोल्टता से नीचे अथवा ऊपर के रूप में परिभाषित करें, तो हम यह कह सकते हैं कि कोई लघु निवेश ट्रांज़िस्टर का स्विच ऑफ़ कर देता है जर्बांक उच्च निवेश ट्रांज़िस्टर का ‘स्विच ऑन' कर देता है। अन्य शब्दों में हम इसे इस प्रकार से भी कह सकते हैं कि ट्रांज़िस्टर को दिया गया लघु निवेश उच्च निर्गत प्रदान करता है जबकि ट्रांज़िस्टर को दिया गया उच्च निवेश लघु निर्गत प्रदान करता है। ट्रांज़िस्टर के स्विच परिपथ इस प्रकार डिजाइन किए जाते हैं कि ट्रांज़िस्टर कभी भी सक्रिय अवस्था में नहीं रहता।

(ii) ट्रांज़िस्टर प्रवर्धक के रूप में

ट्रांज़िस्टर को प्रवर्धक की भाँति उपयोग में लाने के लिए हम V_{o} तथा V_{i} के बीच ग्राफ़ के सक्रिय क्षेत्र का उपयोग करेंगे। इस वक्र के रैखिक भाग की प्रवणता निवेश में परिवर्तन के साथ निर्गत में परिवर्तन की दर को निरूपपित करती है। यह ऋणात्मक होती है क्योंकि निर्गत का मान $V_{C C}-I_{C} R_{C}$ है $I_{C} R_{C}$ नहीं है। यही कारण है कि जैसे-जैसे किसी CE प्रवर्धक की निवेश वोल्टता में वृद्ध्ध होती है इसकी निर्गत वोल्टता में कमी होती जाती है तथा निर्गत को निवेश की कला से बाहर कहा जाता है। यदि हम यह मानें कि ΔV_{o} तथा ΔV_{i} निर्गत तथा निवेश वोल्टताओं में अल्प परिवर्तन हैं तब $\Delta V_{o} / \Delta V_{i}$ को प्रवर्धक की लघु सिग्नल वोल्टता लाब्धि A_{V} कहते हैं।

यदि सक्रिय क्षेत्र के मध्य बिंदु के तदनुरूपी वोल्टता $V_{B B}$ का कोई नियत मान है, तो परिपथ $\Delta V_{o} / \Delta V_{i}$ वोल्टता लब्धि के $C E$ प्रवर्धक की भाँति व्यवहार करेगा। हम ट्रांजिस्टर की वोल्टता लब्धि A_{V} को परिपथ के प्रतिरोधकों के पदों में तथा धारा लब्धि को नीचे दर्शाए अनुसार व्यक्त कर सकते हैं :
हमें ज्ञात है कि निर्गत वोल्टता $V_{o}=V_{C C}-I_{C} R_{C}$ अत:, $\Delta V_{o}=0-R_{C} \Delta I_{C}$
इसी प्रकार $V_{i}=I_{B} R_{B}+V_{B E}$ से
$\Delta V_{i}=R_{B} \Delta I_{B}+\Delta V_{B E}$
परंतु, $\Delta V_{B E}$ का मान $\Delta I_{B} R_{B}$ के मान की तुलना में नगण्य के समान है, अतः इस $C E$ प्रवर्धक (चित्र 14.32) की वोल्टता लब्धि को इस प्रकार व्यक्त कर सकते हैं।

$$
\begin{align*}
A_{V} & =-R_{C} \Delta I_{C} / R_{B} \Delta I_{B} \\
& =-\beta_{a c}\left(R_{C} / R_{B}\right) \tag{14.14}
\end{align*}
$$

भौतिकी

यहाँ $\beta_{a c}=\Delta I_{C} / \Delta I_{B}$ [समीकरण (14.10) से]। इस प्रकार प्रवर्धक के रूप में उपयोग करने के लिए ट्रांज़िस्टर के सक्रिय क्षेत्र के रैखिक भाग का उपयोग किया जा सकता है। ट्रांज़िस्टर को एक प्रवर्धक (CE -विन्यास) के रूप में अगले अनुभाग में विस्तार से चर्चा किया जाएगा।

14.9.4 ट्रांज़िस्टर-प्रवर्धक के रूप में (CE -विन्यास)

ट्रांज़िस्टर को प्रवर्धक के रूप में प्रचालित करने के लिए यह आवश्यक है कि हम इसके प्रचालन बिंदु को इसके सक्रिय क्षेत्र के मध्य में कहीं पर नियत करें। यदि हम अंतरण वक्र के रैखिक भाग के मध्य के बिंदु के तदनुरूपी $V_{B B}$ का मान नियत करें तब dc आधार धारा I_{B} नियत होगी तथा तदनुरूपी संग्राहक धारा I_{C} भी नियत हो जाएगी। dc वोल्टता $V_{C E}=V_{C C}-I_{C} R_{C}$ भी नियत रहेगी। $V_{C E}$ तथा I_{B} के प्रचालन मान प्रवर्धक के प्रचालन बिंदु को निर्धारित करते हैं।

यदि आपूर्ति $V_{B B}$ के साथ श्रेणीक्रम में किसी सिग्नल के

चित्र 14.32 CE ट्रांजिस्टर प्रवर्धक का एक सरल परिपथ स्रोत को संयोजित करके v_{s} आयाम की कोई लघु ज्यावक्रीय वोल्टता dc आधार बायस पर अध्यारोपित करें तो आधार-धारा में संग्राहक धारा I_{B} के मान पर ज्यावक्रीय परिवर्तन अध्यारोपित हो जाएँगे। इसके परिणामस्वरूप संग्राहक धारा I_{C} पर भी ज्यावक्रीय परिवर्तंन अध्यारोपित हो जाएँगे जो निर्गत वोल्टता V_{O} के मान में भी तदनुरूपी परिवर्तन उत्पन्न करेंगे। बड़े संधारित्रों द्वारा dc वोल्टताओं को अवरुद्ध करके हम निवेश तथा निर्गत के सिरों पर ac परिवर्तनों को माप सकते हैं।

प्रवर्धक के उपरोक्त विवरण में हमने किसी ac सिग्नल पर विचार नहीं किया है। व्यापक रूप में प्रवर्धकों का उपयोग प्रत्यावर्ती सिग्नलों को प्रवर्धित करने के लिए किया जाता है। मान लीजिए चित्र 14.32 में दर्शाए अनुसार हम किसी ac निवेश सिग्नल v_{i} (जिसे प्रवर्धित करना है) को बायस $V_{B B}(\mathrm{dc})$ पर अध्यारोपित करते हैं। निर्गत को संग्राहक तथा भूमि के बीच प्राप्त किया जाता है।

किसी भी प्रवर्धक की क्रियाविधि को सरलता से समझने के लिए पहले हम यह मानते हैं कि $v_{i}=0$ । तब निर्गत पाश पर किरख़ोफ नियम का अनुप्रयोग करने पर, हमें प्राप्त होता है।
$V_{\mathrm{cc}}=V_{C E}+I_{c} R_{L}$
इसी प्रकार निवेश पाश के लिए
$V_{B B}=V_{B E}+I_{B} R_{B}$
जब v_{i} शून्य नहीं है, तो
$V_{B E}+v_{i}=V_{B E}+I_{B} R_{B}+\Delta I_{B}\left(R_{B}+r_{i}\right)$
$V_{B E}$ में परिवर्तन को निवेश प्रतिरोध $\left(r_{i}\right)$ [समीकरण (14.8) देखिए] तथा I_{B} में परिवर्तन से संबद्ध किया जा सकता है। इस प्रकार

$$
\begin{aligned}
v_{i} & =\Delta I_{B}\left(R_{B}+r_{i}\right) \\
& =r \Delta I_{B}
\end{aligned}
$$

I_{B} में परिवर्तन से I_{c} में भी परिवर्तन होता है। हम समीकरण (14.11) में परिभाषित प्राचल $\beta_{d c}$ की ही भाँति प्राचल $\beta_{a c}$ को इस प्रकार परिभाषित करते हैं:

$$
\begin{equation*}
\beta_{a c}=\frac{\Delta I_{c}}{\Delta I_{B}}=\frac{i_{c}}{i_{b}} \tag{14.17}
\end{equation*}
$$

इसे ac धारा लब्धि $\left(\Lambda_{i}\right)$ भी कहते हैं। प्राय: निर्गत अभिलाक्षणिक के रैखिक क्षेत्र में $\beta_{a c}$ का मान $\beta_{d c}$ के निकट होता है।

चूँकि $V_{C C}$ का मान नियत है I_{B} के कारण I_{C} में परिर्वर्तन $V_{C E}$ तथा प्रतिरोधक R_{L} के सिरों पर विभवपात में परिवर्तन उत्पन्न करता है।

इन परिवर्तनों को समीकरण (14.15) द्वारा इस प्रकार दर्शाया जा सकता है।
$\Delta V_{C C}=\Delta V_{C E}+R_{L} \Delta I_{C}=0$
अथवा $\Delta V_{C E}=-R_{L} \Delta I_{C}$
$V_{C E}$ में परिवर्तन निर्गत वोल्टता v_{o} है। समीकरण (14.10) से हमें प्राप्त होता है
$v_{0}=\Delta V_{C E}=-\beta_{a c} R_{L} \Delta I_{B}$
प्रवर्धक की वोल्टता लब्धि है

$$
\begin{align*}
A_{v} & =\frac{v_{0}}{v_{i}}=\frac{\Delta V_{C E}}{r \Delta I_{B}} \\
& =-\frac{\beta_{a c} R_{L}}{r} \tag{14.18}
\end{align*}
$$

ऋणात्मक चिन्न यह निरूपित करता है कि निर्गत वोल्टता कला में निवेश वोल्टता के विपरीत है।
ट्रांज़िस्टर अभिलाक्षणिक की उपरोक्त व्याख्या में हमने यह पाया कि CE विन्यास में धारा लब्धि $\beta_{a c}$ होती है। इसगें हाने वोल्टता लब्धि A_{v} वी देखी। उत: हा शक्ति लब्धि A_{p} को धारा लब्धि तथा वोल्टता लब्धि के गुणनफल के रूप में व्यक्त कर सकते हैं। गणितीय रूप में

$$
\begin{equation*}
A_{p}=\beta_{a c} \times A_{v} \tag{14.19}
\end{equation*}
$$

चूँकि $\beta_{a c}$ तथा Λ_{v} के मान 1 से अधिक हैं, अतः हमें ac शक्ति लब्धि प्राप्त होती है। तथापि हमें यह बोध होना चाहिए कि ट्रांज़िस्टर कोई शक्ति जनन युक्ति नहीं है। निर्गत पर उच्च ac शक्ति के लिए आवश्यक ऊर्जा बैटरी द्वारा प्रदान की जाती है।

उदाहरण 14.9 चित्र $14.31(\mathrm{a})$ में विद्युत आपूर्ति V_{BB} में 0 V से 5.0 V तक परिवर्तन किया जा सकता है। Si ट्राजिस्टर के लिए $\beta_{\mathrm{dc}}=250$ तथा $R_{\mathrm{B}}=100 \mathrm{k} \Omega ; R_{\mathrm{C}}=1 \mathrm{~K} \Omega$ है तथा V_{CC} $=5.0 \mathrm{~V}$ है। यह मानते हुए कि जब ट्रांज़िस्टर संतृप्त अवस्था में है, तो $V_{\mathrm{CE}}=0 \mathrm{~V}$ तथा $V_{\mathrm{BE}}=$
0.8 V , (a) वह न्यूनतम आधार धारा परिकलित कीजिए जिस पर ट्रांज़िस्टर संतृप्त अवस्था में पहुँच

जाएगा। (b) इस प्रकार V_{1} का वह मान जिसमें ट्रांज़िस्टर 'स्विच ऑन' की भाँति कार्य करेगा। (c) V_{1} का वह परिसर ज्ञात कीजिए जिसका ट्रांज़िस्टर 'स्विच ऑफ़' तथा 'स्विच ऑन' की स्थिति में रहता है।
हल
दिया हुआ है कि संतृप्तता पर $V_{C E}=0 \mathrm{~V}, V_{B E}=0.8 \mathrm{~V}$
$V_{C E}=V_{C C}-I_{C} R_{C}$
$I_{C}=V_{C C} / R_{C}=5.0 \mathrm{~V} / 1.0 \mathrm{k} \Omega=5.0 \mathrm{~mA}$
इसलिए $I_{B}=I_{C} / \beta=5.0 \mathrm{~mA} / 250=20 \mu \mathrm{~A}$
वह निवेश वोल्टता जिस पर ट्रांज़िस्टर संतृप्तता ग्रहण करता है
$V_{I H}=V_{B B}=I_{B} R_{B}+V_{B E}$
$=20 \mu \mathrm{~A} \times 100 \mathrm{k} \Omega+0.8 \mathrm{~V}=2.8 \mathrm{~V}$
वह निवेश वोल्टता जिससे नीचे ट्रांज़िस्टर अंतक स्थिति में रहता है।
$V_{I L}=0.6 \mathrm{~V}, V_{I H}=2.8 \mathrm{~V}$
0.0 V तथा 0.6 V , के बीच ट्रांज़िस्टर 'स्विच ऑफ' अवस्था में रहेगा। 2.8 V तथा 5.0 V के बीच यह 'स्विच ऑन' अवस्था में रहेगा।
ध्यान दीजिए, जब I_{B} का मान 0.0 mA से 20 mA के बीच परिवर्तित होता है, तो ट्रांज़िस्टर सक्रिय अवस्था में होता है। इस परिसर में, $I_{C}=\beta I_{B}$ मान्य होता है। संतृप्तता परिसर में
$I_{C} \leq \beta I_{B}$

- भौतिकी

चित्र 14.33 (a) धनात्मक पुनर्भरण वाले एक स्वतः प्रतिपालित ट्रांजिस्टर पतन (या निर्माण)।

प्रवर्धक का दोलित्र के रूप में क्रिया करने का सिद्धांत; (b) एक सरल LC दोलित्र (संग्राहक स्वरित्र); तथा (c) प्रेरकीय युग्मन के कारण धारा i_{c} और i_{e} का उत्थान एवं

उदाहरण $\mathbf{1 4 . 1 0}$ किसी CE-ट्रांज़िस्टर प्रवर्ध के लिए $2.0 \mathrm{k} \Omega$ के उत्सर्जक प्रतिरोधक के लिए सिरों पर 2.0 V है। मान लीजिए ट्रांजिस्टर का धारा प्रवर्धक 100 है। यदि dc का आधार धारा का मान सिग्नल धारा का 10 गुना होता है, तो 2.0 V की आपूर्ति V_{BB} श्रेणीक्रम में संयोजित प्रतिरोधक R_{B} का क्या मान होना चाहिए। संग्राहक प्रतिरोध के सिरों पर dc विभवपात भी परिकलित

हल निर्गत dc वोल्टता 2.0 V अतः ac संग्राहक धारा $i_{\mathrm{C}}=2.0 / 2000=1.0 \mathrm{~mA}$ अत: आधार से गुजरने वाली सिग्नल धारा $i_{\mathrm{B}}=i_{\mathrm{C}} / \beta=1.0 \mathrm{~mA} / 100=0.010 \mathrm{~mA}$

समीकरण 14.16, $R_{\mathrm{B}}=\left(V_{\mathrm{BB}}-V_{\mathrm{BE}}\right) / I_{\mathrm{B}}$. यह मानते हुए कि $V_{\mathrm{BE}}=0.6 \mathrm{~V}$,

14.9.5 पुनर्भरण प्रवर्धक तथा ट्रांज़िस्टर दोलित्र

हमने देखा है कि जब किसी प्रवर्धक में एक ज्यावक्रीय निवेश सिग्नल निवेशित किया जाता है तो वह प्रवर्धर्ध सिग्नल के रूप में निर्गत होता है। इसका अर्थ यह है कि प्रवर्धक के निर्गत में $a c$ सिग्नल पाने के लिए एक बाहरी निवेश सिग्नल आवश्यक है। किसी दोलित्र में बाहरी निवेश सिग्नल लगाए बिना ही हमें ac निर्गत मिलता है। दूसरे शब्दों में, दोलित्र का निर्गत सिग्नल स्वत: प्रतिपालित होता है। ऐसा पाने के लिए एक प्रवर्धक ही लिया जाता है। निर्गत सिग्नल का एक भाग प्रारंभिक सिग्नल की कला में ही निवेश को वापस पुनर्भरित (फ़ीडबैक) कर दिया जाता है। इस प्रक्रिया को धनात्मक पुनर्भरण कहते हैं, जैसा चित्र 14.33 (a) में दिखाया गया है। पुनर्भरण प्रेरकीय युग्मन (अन्योन्य प्रेरकत्व के द्वारा) या $L C$ या $R C$ परिपथों के द्वारा प्राप्त किया जा सकता है। भिन्न-भिन्न प्रकार के दोलित्रों से निर्गत को निवेश से युग्मित करने के लिए भिन्न-भिन्न विधियों (पुनर्भरण परिपथ) का उपयोग करते हैं। इसके अलावा किसी निश्चित आवृत्ति पर दोलन प्राप्त करने के लिए उपयुक्त अनुनादी परिपथ उपयोग किया जाता है। दोलित्र को क्रिया को समझने के लिए आइए चित्र $14.33(\mathrm{~b})$ में दिखाए गए परिपथ पर विचार करें। एक कुंडली $\left(T_{1}\right)$ से दूसरी कुंडली $\left(T_{2}\right)$ में प्रेरकीय युग्मन द्वारा पुनर्भरण पूरा किया जाता है। ध्यान देने योग्य बात यह है कि यहाँ कुंडलियाँ T_{1} तथा T_{2} एक ही क्रोड़ पर लपेटी हुई हैं और इसलिए अपने अन्योन्य प्रेरकत्व द्वारा प्रेरकीय-युग्मित हैं। एक प्रवर्धक की भाँति ही, आधार-उत्सर्जक संधि अग्रदिशिक बायस में रहती है जर्बकि आधार-संग्राहक संधि पश्चद्रिशिक बायस में रहती है। सरलता की दृष्टि से जो विस्तृत बायस परिंपथ वास्तव में उपयोग में लाए जाते हैं उन्हें यहाँ नहीं दर्शाया गया है।

अब हम यह समझने का प्रयास करेंगे कि दोलनों का गठन किस प्रकार से होता है। मान लें कि स्विच S_{1} को ऑन करे जिससे सर्वप्रथम बायस अनुप्रयुक्त होनी

आरंभ हो सके। स्पष्टतया, ट्रांज़िस्टर में संग्राहक धारा का एक महोर्मि (Surge) प्रवाहित होगा। यह धारा कुुंडली T_{2} से होकर जाती है जिसके सिरों को चित्र 14.33 (b) में संख्या 3 और 4 दी गई है। यह धारा अपने पूरे आयाम पर तत्क्षण नहीं पहुँच पाती, बल्कि X से Y तक धीरे-धीरे बढ़ती है, जैसा चित्र 14.33 (c) (i) में दिखाया गया है। कुंडली T_{2} तथा वुंडली T_{1} के बीच प्रेरकीय युग्मन के कारण उत्सर्जक परिपथ में एक धारा बहने लगती है (ध्यान दे कि वास्तव में यही निवेश से निर्गत को पुनर्भरण है)। धनात्मक पुनर्भरण के कारण T_{1} में यह धारा (उत्सर्जक धारा) भी X^{\prime} से Y^{\prime} तक बढ़ती है [(चित्र 14.33 (c) (ii) देखें $]$ । संग्राहक परिपथ में जुड़ी हुई कुंडली T_{2} में धारा (संग्राहक धारा) Y मान पर पहुँचती है तो ट्रांज़िस्टर संतृप्त हो जाता है। इसका अर्थ यह है कि इस समय संग्राहक धारा अपने अधिकतम मान पर है, तथा अब और अधिक नहीं बढ़ सकती। चूँकि अब संग्राहक धारा में और परिवर्तन नहीं हो रहा है, इस्सलिए T_{2} के निकट चुंबकीय क्षेत्र बढ़ना बंद हो जाता है। जैसे ही क्षेत्र स्थिर हो जाएगा, वैसे ही T_{2} से T_{1} में पुनर्भरण रुक जाएगा। पुनर्भरण बंद होने पर उत्सर्जक धारा कम होनी शुरू हो जाती है। फलस्वरूप, संग्राहक धारा Y से Z की ओर घटती है [चित्र 14.33 (c) (i)]। परंतु, संग्राही धारा के घटने के कारण कुंडली T_{2} के निकट चुंबकीय क्षेत्र का क्षय शुरू हो जाता है। इस प्रकार T_{1} को T_{2} में एक घटता हुआ क्षेत्र दिखता है (प्रारंभक स्टार्ट क्रिया के समय जब क्षेत्र बढ़ रहा था, से यह क्रिया ठीक विपरीत है)। इसके कारण उत्सर्जक धारा उस समय तक और घटती है जब तक यह Z^{\prime} पर न पहुँच जाए और ट्रांज़िस्टर कट-ऑफ़ (विच्छेद) हो जाए। इसका अर्थ है कि I_{E} तथा I_{C} दोनों धाराओं का प्रवाह रुक जाता है। इसलिए ट्रांज़िस्टर अपनी प्रारंभिक अवस्था (जब शक्ति प्रथम बार ऑन की गई थी) में वापस लौट आता है। इसके बाद पूरी प्रक्रिया स्वयं स्वतः दोहराती है। अर्थात, ट्रांज़िस्टर पहले संतृप्त अवस्था में जाता है, फिर कट-ऑफ़ में और फिर वापस संतृप्त अवस्था में लौट आता है। संतृप्त अवस्था से कट-ऑफ़ और फिर वापस आने तक की क्रिया में लगा समय टैंक-परिपथ या समस्वरित परिपथ (कुंडली T_{2} का प्रेरकत्व L तथा संधारित्र C पार्श्वक्रम में संयोजित हैं) के स्थिरांकों पर निर्भर करता है। इस समस्वरित परिपथ को अनुनादी आवृत्ति (v) ही वह आवृत्ति है जो निर्धारित करती है कि दोलन किस आवृत्ति पर दोलित होगा

$$
\begin{equation*}
v=\left(\frac{1}{2 \pi \sqrt{L C}}\right) \tag{14.20}
\end{equation*}
$$

चित्र 14.33 (b) के परिपथ में टैंक या समस्वरित परिपथ संग्राहक की ओर जोड़ा गया है। इसलिए इसे समस्वरित संग्राहक दोलित्र कहते हैं। यदि समस्वरित परिपथ आधार की ओर हो तो इसे समस्वरित आधार दोलित्र कहेंगे। कई दूसरे प्रकार के टैंक परिपथ (जैसे $R C$) या पुनर्भरण परिपथ भी होते हैं जिनसे विभिन्न प्रकार के दोलित्र बनते हैं जैसे कॉलपिट दोलित्र, हार्टले दोलित्र, RCदोलित्र आदि।

14.10 अंकक इलेक्ट्रॉनिकी तथा तर्क (लॉजिक) गेट

पिछले अनुभागों में जिन प्रवर्धकों, दोलित्रों जैसे इलेक्ट्रॉनिक परिपथों से आपका परिचय कराया गया था उनमें वोल्टता अथवा विद्युतधाराओं के सिग्नल सतत काल परिवर्तनीय वोल्टताओं अथवा धाराओं के रूप में थे। इस प्रकार के सिग्नलों को संतत अथवा अनुरूप सिग्नल कहते हैं। चित्र 14.34(a) में एक ऐसा ही प्रारूपिक अनुरूप सिग्नल दर्शाया गया है। चित्र 14.34(b) में एक स्पंद तरंग रूप दर्शाया गया है जिसमें वोल्टता के केवल विाविक्त मान ही संभव हैं। इस प्रकार के सिग्नलों को निरूपित करने के लिए द्विआधारी अंकों का उपयोग सरल होता है। द्विआधारी अंकन प्रणाली में केवल दो ही अंक ' 0 ' (जैसे, 0 V) तथा ' 1 ' (जैसे, 5 V) होते हैं। अंकक इलेक्ट्रॉनेकी में हम केवल, चित्र $14.34(\mathrm{~b})$ में दर्शाए अनुसार, इन्हीं दो वोल्टता स्तरों का उपयोग करते हैं। इन सिग्नलों को अंकीय सिग्नल कहते हैं। अंकीय परिपथों में निवेशी तथा निर्गत वोल्टताओं के केवल दो मान ही (जिन्हें 0 तथा 1 से निरूपित किया जाता है) अनुमेय हैं।

भौतिकी

इस अनुभाग का उद्देश्य अंकक इलेक्ट्रॉनिकी को समझने के लिए प्रथम चरण प्रदान करना है। यहाँ हम अपने अध्ययन को अंकक इलेक्ट्रोंनकी के कुछ मूलभूत रचनाखंडों (जिन्हें लॉज़िक गेट कहते हैं) तक ही सीमित रखेंगे। ये रचनाखंड विशिष्ट ढंग से अंकीय सिग्नलों को संसाधित करते हैं। लॉॉजिक गेटों का उपयोग कैलकुलेटरों, अंकीय घड़ियों, कंप्यूटरों, रोबोटों, औद्योगिक नियंत्रण प्रणालियों तथा दूरसंचारों में किया जाता है।

अंकीय परिपथ के रूप में हम अपने घरों में उपयोग होने वाले स्विचों का उदाहरण ले सकते हैं। स्विच की स्थिति के अनुसार प्रकाश 'ऑन' अथवा 'ऑफ़' पर निर्भर करता है। जब प्रकाश 'ऑन' होता है तो निर्गत मान ' 1 ' होता है तथा जब प्रकाश 'ऑफ़' होता है, तो निर्गत मान ' 0 ' होता है। निवेश प्रकाश स्विच की स्थितियाँ हैं। प्रकाश को क्रियाशील बनाने के लिए स्विच को या तो 'ऑन' अथवा 'ऑफ़' की स्थितियों में रखते हैं।

(a)

(b)

चित्र 14.34 (a) अनुरूप सिग्नल (b) अंकीय सिग्नल।

(a)

(b)

चित्र 14.35
NOT गेट की (a) तर्क प्रतीक
(b) सत्यमान सारणी।

14.10.1 लॉज़िक गेट

गेट एक ऐसा अंकीय परिपथ (Digital circuit) होता है जो निवेशी तथा निर्गत वोल्टताओं के बीच किसी निश्चित तार्किक संबंध का पालन करता है। इसीलिए व्यापक रूप में इन्हें लॉजिक गेट कहते हैं। गेट कहने का कारण यह है कि ये सूचना के प्रवाह को नियंत्रित करते हैं। व्यापक रूप में उपयोग किए जाने वाले पाँच लॉजिक गेट NOT, AND, OR, NAND तथा NOR हैं। प्रत्येक लॉजिक गेट को किसी प्रतीक द्वारा इंगित करते हैं तथा इसके प्रकार्य को एक सत्यमान सारणी द्वारा परिभाषित किया जाता है जो सभी संभव निवेशी तर्क स्तर संयोजनों तथा उनके अपने-अपने निर्गत तर्क स्तरों को दर्शाती है। सत्यमान सारणी लॉजिक गेटों के व्यवहार को समझने में सहायता करती है। इन लॉजिक गेटों को अर्धचालक युक्तियों का उपयोग करके बनाया जा सकता है।

(i) NOT गेट

यह सर्वाधिक मूलभूत गेट है जिसमें केवल एक निवेश तथा एक निर्गत होता है। यह यदि निवेश ' 0 ' है तो ' 1 ' निर्गत उत्पन्न करता है तथा यदि निवेश ' 1 ' है तो ' 0 ' निर्गत उत्पन्न करता है। अर्थात यह किसी निवेश का अपने निर्गत पर व्युत्क्रमित रूपांतर उत्पन्न करता है। यही कारण है कि इसे उत्क्रमक या प्रतिलोमक भी कहते हैं। चित्र 14.35 में इस द्वार का व्यापक रूप में उपयोग होने वाला प्रतीक तथा उसकी सत्यमान सारणी दी गयी है।

(ii) $O R$ गेट

किसी $O R$ गेट के एक निर्गत के साथ दो या अधिक निवेश होते हैं। चित्र 14.36 में इस द्वार का

(a)

निवेश		निर्गत
A	B	Y
0	0	0
0	1	1
1	0	1
1	1	1

(b)

चित्र 14.36 (a) $O R$ गेट का तर्क प्रतीक (b) $O R$ गेट की सत्यमान सारणी।
उपरोक्त गणितीय तार्किक संक्रियाओं के अतिरिक्त इस गेट का उपयोग स्पंद तरंगरूप को संशोधित करने में किया जा सकता है। इसे निम्नलिखित उदाहरण में स्पष्ट किया गया है।

उदाहरण 14.11 चित्र 14.37 में दिए गए निवेश A तथा B के लिए ‘ OR ’ गेट के निर्गत तरंगरूप को न्यायोचित ठहराइए।
हल निम्नलिखित पर ध्यान दीजिए

- $t<t_{1}$ पर, $\mathrm{A}=0, \mathrm{~B}=0 ; \quad$ इसलिए $\mathrm{Y}=0$
- t_{1} से t_{2} तक, $\mathrm{A}=1, \mathrm{~B}=0$; इसलिए $\mathrm{Y}=1$
- t_{2} से t_{3} तक, $\mathrm{A}=1, \mathrm{~B}=1 ; \quad$ इसलिए $\mathrm{Y}=1$
- t_{3} से t_{4} तक, $\Lambda=0, \mathrm{~B}=1 ; \quad$ इसलिए $\mathrm{Y}=1$
- t_{4} से t_{5} तक, $\mathrm{A}=0, \mathrm{~B}=0 ; \quad$ इसलिए $\mathrm{Y}=0$
- t_{5} से t_{6} तक, $\mathrm{A}=1, \mathrm{~B}=0 ; \quad$ इसलिए $\mathrm{Y}=1$
- $t>t_{6}$ के लिए, $\mathrm{A}=0, \mathrm{~B}=1 ; \quad$ इसलिए $\mathrm{Y}=1$

इसलिए Y का तरंगरूप वैसा ही होगा जैसा चित्र 14.37 में दिखाया गया है।

(iii) AND गेट

किसी $A N D$ गेट में दो या अधिक निवेश तथा एक निर्गत होते हैं। AND गेट का निर्गत Y केवल 1 होता है जब निवेश A तथा निवेश B दोनों 1 हैं। इस गेट का तर्क प्रतीक तथा सत्यमान सारणी चित्र 14.38 में दर्शायी गई हैं।

(a)

निवेश		निर्गत
A	B	Y
0	0	0
0	1	0
1	0	0
1	1	1

(b)

- भौतिकी

उदाहरण 14.12 A और B निवेश के तरंगरूपों को उदाहरण 14.11 के समान लीजिए। AND गेट से प्राप्त निर्गत तरंगरूप को स्केच कीजिए।

हल

- $t \leq t_{1}$ के लिए; $\mathrm{A}=0, \mathrm{~B}=0 ; \quad$ इसलिए $\mathrm{Y}=0$
- t_{1} से t_{2} तक; $\mathrm{A}=1, \mathrm{~B}=0$;
- t_{2} से t_{3} तक; $\mathrm{A}=1, \mathrm{~B}=1$;
- t_{3} से t_{4} तक; $\mathrm{A}=0, \mathrm{~B}=1$;
- t_{4} से t_{5} तक; $\mathrm{A}=0, \mathrm{~B}=0$;
- t_{5} से t_{6} तक; $\mathrm{A}=1, \mathrm{~B}=0$;
- $t>t_{6}$ के लिए;
$\Lambda=0, B=1 ;$
$\Lambda=0, B=1$;
इसलिए $Y=0$
इसलिए $\mathrm{Y}=1$
इसलिए $Y=0$
इसलिए $\mathrm{Y}=0$
इसलिए $\mathrm{Y}=0$
इसलिए $\mathrm{Y}=0$

इसके आधार पर, AND गेट का निर्गत तरंगरूप नीचे चित्र में दर्शाए अनुसार खींचा जा सकता है।

(iv) NAND गेट

यह एक AND गेट है जिसका NOT द्वार अनुगमन करता है। यदि निवेश A तथा B दोनों ' 1 ' हैं तो निर्गत ' 1 ' नहीं होता। इस गेट को यह नाम इसके NOT AND व्यवहार के कारण दिया गया है। चित्र 14.40 में NAND गेट का तर्क प्रतीक तथा सत्यमान सारणी दर्शायी गई है।

NAND गेटों को सार्वत्रिक गेट या सार्व प्रयोजक गेट भी कहते हैं, क्योंकि इन गेटों के प्रयोग से आप अन्य मूलभूत गेट जैसे OR, AND तथा NOT प्राप्त कर सकते हैं (अभ्यास 14.16 तथा 14.17 देखिए)।

(a)

निवेश		निर्गत
A	B	Y
0	0	1
0	1	1
1	0	1
1	1	0

(b)

चित्र 14.40 NAND गेट का (a) तर्क प्रतीक तथा (b) सत्यमान सारणी।
उदाहरण 14.13 नीचे दिखाए गए निवेश A तथा B के लिए NAND गेट के निर्गत Y को स्केच कीजिए।
हल

- $t<t_{1}$ के लिए;

$$
\mathrm{A}=1, \mathrm{~B}=1 ;
$$

इसलिए $\mathrm{Y}=0$

- t_{1} से t_{2} तक;
$\mathrm{A}=0, \mathrm{~B}=0$;
इसलिए $\mathrm{Y}=1$
- t_{2} से t_{3} तक;
$\mathrm{A}=0, \mathrm{~B}=1$;
इसलिए $\mathrm{Y}=1$
- t_{3} से t_{4} तक;
$\mathrm{A}=1, \mathrm{~B}=0$;
इसलिए $\mathrm{Y}=1$
- t_{4} से t_{5} तक;

$$
\mathrm{A}=1, \mathrm{~B}=1 ;
$$

इसलिए $\mathrm{Y}=0$

- t_{5} से t_{6} तक; $\mathrm{A}=0, \mathrm{~B}=0 ; \quad$ इसलिए $\mathrm{Y}=1$
- $t>t_{6}$ के लिए;

$$
\mathrm{A}=0, \mathrm{~B}=1 ; \quad \text { इसलिए } \mathrm{Y}=1
$$

(v) NOR गेट

इसके दो या अधिक निवेश तथा एक निर्गत होता है। OR गेट के पश्चात एक NOT संक्रिया अनुप्रयुक्त करने से NOT-OR गेट (अथवा केवल NOR गेट) प्राप्त होता है। जब दोनों निवेश A तथा B ' 0 ' होते हैं तो निर्गत Y केवल ' 1 ' होता है, अर्थात न तो एक निवेश और न ही अन्य निवेश ' 1 ' है। चित्र 14.41 में NOR गेट का तर्क प्रतीक तथा सत्यमान सारणी दर्शायी गयी है।

(a)

निवेश		निर्गत
A	B	Y
0	0	1
0	1	0
1	0	0
1	1	0

(b)

चित्र 14.42 NOR द्वार का (a) तर्क प्रतीक तथा (b) सत्यमान सारणी।
NOR द्वारों को सार्वत्रिक द्वार अथवा सार्व प्रयोजक द्वार माना जाता है। क्योंकि केवल NOR गेटों के उपयोग से आप सभी गेटों जैसे AND, OR, तथा NOT प्राप्त कर सकते हैं (अभ्यास 14.18 तथा 14.19 देखिए)

14.11 एकीकृत परिपथ

परिपथों को बनाने की परंपरागत विधि इस प्रकार है : डायोड, ट्रांज़िस्टर, R, L, C आदि घटकों को चुनकर उन्हें वांछित ढंग से तारों द्वारा सोल्डर करके जोड़ा जाता है। ट्रांज़िस्टर के आविष्कार के बाद जो लघुरूपण लाया जा सका उसका अनुप्रयोग करने पर भी ऐसे परिपथ स्थूल होते थे। इसके अतिरिक्त ऐसे परिंपथ कम विश्वसनीय तथा कम प्रघात-रोधी होते थे। एक संपूर्ण परिपथ (जिसमें बहुत से अक्रिय घटक जैसे R और C तथा सक्रिय युक्तियाँ जैसे डायोड और ट्रांज़िस्टर हों) को अर्द्धचालक के किसी छोटे एकल ब्लॉक (या चिप) के ऊपर निर्मित करने की धारणा ने इलेक्ट्रॉनिक प्रौद्योगिकी में क्रांति ला दी है। ऐसे परिपथ को एकीकृत परिपथ (इंटीग्रेटेड सर्किट-IC) कहते हैं। सबसे विस्तृत रूप से प्रयोग की जाने वाली प्रौद्योगिकी, मोनोलिथिक एकीकृत परिपथ है। मोनोलिथिक शब्द दो ग्रीक शब्दों का संयोजन है, मोनोस (monos) का अर्थ

- भौतिकी

चित्र 14.43 'चिप' का आवरण तथा उसके संयोजन

होता है एकल और लिथोस (lithos) का अर्थ होता है पत्थर। प्रभावत: इसका यह अर्थ है कि संपूर्ण परिपथ किसी एकल सिलिकॉन क्रिस्टल (या चिप) पर निर्मिंत है। चिप की विमाएँ बहुत छोटी, लगभग 1 mm $\times 1 \mathrm{~mm}$ या इससे भी छोटी हो सकती हैं। चित्र 14.43 में ऐसी ही एक चिप अपने संरक्षी प्लास्टिक आवरण में दर्शायी गई है। इसके कुछ भाग से प्लास्टिक आवरण हटा दिया गया है ताकि चिप से बाहर पिन तक आने वाले संयोजन को दर्शाया जा सके। इन पिनों से ही बाह्य संयोजन बनाते हैं।

निवेश सिग्नलों की प्रकृति के आधार पर एकीकृत परिपथों को दो वर्णों में बाँटा जा सकता है: (a) रैखिक अथवा अनुरूप एकीकृत परिपथ तथा (b) आंकिक एकीकृत परिपथ। रैखिख एकीकृत परिपथ अनुरूप सिग्नलों को संसाधित करके अधिकतम तथा न्यूनतम मानों के परिसर में परिवर्तित कर उन्हें निर्बाध तथा संतत बना देते हैं। निर्गत कुछ अंश तक निवेश के अनुक्रमानुपाती होता है, अर्थात वह निवेश के साथ रैखिकतः परिवर्तित होता है। रैखिक एकीकृत परिपथों में सबसे अधिक उपयोगी संक्रियात्मक प्रवर्धक (Operational amplifier) है।.

आंकिक एकीकृत परिपथ उन सिग्नलों का संसाधन करते हैं जिनके केवल दो मान होते हैं। इनमें लॉज़िक गेटों जैसे परिपथ होते हैं। एकीकरण के स्तर (अर्थात एकीकृत परिपथ में परिपथ अवयवों या लॉज़िक गेटों की संख्या) के आधार पर एकीकृत परिपथों का नामकरण किया जाता है। जैसे कुछ IC को स्माल स्केल इंटीग्रेशन, SSI (लॉज़िक गेटों की संख्या ≤ 10) कहते हैं तो कुछ अन्य मीडियम स्केल इंटीग्रेशन, MSI (लॉज़िक गेटों की संख्या ≤ 100), लार्ज स्केल इंटीग्रेशन, LSI (लॉज़िक गेटों की संख्या ≤ 1000) तथा वेरी लार्ज स्केल इंटीग्रेशन, VLSI (लॉज़िक गेटों की संख्या ≥ 1000)। एकीकृत परिपथों के निर्माण की प्रौद्योगिकी बहुत जटिल है परंत् बृहत स्तर पर औद्योगिक उत्पादन होने से ये अत्यधिक सस्ते हो गए हैं।

तीब्रतर एवं लधुतर : कंज्यूटर प्रौद्योगिकी का भविष्य

सभी कंप्यूटर प्रणालियों के हृदय पर एकीकृत परिपथ (IC) होता है। वास्तव में लगभग सभी वैद्युत युक्तियों जैसे कार, टेलीविज़न, CD प्लेयर, सेल फोन आदि में एकीकृत परिपथ (IC) लगे होते हैं। जिस लघुकरण के कारण आधुनिक निजी कंप्यूटर बनना संभव हो पाया उसकी रचना बिना IC के संभव नहीं हो सकती थी। IC ऐसी इलेक्ट्रॉनिक युक्तियाँ हैं जिनमें बहुत से ट्रांज़िस्टर, प्रतिरोधक, संधारित्र, संयोजी तार-सभी एक ही पैकेज़ में होते हैं। आपने 'माइक्रोप्रोसेसर' के विषय में सुना होगा। माइक्रोप्रोसेसर एक ऐसा IC होता है जो किसी कंप्यूटर में सभी सूचनाओं को संसाधित करता है जैसे यह खोज खबर रखना कि कौन सी कुंजी दबाई गई, कौन सा कार्यक्रम चलना है, खेल आदि। IC का सर्वप्रथम आविष्कार सन् 1958 में टेक्सास इंस्टूमैंट पर जैक किल्की द्वारा किया गया जिसके लिए उन्हें सन् 2000 में नोबेल पुरस्कार प्रदान किया गया। IC का निर्माण अर्धचालक क्रिस्टलों के टुकड़ों (अथवा चिप) पर फोटोलिथोग्राफ़ी प्रक्रिया द्वारा किया जाता है। इस प्रकार समस्त सूचना प्रौद्योगिकी उद्योग (IT industry) अर्धचालकों पर निर्भर है। पिछले कई वर्षों में IC की जटिलताएँ बढ़ गई हैं जबकि इसके लक्षणों की आमाप निरंतर सिकुड़ रही है। पिछले पाँच दशकों में कंप्यूटर प्रौद्योगिकी में नाटकीय लघुकरण ने आधुनिक कंप्यूटर को तीव्रतर एवं लघुतर बना दिया है। INTEL के सहसंस्थापक गॉर्डन मूरे ने सन् 1970 में यह बताया था कि किसी चिप (IC) की स्मृति क्षमता हर डेढ़ वर्ष में लगभग दो गुनी हो जाती है। यह मूरे के नियम नाम से प्रचलित है। प्रति चिप ट्रांज़िस्टरों की संख्या में चरघातांकी रूप से वृद्धि हो रही है तथा वर्ष-दर-वर्ष कंप्यूटरों की क्षमता में वृद्धि हो रही है, फिर भी ये पहले की अपेक्षा अब सस्ते हैं। वर्तमान प्रवृत्ति के आधार पर ऐसे संकेत मिल रहे हैं कि सन् 2020 में उपलब्ध कंप्यूटर $40 \mathrm{GHz}(40,000 \mathrm{MHz})$ पर प्रचालित होंगे, आमाप में कहीं छोटे, अधिक दक्ष, तथा आज के कंप्यूटरों की तुलना में कहीं सस्ते होंगे। अर्धचालक उद्योग तथा कंप्यूटर प्रौद्योगिकी में विस्फोटक वृद्धि को गॉर्डन मूरे के विख्यात उद्धरण द्वारा सबसे अच्छे ढंग से इस प्रकार व्यक्त किया जा सकता है: "यदि स्वचालित वाहन उद्योग अर्धचालक उद्योग की भाँति प्रगति करे तो कोई रॉल्स रॉयस (Rolls Royce) कार प्रति गैलन 5 लाख मील तय करेगी और उसे पार्क करने की अपेक्षा फेंकना सस्ता होगा।"

सारांश

1. अर्धचालक वर्तमान ठोस अवस्था अर्धचालक इलेक्ट्रॉनिक युक्तियों; जैसे- डायोड, ट्रांज़िस्टर, एकीकृत परिपथ इत्यादि में प्रयुक्त मूल पदार्थ हैं।
2. अवयव तत्वों की जालक संरचना एवं परमाणु संरचना सुनिश्चित करती है कि दिया गया विशेष पदार्थ विद्युतरोधी, धातु अथवा अर्धचालक होगा।
3. धातुओं की प्रतिरोधकता बहुत कम $\left(10^{-2}\right.$ से $\left.10^{-8} \Omega \mathrm{~m}\right)$ है, विद्युतरोधी पदार्थों की प्रतिरोधकता बहुत अधिक $\left(>10^{8} \Omega \mathrm{~m}^{-1}\right)$ है, जबकि अर्धचालकों की प्रतिरोधकता धातुओं और विद्युतरोधी पदार्थों के मध्य होती है।
4. अर्धचालक तात्विक $(\mathrm{Si}, \mathrm{Ge})$ साथ ही साथ यौगिक ($\mathrm{GaAs}, \mathrm{CdS}$ इत्यादि) हैं।
5. शुद्ध अर्धचालक 'नैज अर्धचालक' कहलाते हैं। आवेश वाहकों (इलेक्ट्रॉन और होल) की उपस्थिति पदार्थ का ‘नैज' गुण है और ये ऊष्मीय उत्तेजन के परिणामस्वरूप प्राप्त होते हैं। नैज अर्धचालकों में इलेक्ट्रॉनों की संख्या $\left(n_{e}\right)$ होलों की संख्या n_{h} समान होती है। होल आवश्यक रूप से प्रभावी धनावेश युक्त इलेक्ट्रॉन रिक्तियाँ हैं।
6. शुद्ध अर्धचालकों में उपयुक्त अपद्रव्य के ‘अपमिश्रण’ से आवेश वाहकों की संख्या परिवर्तित की जा सकती है। ऐसे अर्धचालकों को अपद्रव्यी अर्धचालक कहते हैं। ये दो प्रकार (n - प्रकार और p - प्रकार) के होते हैं।
7. n - प्रकार के अर्धचालक में $n_{\mathrm{e}} \gg n_{\mathrm{h}}$ जबकि p - प्रकार के अर्धचालक में $n_{\mathrm{h}} \gg n_{\mathrm{e}}$ होता है।
8. n - प्रकार के अर्धचालक में Si अथवा Ge को पंचसंयोजी परमाणु (दाता) जैसे $\mathrm{As}, \mathrm{Sb}, \mathrm{P}$ इत्यादि के साथ अपमिश्रण से प्राप्त किया जाता है, जबकि p - प्रकार का अर्धचालक Si अथवा Ge को त्रिसंयोजी परमाणु (ग्राही) जैसे $\mathrm{B}, \mathrm{Al}, \mathrm{In}$ इत्यादि के अपमिश्रण से प्राप्त किया जाता है।
9. सभी दशाओं में $n_{\mathrm{e}} n_{\mathrm{n}}=n_{i}^{2}$ । इसके अतिरिक्त पदार्थ पूर्णतया विद्युत उदासीन होता है।
10. पदार्थ के दो भिन्न ऊर्जा बैंड (संयोजकता बैंड और चालन बैंड) होते हैं, जिनमें इलेक्ट्रॉन रहते हैं। संयोजकता बैंड की ऊर्जा चालन बैंड की ऊर्जा की अपेक्षा कम है। संयोजकता बैंड में सभी ऊर्जा स्तर पूर्ण हैं जबकि चालन बैंड पूर्णतया रिक्त अथवा आंशिक रूप से पूरित हो सकते हैं। किसी ठोस के चालन बैंड में इलेक्ट्रॉन गति करने के लिए मुक्त होते हैं और चालकता के लिए उत्तरदायी होते हैं। चालकता की सीमा संयोजकता बैंड $\left(E_{v}\right)$ के शीर्ष और चालन बैंड $\left(E_{\mathrm{c}}\right)$ के तल के मध्य ऊर्जा-अंतराल E_{g} पर निर्भर करती है। संयोजकता बैंड से इलेक्ट्रॉन ऊष्मा, प्रकाश अथवा विद्युत ऊर्जा द्वारा चालन बैंड में उत्तेजित किए जा सकते हैं, जो अर्धचालक में प्रवाहित धारा में परिवर्तन उत्पन्न करते हैं।
11. विद्युत-रोधी हेतु $E_{\mathrm{g}}>3 \mathrm{eV}$, अर्धचालक हेतु $E_{\mathrm{g}}=0.2 \mathrm{eV}$ से 3 eV , जबकि धातुओं के लिए $E_{\mathrm{g}} \approx 0$ है।
12. $\mathrm{p}-\mathrm{n}$ संधि सभी अर्धचालक युक्तियों की मूल है। जब ऐसी संधि बनती है तो इलेक्ट्रॉन अथवा होल रहित अचल आयन क्रोड़ की एक ‘ह्वासी स्तर' बन जाता है जो 'संधि विभव रोधक’' हेतु उत्तरदायी है।
13. बाह्य अनुप्रयुक्त वोल्टता को परिवर्तित करके संधि विभव रोधक को परिवर्तित किया जा सकता है। अग्रदिशिक बायस (n - फलक बैटरी के ॠणात्मक सिरे से और p - फलक बैटरी के धनात्मक सिरे से संबद्ध है) में रोधिका कम हो जाती है, जबकि पश्चदिशिक बायस में वृद्धि हो जाती है। अतः किसी p-n संधि डायोड में अग्रदिशिक बायस धारा का मान अधिक (mA में) होता है जबकि पश्चदिशिक बायस धारा का मान बहुत कम ($\mu \mathrm{A}$ में) होता है।
14. डायोड को प्रत्यावर्ती (ac) वोल्टता के दिष्टकरण (प्रत्यावर्ती धारा को एक दिशा में प्रतिबंधित करने) हेतु प्रयोग में लाया जा सकता है। संधारित्र अथवा उपयुक्त फिल्टर के प्रयोग से दिष्ट धारा dc वोल्टता प्राप्त की जा सकती है।
15. कुछ विशिष्ट प्रयोजन डायोड भी होते हैं।
16. ज़ेनर डायोड एक ऐसा ही विशिष्ट प्रयोजन डायोड है। ज़ेनर डायोड में, पश्चदिशिक बायस में एक निश्चित वोल्टता के पश्चात धारा एकाएक बढ़ती है (भंजन वोल्टता)। जेनर डायोड का यह गुण वोल्टता नियंत्रक के रूप में प्रयोग किया जाता है।
17. $\mathrm{p}-\mathrm{n}$ संधि को बहुत सी फ़ोटॉनी अथवा प्रकाश इलेक्ट्रॉनिक युक्तियाँ प्राप्त करने हेतु भी प्रयोग किया गया है, जहाँ भाग लेने वाले तत्त्वों में से एक तत्त्व फ़ोटॉन है। (a) फ़ोटोडायोड, जिसमें फ़ोटॉन उत्तेजन का परिणाम प्रतीप संतृप्त धारा परिवर्तन है, प्रकाश की तीव्रता मापन में सहायक होता है। (b) सौर सेल फ़ोटॉन ऊर्जा को विद्युत-ऊर्जा में परिवर्तित करता है। (c) प्रकाश उत्सर्जक डायोड और डायोड लेसर जिनमें बायस वोल्टता द्वारा इलेक्ट्रॉन उत्तेजन के कारण प्रकाश का उत्पादन होता है।
18. ट्रांज़िस्टर एक $n-p-n$ अथवा $p-n-p$ संधि युक्ति है। मध्य ट्रांज़िस्टर ब्लॉक (पतला और अल्प मादित) 'आधार' जबकि अन्य दूसरे इलेक्ट्रोड ‘उत्सर्जक' और ‘संग्राहक' कहलाते हैं। उत्सर्जक-आधार संधि, अग्रदिशिक बायसित, जबकि संग्राहक-आधार संधि पश्चद्रिशिक बायसित होता है।
19. ट्रांज़िस्टर इस प्रकार से संयोजित किया जाता है कि C अथवा E अथवा B निवेश और निर्गत दोनों के उभयनिष्ठ हो सकता है। अत:, ट्रांज़िस्टर तीन विन्यासों में प्रयुक्त किया जा सकता है - उभयनिष्ठ उत्सर्जक (CE), उभयनिष्ठ संग्राहक (CC) और उभयनिष्ठ आधार (CB)। नियत I_{B} के लिए I_{C} और V_{CE} के मध्य आलेख निर्गत अभिलाक्षणिक कहलाता है, जबकि नियत V_{CE} के लिए I_{B} और V_{BE} के मध्य आलेख निवेशी अभिलाक्षणिक कहलाता है। CE -विन्यास हेतु महत्वपूर्ण ट्रांज़िस्टर प्राचल हैं:
निवेशी प्रतिरोध, $r_{i}=\left(\frac{\Delta V_{\mathrm{BE}}}{\Delta I_{\mathrm{B}}}\right)_{V_{\mathrm{CE}}}$
निर्गत प्रतिरोध, $r_{o}=\left(\frac{\Delta V_{\mathrm{CE}}}{\Delta I_{\mathrm{C}}}\right)_{I_{\mathrm{B}}}$
धारा प्रवर्धन गुणक, $\beta=\left(\frac{\Delta I_{\mathrm{C}}}{\Delta I_{\mathrm{B}}}\right)_{V_{\mathrm{CF}}}$
20. ट्रांज़िस्टर को एक प्रवर्धक और दोलित्र की भाँति प्रयोग किया जा सकता है। वास्तव में, दोलित्र को एक ऐसे स्वपोषी प्रवर्धक की भाँति भी माना जा सकता है जिसमें निर्गत के अंश किसी को निवेश में समान कला (धनात्मक पुनर्भरण) में पुनर्भरण किया जाता है। उभयनिष्ठ उत्सर्जक विन्यास में ट्रांज़िस्टर प्रवर्धक की वोल्टता लब्धि है : $A_{\mathrm{v}}=\left(\frac{v_{\mathrm{o}}}{v_{\mathrm{i}}}\right)=\beta \frac{R_{\mathrm{C}}}{R_{\mathrm{B}}}$, जहाँ R_{C} और R_{B} क्रमशः परिपथ के संग्राहक और आधार की ओर के प्रतिरोध हैं।
21. जब ट्रांज़िस्टर का उपयोग अंतक अथवा संतृप्त अवस्था में करते हैं तो वह स्विच की भाँति कार्य करता है।
22. कुछ विशेष परिपथ हैं जो 0 और 1 स्तर से बने हुए अंकीय डाटा का संचालन करते हैं। यह अंकीय इलेक्ट्रॉनिक के विषय का सृजन करता है।
23. विशेष तर्क संक्रिया पालन करने वाले महत्वपूर्ण अंकीय परिपथ तर्क द्वार (Logic gates) कहलाते हैं। ये OR, AND, NOT, NAND और NOR गेट हैं।
24. आधुनिक युग के परिपथ में, कई तर्कसंगत गेट अथवा परिपथों को एक एकल 'चिप' में एकीकृत करते हैं, जिन्हें एकीकृत परिपथ (IC) कहते हैं।

विचारणीय विषय

1. अर्धचालकों में ऊर्जा बैंड (E_{C} अथवा E_{V}) दिक्विस्थानित हैं, जिसका तात्पर्य है कि ये ठोस में किसी विशिष्ट स्थान में स्थित नहीं हैं। ऊर्जाएँ समग्र माध्य हैं। जब आप एक चित्र देखते हैं जिसमें E_{C} अथवा E_{v} सरल रेखाएँ खींची गई हैं तब उन्हें क्रमशः चालन बैंड ऊर्जा स्तर के तल पर और संयोजकता बैंड ऊर्जा स्तर के शीर्ष पर लेना चाहिए।
2. तात्विक अर्धचालकों (Si अथवा Ge) में और p -अर्धचालकों में अपमिश्रकों को दोष के रूप में सन्निविष्ट करके प्राप्त करते हैं। यौगिक अर्धचालकों में सापेक्ष रससमीकरणमितीय अनुपात में परिवर्तन अर्धचालक के प्रकार में भी परिवर्तन कर सकता है। उदाहरणार्थ, आदर्श GaAs में Ga और As का अनुपात $1: 1$ है, परंतु GaAs में Ga -प्रचुर वाला अथवा As -प्रचुर वाला क्रमशः $\mathrm{Ga}_{1.1} \mathrm{As}_{0.9}$ अथवा $\mathrm{Ga}_{0.9} \mathrm{As}_{1.1}$ हो सकता है। सामान्यत: दोषों की उपस्थिति अर्धचालकों के गुणों को कई प्रकार से नियंत्रित करती है।
3. ट्रांज़िस्टर में आधार क्षेत्र बारीक और अल्प मादित होता है, अन्यथा निवेश की ओर से आने वाले इलेक्ट्रॉन अथवा होल (मान लीजिए CE-विन्यास में उत्सर्जक) संग्राहक तक पहुँच नहीं सकते।
4. हमने दोलित्र का एक धनात्मक पुनर्भरण प्रवर्धक के रूप में उल्लेख किया है। स्थायी दोलनों हेतु, निर्गम वोल्टता $\left(V_{\mathrm{o}}\right)$ से वोल्टता पुनर्भरण $\left(V_{\mathrm{fh}}\right)$ इस प्रकार होना चाहिए कि प्रवर्धन (A) के पश्चात यह पुन: V_{O} हो जाना चाहिए। यदि कोई अंश β^{\prime} का पुनर्भरण हो तब $V_{\mathrm{tb}}=V_{\mathrm{O}} . \beta^{\prime}$ और प्रवर्धन के पश्चात इसका मान $A\left(v_{0} . \beta\right)$ के बराबर होना चाहिए। इसका अर्थ है कि स्थायी दोलनों के प्रतिपालन हेतु कसौटी $A \beta^{\prime}=1$ है। यह बार्कहाउज़ेन कसौटी कहलाती है।
5. दोलित्र में पुनर्भरण समान कला (धनात्मक पुनर्भरण) में है। यदि पुनर्भरण वोल्टता विपरीत कला (ऋणात्मक पुनर्भरण) में है, तो लब्धि 1 से कम है और यह कभी भी दोलित्र की भाँति कार्य नहीं कर सकता है। अपितु यह एक कम लब्धि वाला प्रवर्धक होगा। यद्यपि, ऋणात्मक पुनर्भरण प्रवर्धक में नॉयज (रव) और विरूपण को भी कम करता है, जो एक लाभदायक लक्षण है।

अभ्यास

14.1 किसी n -प्रकार के सिलिकॉन में निम्नलिखित में से कौन-सा प्रकथन सत्य है ?
(a) इलेक्ट्रॉन बहुसंख्यक वाहक हैं और त्रिसंयोजी परमाणु अपमिश्रक हैं।
(b) इलक्ट्रॉन अल्पसंख्यक वाहक हैं और पंचसंयोजी परमाणु अपमिश्रक हैं।
(c) होल (विवर) अल्पसंख्यक वाहक हैं और पंचसंयोजी परमाणु अपमिश्रक हैं।
(d) होल (विवर) बहुसंख्यक वाहक हैं और त्रिसंयोजी परमाणु अपमिश्रक हैं।
14.2 अभ्यास 14.1 में दिए गए कथनों में से कौन-सा p-प्रकार के अर्धचालकों के लिए सत्य है?
14.3 कार्बन, सिलिकॉन और जर्मेनियम, प्रत्येक में चार संयोजक इलेक्ट्रॉन हैं। इनकी विशेषता ऊर्जा बैंड अंतराल द्वारा पृथक्कृत संयोजकता और चालन बैंड द्वारा दी गई हैं, जो क्रमशः $\left(E_{\mathrm{g}}\right)_{\mathrm{C}},\left(E_{\mathrm{g}}\right)_{\mathrm{Si}}$ तथा $\left(E_{\mathrm{g}}\right)_{\mathrm{Cc}}$ के बराबर हैं। निम्नलिखित में से कौन-सा प्रकथन सत्य है?
(a) $\left(E_{g}\right)_{\mathrm{Si}}<\left(E_{g}\right)_{\mathrm{Ge}}<\left(E_{g}\right)_{\mathrm{C}}$
(b) $\left(E_{g_{\mathrm{C}}}<\left(E_{g^{2}}\right)_{\mathrm{Ge}}>\left(E_{g}\right)_{\mathrm{Si}}\right.$
(c) $\left(E_{g_{\mathrm{C}}}>\left(E_{)_{\mathrm{Si}}}>\left(E_{g_{\mathrm{Ge}}}\right.\right.\right.$
(d) $\left(E_{g}\right)_{\mathrm{C}}=\left(E_{g}\right)_{\mathrm{S}}=\left(E_{g}\right)_{\mathrm{Ge}}$
14.4 बिना बायस $p-n$ संधि से, होल p - क्षेत्र में n - क्षेत्र की ओर विसरित होते हैं, क्योंकि
(a) n - क्षेत्र में मुक्त इलेक्ट्रॉन उन्हें आकर्षित करते हैं।
(b) ये विभवांतर के कारण संधि के पार गति करते हैं।
(c) p - क्षेत्र में होल-सांद्रता, n - क्षेत्र में इनकी सांद्रता से अधिक है।
(d) उपरोक्त सभी।
14.5 जब $\mathrm{p}-\mathrm{n}$ संधि पर अग्रादिशिक बायस अनुप्रयुक्त किया जाता है, तब यह
(a) विभव रोधक बढ़ाता है।
(b) बहुसंख्यक वाहक धारा को शून्य कर देता है।
(c) विभव रोधक को कम कर देता है।
(d) उपरोक्त में से कोई नहीं।
14.6 ट्रांज़िस्टर की क्रिया हेतु निम्नलिखित में से कौन-से कथन सही हैं -
(a) आधार, उत्सर्जक और संग्राहक क्षेत्रों की आमाप और अपमिश्रण सांद्रता समान होनी चाहिए।
(b) आधार क्षेत्र बहुत बारीक और कम अपमिश्रित होना चाहिए।
(c) उत्सर्जक संधि अग्रदिशिक बायस है और संग्राहक संधि पश्चदिशिक बायस है।
(d) उत्सर्जक संधि और संग्राहक संधि दोनों ही अग्रदिशिक बायस हैं।
14.7 किसी ट्रांज़िस्टर प्रवर्धक के लिए वोल्टता लब्धि
(a) सभी आवृत्तियों के लिए समान रहती है।
(b) उच्च और निम्न आवृत्तियों पर उच्च होती है तथा मध्य आवृत्ति परिसर में अचर रहती है।
(c) उच्च और निम्न आवृत्तियों पर कम होती है और मध्य आवृत्तियों पर अचर रहती है।
(d) उपरोक्त में से कोई नहीं।
14.8 अर्ध-तरंगी दिष्टकरण में, यदि निवेश आवृत्ति 50 Hz है तो निर्गम आवृत्ति क्या है? समान निवेश आवृत्ति हेतु पूर्ण तरंग दिष्टकारी की निर्गम आवृत्ति क्या है?
14.9 CE -ट्रांज़िस्टर प्रवर्धक हेतु, $2 \mathrm{k} \Omega$ के संग्राहक प्रतिरोध के सिरों पर ध्वनि वोल्टता 2 V है। मान लीजिए कि ट्रांज़िस्टर का धारा प्रवर्धन गुणक 100 है। यदि आधार प्रतिरोध $1 \mathrm{k} \Omega$ है तो निवेश संकेत (signal) वोल्टता और आधार धारा परिकलित कीजिए।
14.10 कोई $\mathrm{p}-\mathrm{n}$ फ़ोटोडायोड 2.8 eV बैंड अंतराल वाले अर्धचालक से संविरचित है। क्या यह 6000 nm की तरंगदैर्ध्य का संसूचन कर सकता है?

अतिरिक्त अभ्यास

14.11 सिलिकॉन परमाणुओं की संख्या 5×10^{28} प्रति m^{3} है। यह साथ ही साथ आर्सेनिक के 5×10^{22} परमाणु प्रति m^{3} और इडियम के 5×10^{20} परमाणु प्रति m^{3} से अपमिश्रित किया गया है। इलेक्ट्रॉन और होल की संख्या का परिकलन कीजिए। दिया है कि $n_{1}=1.5 \times 10^{16} \mathrm{~m}^{-3}$ । दिया गया पदार्थ n - प्रकार का है या p - प्रकार का?
14.12 किसी नैज अर्धचालक में ऊर्जा अंतराल E_{g} का मान 1.2 eV है। इसकी होल गतिशीलता इलेक्ट्रॉन गतिशीलता की तुलना में काफ़ी कम है तथा ताप पर निर्भर नहीं है। इसकी 600 K तथा 300 K पर चालकताओं का क्या अनुपात है? यह मानिए कि नैज वाहक सांद्रता n_{i} की ताप निर्भरता इस प्रकार व्यक्त होती है -
$n_{i}=n_{0} \exp \left(-\frac{E_{g}}{2 k_{R} T}\right)$
जहाँ n_{0} एक स्थिरांक है।
14.13 किसी $\mathrm{p}-\mathrm{n}$ संधि डायोड में धारा I को इस प्रकार व्यक्त किया जा सकता है
$I=I_{0} \exp \left(\frac{e V}{2 k_{B} T}-1\right)$
जहाँ I_{0} को उत्क्रमित संतृप्त धारा कहते हैं, V डायोड के सिरों पर वोल्टता है तथा यह अग्रदिशिक बायस के लिए धनात्मक तथा पश्चदिशिक बायस के लिए ऋणात्मक है। I डायोड से प्रवाहित गए डायोड के लिए $I_{0}=5 \times 10^{-12} \mathrm{~A}$ तथा $\mathrm{T}=300 \mathrm{~K}$ है, तब
(a) 0.6 V अग्रदिशिक वोल्टता के लिए अग्रदिशिक धारा क्या होगी?
(b) यदि डायोड के सिरों पर वोल्टता को बढ़ाकर 0.7 V कर दें तो धारा में कितनी वृद्धि हो जाएगी?
(c) गतिक प्रतिरोध कितना है?
(d) यदि पश्चदिशिक वोल्टता को 1 V से 2 V कर दें तो धारा का मान क्या होगा?
14.14 आपको चित्र 14.44 में दो परिपथ दिए गए हैं। यह दर्शाइए कि परिपथ (a) OR गेट की भाँति व्यवहार करता है जबकि परिपथ (b) AND गेट की भाँति कार्य करता है।

चित्र 14.44
14.15 नीचे दिए गए चित्र 14.45 में संयोजित NAND गेट संयोजित परिपथ की सत्यमान सारणी बनाइए।

चित्र 14.45
अतः इस परिपथ द्वारा की जाने वाली यथार्थ तर्क संक्रिया का अभिनिर्धारण कीजिए।
14.16 आपको निम्न चित्र 14.46 में दर्शाए अनुसार परिपथ दिए गए हैं जिनमें NAND गेट जुड़े हैं। इन दोनों परिपथों द्वारा की जाने वाली तर्क संक्रियाओं का अभिनिर्धारण कीजिए।

चित्र 14.46
14.17 चित्र 14.47 में दिए गए NOR गेट युक्त परिपथ की सत्यमान सारणी लिखिए और इस परिपथ द्वारा अनुपालित तर्क संक्रियाओं (OR, AND, NOT) को अभिनिर्धारित कीजिए। (संकेत- $\mathrm{A}=0, \mathrm{~B}=1$ तब दूसरे NOR गेट के निवेश A और $\mathrm{B}, 0$ होंगे और इस प्रकार $\mathrm{Y}=1$ होगा। इसी प्रकार A और B के दूसरे संयोजनों के लिए Y के मान प्राप्त कीजिए। OR , AND, NOT द्वारों की सत्यमान सारणी से तुलना कीजिए और सही विकल्प प्राप्त कीजिए।)

14.18 चित्र 14.48 में दर्शाए गए केवल NOR गेटों से बने परिपथ की सत्यमान सारणी बनाइए। दोनों परिपथों द्वारा अनुपालित तर्क संक्रियाओं (OR, AND, NOT) को अभिनिर्धारित कीजिए।

14.19 एक के पश्चात एक श्रेणीक्रम सोपानित में दो प्रवर्धक संयोजित किए गए हैं। प्रथम प्रवर्धक की वोल्टता लब्धि 10 और द्वितीय की वोल्टता लब्धि 20 है। यदि निवेश संकेत 0.01 वोल्ट है तो निर्गम प्रत्यावर्ती संकेत का परिकलन कीजिए।

