




साहिबजादा अजीत सिंह नगर

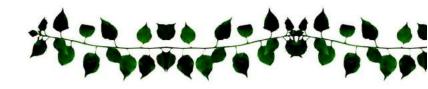
#### © पंजाब सरकार

#### पहला संस्करण 2016..... 000 प्रतियाँ

[This book has been adopted with the kind permission of the National Council of Educational Research and Training.New Delhi]

> All rights, including those of translation, reproduction and annotation etc., are reserved by the Punjab Government.

> > संयोजक : रविन्द्र कौर बनवैत, विषा माहिर पंजाब स्कूल शिक्षा बोर्ड चित्रकार : मनजीत सिंह ढिल्लों पंजाब स्कूल शिक्षा बोर्ड


#### चेतावनी

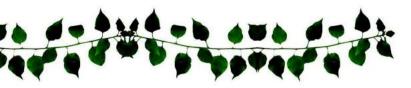
- कोई भी एजेंसी-होल्डर अधिक पैसे लेने के उद्देश्य से पाठ्य-पुस्तकों पर जिल्दबन्दी नहीं कर सकता। (एजेंसी-होल्डरों के साथ हुए समझौते की धारा नं. 7 के अनुसार)
- पंजाब स्कूल शिक्षा बोर्ड द्वारा मुद्रित तथा प्रकाशित पाठ्य-पुस्तकों के जाली और नकली प्रकाशन (पाठ्य-पुस्तकों) की छपाई, प्रकाशन, स्टॉक करना, जमाखोरी या बिक्री आदि करना भारतीय दंड प्रणाली के अन्तर्गत गैरकानूनी जुर्म है।

<mark>(पंजाब स्कूल</mark> शिक्षा बोर्ड की पाठ्य–पुस्तकें बोर्ड के 'वाटर मारक' वाले कागज <mark>के ऊपर ही मुद्रित की</mark> जाती हैं।)

## मूल्य : ₹

**सचिव**, पंजाब स्कूल शिक्षा बोर्ड, विद्या भवन, फेज-8, साहिबजादा अजीत सिंह नगर-160062 द्वारा प्रकाशित एवं मैसर्स ......, जालन्धर द्वारा मुद्रित।




#### प्राक्कथन

पंजाब स्कूल शिक्षा बोर्ड पाठ्यक्रमों और पाठ्य-पुस्तकों के संशोधन और तैयार करने के कार्य में निरन्तर प्रयत्नशील है। आधुनिक युग में, विद्यार्थियों को सही शिक्षा देना अभिभावक और अध्यापकों का साँझा उतरदायित्व है। इस उत्तरदायित्व और शैक्षिक आवश्यकताओं को समझते हुए गणित के पाठ्यक्रम और पाठ्य-पुस्तकों में राष्ट्रीय पाठ्यचर्या की रूपरेखा (2005) के आधार पर महत्वपूर्ण परिवर्तन किये जा रहे हैं।

स्कूल पाठ्यचर्या में जीव विज्ञान विषय का महतवपूर्ण योगदान है और आवश्यक शैक्षिक परिणाम प्राप्त करने के लिए अच्छी पाठ्य-पुस्तक का होना प्राथमिकता है। अत: इस पाठ्य-पुस्तक में विषय सामग्री इस प्रकार व्यवस्थित की गई है जिससे विद्यर्थियों की तार्किक क्षमता विकसित होने का साथ-साथ विष्य को समझने की योग्यता में बढ़ोतरी होगी। अभ्यास प्रश्न विद्यार्थियों के मानसिक स्तर के अनुसार तैयार किया गये हैं। यह पाठ्य-पुस्तक एन.सी.ई.आर.टी. द्वारा कक्षा-11 के लिए तैयार की गई और पंजाब स्कूल शिक्षा बोर्ड द्वारा एन.सी.ई.आर.टी.से अनुमति प्राप्त करने के उपरान्त प्रकाशित की गई है।

पाठ्य-पुस्तक को विद्यार्थियों और अध्यापकों के लिए अधिक से अधिक उपयोगी बनाने का भरपूर प्रयास किया गया है। फिर भी, पुस्तक को और अधिक अच्छा बनाने के लिए क्षेत्र से आये बढ़िया सुझाव आदर सहित स्वीकार किये जायेंगे।

> चेयरपरसन पंजाब स्कूल शिक्षा बोर्ड मोहाली।



# NCERT को पाठ्यपुस्तक निर्माण समिति

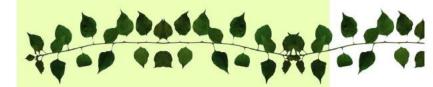
#### अध्यक्षः विज्ञान एवं गणित पाठ्यपुस्तक सलाहकार समिति

जे.वी. नार्लीकर, *इमेरिटस प्रोफ़ेसर*, अंतर-विश्वविद्यालय केंद्र : खगोलविज्ञान और खगोलभौतिकी, पुणे

#### मुख्य सलाहकार

के. मुरलीधर, आचार्य जंतु विज्ञान विभाग, दिल्ली विश्वविद्यालय, दिल्ली

#### सदस्य


अजीत कुमार कवठेकर, प्रवाचक (वनस्पति विज्ञान), श्री वेंक्टेश्वर कालेज, दिल्ली विश्वविद्यालय, दिल्ली आर.के. सेठ, यू.जी.सी. वैज्ञानिक सी, जंतु विज्ञान विभाग, दिल्ली विश्वविद्यालय, दिल्ली आर.पी. सिंह, प्रवक्ता (जीव विज्ञान), राजकीय प्रतिभा विकास विद्यालय, किशनगंज, दिल्ली . एस.सी. जैन, आचार्य, विज्ञान एवं गणित शिक्षा विभाग, रा.शै.अ.प्र.प., नई दिल्ली के. सरथ चंद्रन, *प्रवाचक (जंतू विज्ञान)*, श्री वेंक्टेश्वर कॉलेज, दिल्ली विश्वविद्यालय, दिल्ली जे.एस. गिल, आचार्य, विज्ञान एवं गणित शिक्षा विभाग, रा.शै.अ.प्र.प., नई दिल्ली टी.एन. लखनपाल, आचार्य (अवकाश प्राप्त), जैव विज्ञान विभाग, हिमाचल प्रदेश विश्वविद्यालय, शिमला तेजिंदर चावला, *पी.जी.टी. (जीव विज्ञान)*, गुरु हरकिशन पब्लिक स्कूल, वसंत विहार, नई दिल्ली दिनेश कुमार, प्रवाचक, विज्ञान एवं गणित शिक्षा विभाग, रा.शै.अ.प्र.प., नई दिल्ली नलिनी निगम, प्रवाचक (वनस्पति विज्ञान), रामजस कालेज, दिल्ली विश्वविद्यालय, दिल्ली प्रतिमा गौर, आचार्या, जंतु विज्ञान विभाग, इलाहाबाद विश्वविद्यालय, इलाहाबाद बी.बी.पी. गुप्ता, आचार्य, जंतू विज्ञान विभाग, नार्थ-ईस्टर्न हिल यूनीवर्सिटी, शिलांग यु.के. नंदा, *आचार्य*, क्षेत्रीय शिक्षा संस्थान, भूवनेश्वर रत्नम कौल वट्टल, प्रवाचक (वनस्पति विज्ञान), जाकिर हसैन कालेज, दिल्ली विश्वविद्यालय, दिल्ली संगीता शर्मा, *पी.जी.टी (जीव विज्ञान)*, केंद्रीय विद्यालय, जे.एन.यू., नई दिल्ली सावित्री सिंह, प्राचार्या, आचार्य नरेंद्र देव कालेज, दिल्ली विश्वविद्याल, दिल्ली; भूतपूर्व सदस्य, विज्ञान शिक्षा एवं संचार केंद्र, दिल्ली विश्वविद्यालय, दिल्ली सी.वी. सिमरे. प्रवक्ता, विज्ञान एवं गणित शिक्षा विभाग, रा.शै.अ.प्र.प., नई दिल्ली सुनयना शर्मा, *प्रवक्ता (जीव विज्ञान)*, राजकीय प्रतिभा विकास विद्यालय, द्वारका, नई दिल्ली

#### हिंदी अनुवादक

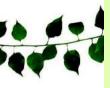
उदेश शर्मा, प्रवक्ता (जीव विज्ञान), जवहार राज.हा.से. स्कूल, अजमेर एस.के. सिंह, सहायक अचार्य, कालेज ऑफ फिशरीज, राजेंद्र कृ.वि.वि. ढोली, मुजफ्फरपुर कवींद्र नाथ तिवारी, प्रवाचक (वनस्पति विज्ञान), महिला महाविद्यालय, बनारस हिन्दू विश्वविद्यालय, वाराणसी के.बी. गुप्ता, प्रोफ़ेसर (अवकाश प्राप्त), विज्ञान एवं गणित शिक्षा विभाग, रा.शै.अ.प्र.प., नई दिल्ली पी.आर. यादव, प्रवाचक (जंतु विज्ञान), डी.ए.वी. कालेज, मुजफ्फरनगर शरदेंदु, प्रवाचक (वनस्पति विज्ञान), साइंस कालेज, पटना विश्वविद्यालय, पटना

#### सदस्य-समन्वयक

बी.के. त्रिपाठी, प्रवाचक, विज्ञान एवं गणित शिक्षा विभाग, रा.शै.अ.प्र.प., नई दिल्ली



# विषय सूची


| (iii) |
|-------|
| (vi)  |
|       |
| 1-62  |
| 3     |
| 16    |
| 29    |
| 46    |
|       |

# इकाई दो

| पादप एवं प्राणियों में संरचनात्मक संगट  | ज 63-122 |
|-----------------------------------------|----------|
| अध्याय 5 पुष्पी पादपों की आकारिकी       | 65       |
| अध्याय 6 पुष्पी पादपों का शारीर         | 84       |
| अध्याय 7 प्राणियों में संरचनात्मक संगठन | 100      |

# इकाई तीन

| कोशिका : संरचना एवं कार्य           | 123-172 |
|-------------------------------------|---------|
| अध्याय 8 कोशिका : जीवन की इकाई      | 125     |
| अध्याय 9 जैव अणु                    | 142     |
| अध्याय 10 कोशिका चक्र और कोशिका विभ | गजन 162 |



# इकाई चार 173-254 अध्याय 11 पौधों में परिवहन 175 अध्याय 12 खनिज पोषण 194 अध्याय 13 उच्च पादपों में प्रकाश-संश्लेषण 206 अध्याय 14 पादप में श्वसन 226 अध्याय 15 पादप वृद्धि एवं परिवर्धन 239

| मानव   | शरीर विज्ञान                      | 255-342 |
|--------|-----------------------------------|---------|
| अध्याय | 16 पाचन एवं अवशोषण                | 257     |
| अध्याय | 17 श्वसन और गैसों का विनिमय       | 268     |
| अध्याय | 18 शरीर द्रव तथा परिसंचरण         | 278     |
| अध्याय | 19 उत्सर्जी उत्पाद एवं उनका निष्क | ासन 290 |
| अध्याय | 20 गमन एवं संचलन                  | 302     |
| अध्याय | 21 तंत्रकोय नियंत्रण एवं समन्वय   | 315     |
| अध्याय | 22 रासायनिक समन्वय तथा एकीक       | रण 330  |

# पूरक पाठ्य सामग्री

#### 343-348





जीव विज्ञान सभी प्रकार के जीवन रचना एवं जैव प्रक्रमों का विज्ञान है। जीव जगत कौतुहल जैव विविधताओं से परिपूर्ण है। आदि मानव आसानीपूर्वक निर्जीव पदार्थ एवं सजीवों के बीच अंतर कर सकता था। आदि मानव ने कुछेक निर्जीव पदार्थों (जैसे वायु, समुंद्र, आग आदि) तथा कुछ सजीव प्राणियों एवं पोधों में भेद किया था। इन सभी प्रकार के जीवित एवं जीवहीन स्वरूप में, उन्होंने जो सर्वसामान्य विशिष्टताएं पाईं, वे उनके द्वारा भय या दूर भागने के भाव पर आधारित थी। सजीवों का वर्णन, जिसमें मानव भी शामिल था, मानव इतिहास में काफी बाद में प्रारंभ हुआ जो समाज (जीव विज्ञान की दृष्टि से) मानवोद्भव विज्ञान में संलग्न थें। वे जैव वैज्ञानिक ज्ञान में सीमित प्रगति दर्ज कर सके।

जीव स्वरूप के वर्गिकी विज्ञान एवं स्मारकीय विवरण ने विस्तृत पहचान प्रणाली नाम-पद्धति तथा वर्गीकरण पद्धति की आवश्यकता प्रदान की है। इस प्रकार के अध्ययनों का सबसे बड़ा प्रचक्रण सजीवों द्वारा ऊर्ध्वाधर एवं क्षैतिज, दोनों ही समानताओं के भागीदारी को मान्यता देना था। वर्तमान के सभी जीवों के परस्पर संबद्ध और साथ ही पृथ्वी पर आदिकाल वाले सभी जीव के साथ उनके संवादों का रहस्योद्घाटन मानवीय अहंकार और जैव विविधता के संरक्षण के लिए एक सांस्कृतिक आंदोलन के कारण थे। इस इकाई के अनुगामी अध्यायों में आप वर्गीकरण-परिप्रेस्य वैज्ञानिक प्राणियों एवं पादपों के वर्गीकरण सहित वर्णन के बारे में पढ़ेंगे।

**अध्याय 1** जीव जगत

**अध्याय 2** जीव जगत का वर्गीकरण

**अध्याय 3** वनस्पति जगत

अध्याय 4 प्राणि जगत एरनस्ट मेयर का जन्म 5 जुलाई, 1904 में केंपटन, जर्मनी में हुआ था। आप हावर्ड विश्वविद्यालय के विकासपरक जीव वैज्ञानिक थे, जिन्हें '20वीं शती का डार्विन' कहा गया। आप अब तक के 100 महान वैज्ञानिकों में से एक थे। मेयर ने सन् 1953 में हावर्ड विश्वविद्यालय की कला एवं विज्ञान संकाय में नौकरी प्राप्त की और 1975 मे एलेक्जेंडर अगासीज प्रोफ़ेसर ऑफ जुलोजी एमीरिटस की पदवी के साथ अवकाश प्राप्त किया। अपने 80 सालों के कार्य जीवन में आपका पक्षी-विज्ञान, वर्गीकरण-विज्ञान, प्राणि-भूगोल, विकास, वर्गिकी तथा जीव विज्ञान के इतिहास एवं दर्शन आदि पर अनुसंधान केंद्रित रहा। आप ने लगभग अकेले ही विकासीय जीव विज्ञान के केंद्रीय प्रश्न जाति विविधता की उत्पत्ति को खड़ा किया, जो कि आज सच है। इसके साथ ही आपने हाल ही में स्वीकृत जीव वैज्ञानिक जाति वर्गिकी की परिभाषा की अगुवाई की। मेयर को तीन पुरस्कार दिए गए, जिन्हें व्यापक तौर पर जीव विज्ञान के तीन ताजों की संज्ञा दी जाती है: 1983 में बालजॉन प्राइज, 1998 में जीव विज्ञान के लिए इंटरनेशनल प्राइज और 1999 में क्राफूर्ड प्राइज। मेयर ने 100 वर्ष की आयु में 2004 को स्वर्गवासी हुए।



**एरनस्ट मेयर** (1904 - 2004)

# अध्याय 1 जीव जगत

- 1.1 'जीव' क्या है?
- 1.2 जीव जगत में विविधता
- 1.3 वर्गिकी संवर्ग
- 1.4 वर्गिकी सहायता साधन

जीव जगत कैसा निराला है? जीवों के विस्तृत प्रकारों की शृंखला विस्मयकारी है। असाधारण वास स्थान चाहे वे ठंडे पर्वत, पर्णपाती वन, महासागर, अलवणीय (मीठा) जलीय झीलें, मरूस्थल अथवा गरम झरनों जिनमें जीव रहते हैं, वे हमें आश्चर्यचकित कर देते हैं। सरपट दौड़ते घोड़े, प्रवासी पक्षियों, घाटियों में खिलते फूल अथवा आक्रमणकारी शार्क की सुंदरता विस्मय तथा चमत्कार का आहवान करती है। पारिस्थितिक विरोध, तथा समष्टि के सदस्यों तथा समष्टि और समुदाय में सहयोग अथवा यहां तक कि कोशिका में आण्विक गतिविधि से पता चलता है कि वास्तव में जीवन क्या है ? इस प्रश्न में दो निर्विवाद प्रश्न हैं। पहला तकनीकी है जो जीव तथा निर्जीव क्या हैं, इसका उत्तर खोजने का प्रयत्न करता है, तथा दूसरा प्रश्न दार्शनिक है जो यह जानने का प्रयत्न करता है कि जीवन का उद्देश्य क्या है। वैज्ञानिक होने के नाते हम दूसरे प्रश्न का उत्तर देने का प्रयास नहीं करेंगे। हम इस विषय पर चिंतन करेंगे कि जीव क्या है?

# 1.1 'जीव' क्या है?

जब हम जीवन को पारिभाषित करने का प्रयत्न करते हैं, तब हम प्राय: जीवों के सुस्पष्ट अभिलक्षणों को देखते हैं। वृद्धि, जनन, पर्यावरण के प्रति संवेदना का पता लगाना और उसके अनुकूल क्रिया करना, ये सब हमारे मस्तिष्क में तुरंत आते हैं कि ये अद्भुत लक्षण जीवों के हैं। आप इस सूची में उपापचय, स्वयं की प्रतिलिपि बनाना, स्वयं को संगठित करना, प्रतिक्रिया करना तथा उद्गमन आदि को भी जोड़ सकते हैं। आओ, हम इन सबको विस्तार से समझने का प्रयत्न करें। सभी जीव वृद्धि करते हैं। जीवों के भार तथा संख्या में वृद्धि होना, ये दोनों वृद्धि के द्वियुग्मी अभिलक्षण हैं। बहुकोशिक जीव कोशिका विभाजन द्वारा वृद्धि करते हैं। पौध ों में यह वृद्धि जीवन पर्यंत कोशिका विभाजन द्वारा संपन्न होती रहती है। प्राणियों में, यह वृद्धि कुछ आयु तक होती है। लेकिन कोशिका विभाजन विशिष्ट ऊतकों में होता है ताकि विलुप्त कोशिकाओं के स्थान पर नई कोशिकायें आ सकें। एककोशिक जीव भी कोशिका विलुप्त कोशिकाओं के स्थान पर नई कोशिकायें आ सकें। एककोशिक जीव भी कोशिका विलुप्त कोशिकाओं के स्थान पर नई कोशिकायें आ सकें। एककोशिक जीव भी कोशिका विलाजन द्वारा वृद्धि करते हैं। बड़ी सरलता से कोई भी इसे पात्रे संवर्धन में सूक्ष्मदर्शी (माइक्रोस्कोप) से देखकर कोशिकाओं की संख्या गिन सकता है। अधिकांश उच्चकोटि के प्राणियों तथा पादपों में वृद्धि तथा जनन पारस्परिक विशिष्ट घटनाएं हैं। हमें याद रखना चाहिए कि जीव के भार में वृद्धि होने को भी वृद्धि समझा जाता है। यदि हम भार को वृद्धि का अभिलक्षण मानते हैं तो निर्जीवों के भार में भी वृद्धि होती है। पर्वत, गोलाश्म तथा रेत के टीले भी वृद्धि करते हैं। लेकिन निर्जीवों में इस प्रकार की वृद्धि उनकी सतह पर पदार्थों के एकत्र होने के कारण होती हैं। जीवों में यह वृद्धि अंदर की ओर से होती है। इसलिए वृद्धि को जीवों का एक विशिष्ट गुण नहीं मान सकते हैं। जीवों में यह लक्षण जिन परिस्थितियों में परिक्षित होता है; उनका विवेचना करके ही यह समझना चाहिए कि यह जीव तंत्र के लक्षण हैं।

इस प्रकार जनन भी जीवों का अभिलक्षण है। वृद्धि के संदर्भ में इस तथ्य की व्याख्या हो जाती है। बहुकोशिक जीवों में जनन का अर्थ अपनी संतति उत्पन्न करना है जिसके अभिलक्षण लगभग उसे अपने माता-पिता से मिलते हैं। निर्विवाद रूप से हम लैंगिक जनन के विषय में चर्चा कर रहे हैं। जीव अलैंगिक जनन भी करते हैं। फेजाई (कवक) लाखों अलैंगिक बीजाणुओं द्वारा गुणन करती है और सरलता से फैल जाती है। निम्न कोटि के जीवों जैसे यीस्ट तथा हाइड़ा में मुकुलन द्वारा जनन होता है। प्लैनेरिया (चपटा कृमि) में वास्तविक पुनर्जनन होता है अर्थात् एक खंडित जीव अपने शरीर के लुप्त अंग को पुन: प्राप्त (जीवित) कर लेता है और इस प्रकार एक नया जीव बन जाता है। फेजाई, तंतुमयी शैवाल, मॉस का प्रथम तंतु सभी विखंडन विधि द्वारा गुणन करते हैं। जब हम एककोशिक जीवों जैसे जीवाणू (बैक्टीरिया), एककोशिक शैवाल अथवा *अमीबा* के विषय में चर्चा करते हैं तब जनन की वृद्धि पर्यायवाची है अर्थात् कोशिकाओं की संख्या में वृद्धि होती है। हम पहले ही कोशिकाओं की संख्या अथवा भार में वृद्धि होने को वृद्धि के रूप में पारिभाषित कर चुके हैं। अब तक, हमने देखा है कि एककोशिक जीवों में वृद्धि तथा जनन इन दोनों शब्दों के उपयोग के विषय में सुस्पष्ट नहीं है। कुछ ऐसे भी जीव हैं जो जनन नहीं करते (खेसर या खच्चर, बंध्य कामगार मधुमक्खी, अनुर्वर मानव युगल आदि)। इस प्रकार जनन भी जीवों का समग्र विशिष्ट लक्षण नहीं हो सकता। यद्यपि, कोई भी निर्जीव वस्तु जनन अथवा अपनी प्रतिलिपि बनाने में अक्षम है।

जीवों का दूसरा लक्षण उपापचयन है। सभी जीव रसायनों से बने होते हैं। ये रसायन छोटे, बड़े, विभिन्न वर्ग, माप, क्रिया आदि वाले होते हैं जो अनवरत जैव अणुओं में बदलते और उनका निर्माण करते हैं। ये परिवर्तन रासायनिक अथवा उपापचयी क्रियाएं हैं। सभी जीवों, चाहें वे बहुकोशिक हो अथवा एककोशिक हों, में हजारों उपापचयी क्रियाएं साथ-साथ चलती रहती हैं। सभी पौधों, प्राणियों, कवकों (फेजाई) तथा सूक्ष्म जीवों में उपापचयी क्रियाएं होती हैं। हमारे शरीर में होने वाली सभी रासायनिक क्रियाएं उपापचयी क्रियाएं हैं। किसी भी निर्जीव में उपापचयी क्रियाएं नहीं होती। शरीर के बाहर कोशिका मुक्त तंत्र में उपापचयी क्रियाएं प्रदर्शित हो सकती हैं। जीव के शरीर से बाहर परखनली में की गई उपापचयी क्रियाएं न तो जैव हैं और न ही निर्जीव। अत: उपापचयी क्रियाएं निरापवाद जीवों के विशिष्ट गुण के रूप में पारिभाषित हैं जबकि पात्रे में एकाकी उपापचयी क्रियाएं जैविक नहीं है यद्यपि ये निश्चित ही जीवित क्रियाएं हैं। अत: शरीर का कोशिकीय संगठन जीवन स्वरूप का सुस्पष्ट अभिलक्षण हैं।

शायद, सभी जीवों का सबसे स्पष्ट परंतु पेंचीदा अभिलक्षण अपने आस-पास या पर्यावरण के उद्दीपनों, जो भौतिक, रासायनिक अथवा जैविक हो सकती हैं, के प्रति संवेदनशीलता तथा प्रतिक्रिया करना है। हम अपने संवेदी अंगों द्वारा अपने पर्यावरण से अवगत होते हैं। पौधे प्रकाश, पानी, ताप, अन्य जीवों, प्रदूषकों आदि जैसे बाह्य कारकों के प्रति प्रतिक्रिया दिखाते हैं। प्रोकेरिऑट से लेकर जटिलतम यूकेरिऑट तक सभी जीव पर्यावरण संकेतों के प्रति संवदेना एवं प्रतिक्रिया दिखा सकते हैं। पादप तथा प्राणियों दोनों में दीप्ति काल मौसमी प्रजनकों के जनन को प्रभावित करता है। इसलिए सभी जीव अपने पर्यावरण से अवगत रहते हैं। मानव ही केवल ऐसा जीव है जो स्वयं से अवगत अर्थात् स्वचेतन है। इसलिए चेतना जीवों को पारिभाषित करने के लिए अभिलक्षण हो जाती है।

जब हम मानव के विषय में चर्चा करते हैं तब जीवों को पारिभाषित करना और भी कठिन हो जाता है। हम रोगी को अस्पताल में अचेत अवस्था में लेटे रहते हुए देखते हैं जिसके हृदय तथा फुप्फुस को चालू रखने के लिए मशीनें लगाई गई होती हैं। रोगी का मस्तिष्क मृतसम होता है। रोगी में स्वचेतना नहीं होती। ऐसे रोगी जो कभी भी अपने सामान्य जीवन में वापस नहीं आ पाते, तो क्या हम इन्हें जीव अथवा निर्जीव कहेंगे?

उच्चस्तरीय अध्ययन में जीव विज्ञान पृथ्वी पर जैव विकास की कथा है आपको पता लगेगा कि सभी जीव घटनाएं उसमें अंतर्निहित प्रतिक्रियाओं के कारण होती हैं। ऊतकों के गुण कोशिका में स्थित कारकों के कारण नहीं हैं, बल्कि घटक कोशिकाओं की पारस्परिक प्रतिक्रिया के कारण है। इसी प्रकार कोशिकीय अंगकों के लक्षण अंगकों में स्थित आण्विक घटकों के कारण नहीं बल्कि अंगकों में स्थित आण्विक घटकों के आपस में क्रिया करने के कारण हैं। उच्च स्तरीय संगठन उद्गामी गुणधर्म इन प्रतिक्रियाओं के परिणामस्वरूप होते हैं। सभी स्तरों पर संगठनात्मक जटिलता की पदानुक्रम में यह अद्भुत घटना यथार्थ है। अत: हम कह सकते हैं कि जीव स्वप्रतिकृति, विकासशील तथा स्वनियमनकारी पारस्पारिक क्रियाशील तंत्र है जो बाह्य उद्दीपन के प्रति अनुक्रिया की क्षमता रखते हैं। जीव विज्ञान पृथ्वी पर जीवन की कहानी है। वर्तमान, भूत एवं भविष्य के सभी जीव एक दूसरे से सर्वनिष्ठ आनुवंशिक पदार्थ की साझेदारी द्वारा संबद्ध है, परंतु यह पदार्थ सबमें विविध अंशों में होते हैं।

## 1.2 जीव जगत में विविधता

यदि आप अपने आस-पास देखें तो आप जीवों की बहुत सी किस्में देखेंगे, ये किस्में, गमले में उगने वाले पौधे, कीट, पक्षी, पालतू अथवा अन्य प्राणी व पौधे हो सकती हैं। बहुत से ऐसे जीव भी होते हैं जिन्हें आप आँखों की सहायता से नहीं देख सकते, लेकिन आपके आस-पास ही हैं। यदि आप अपने अवलोकन के क्षेत्र को बढ़ाते हैं तो आपको विविधता की एक बहुत बड़ी शृंखला दिखाई पड़ेगी। स्पष्टत: यदि आप किसी सघन वन में जाएं तो आपको जीवों की बहुत बड़ी संख्या तथा उनकी कई किस्में दिखाई पड़ेंगी। प्रत्येक प्रकार के पौधे, जंतु अथवा जीव जो आप देखते हैं किसी एक जाति (स्पीशीज) का प्रतीक हैं। अब तक की ज्ञात तथा वर्णित स्पीशीज की संख्या लगभग 1.7 मिलियन से लेकर 1.8 मिलियन तक हो सकती है। हम इसे **जैविक विविधता** अथवा पृथ्वी पर स्थित जीवों की संख्या तथा प्रकार कहते हैं। हमें यह स्मरण रखना चाहिए कि जैसे-जैसे हम नए तथा यहां तक कि पुराने क्षेत्रों की खोज करते हैं, हमें नए-नए जीवों का पता लगता रहता है।

जैसा कि ऊपर बताया गया है कि विश्व में कई मिलियन पौधे तथा प्राणी हैं। हम पौधों तथा प्राणियों को उनके स्थानीय नाम से जानते हैं। ये स्थानीय नाम एक ही देश के विभिन्न स्थान के अनुसार बदलते रहते हैं। यदि हमने कोई ऐसी विधि नहीं निकाली जिसके द्वारा हम किसी जीव के विषय में चर्चा कर सकें जो शायद इससे भ्रमकारी स्थिति पैदा हो सकती है।

प्रत्येक जीव का एक मानक नाम होता है, जिससे वह उसी नाम से सारे विश्व में जाना जाता है। इस प्रक्रिया को **नाम-पद्धति** कहते हैं। स्पष्टत: नाम-पद्धति तभी संभव है जब जीवों का वर्णन सही हो और हम यह जानते हों कि यह नाम किस जीव का है। इसे **पहचानना** कहते हैं।

अध्ययन को सरल करने के लिए अनेकों वैज्ञानिकों ने प्रत्येक ज्ञात जीव को वैज्ञानिक नाम देने की प्रक्रिया बनाई है। इस प्रक्रिया को विश्व में सभी जीव वैज्ञानिकों ने स्वीकार किया है। पौधों के लिए वैज्ञानिक नाम का आधार सर्वमान्य नियम तथा कसौटी है, जिनको इंटरनेशनल कोड ऑफ बोटेनीकल नोमेनकलेचर (ICBN) में दिया गया है। आप पूछ सकते हैं कि प्राणियों का नामकरण कैसे किया जाता है। प्राणी वर्गिकीविदों ने इंटरनेशनल कोड ऑफ जूलोजीकल नोमेनकलेचर (ICZN) बनाया है। वैज्ञानिक नाम की यह गारंटी है कि प्रत्येक जीव का एक ही नाम रहे। किसी भी जीव के वर्णन से विश्व में किसी भी भाग में लोग एक ही नाम बता सके। वे यह भी सुनिश्चित करते हैं कि एक ही नाम किसी दूसरे ज्ञात जीव का न हो।

जीव विज्ञानी ज्ञात जीवों के वैज्ञानिक नाम देने के लिए सार्वजनिक मान्य नियमों का पालन करते हैं। प्रत्येक नाम के दो घटक होते हैं : वंशनाम तथा जाति संकेत पद। इस प्रणाली को जिसमें दो नाम के दो घटक होते हैं, उसे द्विपदनाम पद्धति कहते हैं। इस नामकरण प्रणाली को कैरोलस लीनियस ने सुझाया था। इसका उपयोग सारे विश्व के जीवविज्ञानी करते हैं। दो शब्दों वाली नामकरण प्रणाली बहुत सुविधाजनक है। आओ, आपको आम के उदाहरण द्वारा वैज्ञानिक नाम देने की विधि को समझाएं। आम का वैज्ञानिक नाम *मैंजीफेरा इंडिका* है। तब आप यह देख सकते हैं कि यह नाम कैसे द्विपद है। इस नाम में मैंजीफेरा वंशनाम है जबकि इंडिका एक विशिष्ट स्पीशीज अथवा जाति संकेत पद है। नाम पद्धति के अन्य सार्वजनिक नियम निम्नलिखित हैं :

- जैविक नाम प्राय: लैटिन भाषा में होते हैं और तिरछे अक्षरों में लिखे जाते हैं। इनका उद्भव चाहे कहीं से भी हुआ हो। इन्हें लैटिनीकरण अथवा इन्हें लैटिन भाषा का व्युत्पन्न समझा जाता है।
- जैविक नाम में पहला शब्द वंशनाम होता है जबकि दूसरा शब्द जाति संकेत पद होता है।
- जैविक नाम को जब हाथ से लिखते हैं तब दोनों शब्दों को अलग-अलग रेखांकित अथवा छपाई में तिरछा लिखना चाहिए। यह रेखांकन उनके लैटिन उद्भव को दिखाता है।
- पहला अक्षर जो वंश नाम को बताता है, वह बड़े अक्षर में होना चाहिए जबकि जाति संकेत पद में छोटा अक्षर होना चाहिए। मैंजीफेरा इंडिका के उदाहरण से इसकी व्याख्या कर सकते हैं।

जाति संकेत पद के बाद अर्थात् जैविक नाम के अंत में लेखक का नाम लिखते हैं और इसे संक्षेप में लिखा जाता है। उदाहरणत: *मैंजीफेरा इंडिका* (लिन)। इसका अर्थ है सबसे पहले स्पीशीज का वर्णन लीनियस ने किया था।

यद्यपि सभी जीवों का अध्ययन करना लगभग असंभव है. इसलिए ऐसी युक्ति बनाने की आवश्यकता है जो इसे संभव कर सके। इस प्रक्रिया को वर्गीकरण कहते हैं। वर्गीकरण वह प्रक्रिया है जिसमें कुछ सरलता से दूश्य गुणों के आधार पर सुविधाजनक वर्ग में वर्गीकृत किया जा सके। उदाहरण के लिए हम पौधों अथवा प्राणियों और कुत्ता, बिल्ली अथवा कीट को सरलता से पहचान लेते हैं। जैसे ही हम इन शब्दों का उपयोग करते है, उसी समय हमारे मस्तिष्क में इन जीव के ऐसे कुछ गुण आ जाते हैं जिससे उनका उस वर्ग से संबंध होता है। जब आप कुत्ते के विषय में सोचते हो तो आपके मस्तिष्क में क्या प्रतिबिंब बनता है। स्पष्टत: आप कुत्ते को ही देखेंगे न कि बिल्ली को। अब. यदि एलशेशियन के विषय में सोचे तो हमें पता लगता है कि हम किसके विषय में चर्चा कर रहे हैं। इसी प्रकार, मान लो हमें 'स्तनधारी' कहना है तो आप ऐसे जंतु के विषय में सोचोगे जिसके बाहय कान और शरीर पर बाल होते हैं। इसी प्रकार पौधों में यदि हम 'गेहूँ' के विषय में चर्चा करें तो हमारे मस्तिष्क में गेहूँ का पौधा आ जाएगा। इसलिए ये सभी 'कुत्ता', 'बिल्ली', 'स्तनधारी', 'गेहूँ', 'चावल', 'पौधे', 'जंतु' आदि सुविधाजनक वर्ग हैं जिनका उपयोग हम पढने में करते हैं। इन वर्गों की वैज्ञानिक शब्दावली टैक्सा है। यहाँ आपको स्वीकार करना चाहिए कि 'टैक्सा' विभिन्न स्तर पर सही वर्गों को बता सकता है। 'पौधे' भी एक टैक्सा हैं। 'गेहूँ' भी एक टैक्सा है। इसी प्रकार 'जंतु', 'स्तनधारी', 'कुत्ता' ये सभी टैक्सा हैं। लेकिन क्या आप जानते हैं कि कृत्ता एक स्तनधारी और स्तनधारी प्राणी है। इसलिए प्राणी, स्तनधारी तथा कुत्ता विभिन्न स्तरों पर टैक्सा को बताता है।

इसलिए, गुणों के आधार पर सभी जीवों को विभिन्न टैक्सा में वर्गीकृत कर सकते हैं। गुण जैसे प्रकार, रचना, कोशिका की रचना, विकासीय प्रक्रम तथा जीव की पारिस्थितिक सूचनाएं आवश्यक हैं और ये आधुनिक वर्गीकरण अध्ययन के आधार हैं। इसलिए, विशेषीकरण, पहचान (अभिज्ञान), वर्गीकरण तथा नाम पद्धति आदि ऐसे प्रक्रम (प्रणाली) हैं जो **वर्गिकी** (वर्गीकरण विज्ञान) के आधार हैं।

वर्गिकी कोई नई नहीं है। मानव सदैव विभिन्न प्रकार के जीवों के विषय में अधिकाधिक जानने का प्रयत्न करता रहा है, विशेष रूप से उनके विषय में जो उनके लिए अधिक उपयोगी थे। आदिमानव को अपनी मूलभूत आवश्यकताओं जैसे- भोजन, कपड़े तथा आश्रय के लिए नए-नए स्रोत खोजने पड़ते थे। इसलिए विभिन्न जीवों के वर्गीकरण का आधार 'उपयोग' पर आधारित था।

काफी समय से मानव विभिन्न प्रकार के जीवों के विषय में जानने और उनकी विविधता सहित उनके संबंध में रुचि लेता रहा है। अध्ययन की इस शाखा को **वर्गीकरण पद्धति** (सिस्टेमेटिक्स) कहते हैं। 'सिटेमेटिक्स' शब्द लैटिन शब्द 'सिस्टेमा' से आया है जिसका अर्थ है जीवों की नियमित व्यवस्था। लीनियस ने अपने पब्लिकेशन का टाइटल 'सिस्टेमा नेचर' चुना। वर्गीकरण पद्धति में पहचान, नाम पद्धति तथा वर्गीकरण को शामिल करके इसके क्षेत्र को बढ़ा दिया गया है। वर्गीकरण पद्धति में जीवों के विकासीय संबंध का भी ध्यान रखा गया है।

## 1.3 वर्गिकी संवर्ग

वर्गीकरण एकल सोपान प्रक्रम नहीं है; बल्कि इसमें पदानुक्रम सोपान होते हैं जिसमें प्रत्येक सोपान पद अथवा वर्ग को प्रदर्शित करता है। चूँकि संवर्ग समस्त वर्गिकी व्यवस्था है इसलिए इसे **वर्गिकी संवर्ग** कहते हैं और तभी सारे संवर्ग मिलकर **वर्गिकी पदानुक्रम** बनाते हैं। प्रत्येक संवर्ग वर्गीकरण की एक इकाई को प्रदर्शित करता है। वास्तव में, यह एक पद को दिखाता है और इसे प्राय: **वर्गक** (टैक्सॉन) कहते हैं।

वर्गिकी संवर्ग तथा पदानुक्रम का वर्णन एक उदाहरण द्वारा कर सकते हैं। कीट जीवों के एक वर्ग को दिखाता है जिसमें एक समान गुण जैसे तीन जोड़ी संधिपाद (टाँगें) होती हैं। इसका अर्थ है कि कीट स्वीकारणीय सुस्पष्ट जीव है जिसका वर्गीकरण किया जा सकता है, इसलिए इसे एक पद अथवा संवर्ग का दर्जा दिया गया है। क्या आप ऐसे किसी जीवों के अन्य वर्ग का नाम बता सकते हैं? स्मरण रहे कि वर्ग संवर्ग को दिखाता है। प्रत्येक पद अथवा वर्गक वास्तव में, वर्गीकरण की एक इकाई को बताता है। ये वर्गिकी वर्ग/संवर्ग सुस्पष्ट जैविक है ना कि केवल आकारिकीय समूहन।

सभी ज्ञात जीवों के वर्गिकीय अध्ययन से सामान्य संवर्ग जैसे जगत (किंगडम), संघ (फाइलम), अथवा भाग (पौधों के लिए), वर्ग (क्लास), गण (आर्डर), कुल (फैमिली), वंश (जीनस) तथा जाति (स्पीशीज) का विकास हुआ। पौधों तथा प्राणियों दोनों में स्पीशीज सबसे निचले संवर्ग में आती है। अब आप यह प्रश्न पूछ सकते हैं, कि किसी जीव को विभिन्न संवर्गों में कैसे रखते हैं ? इसके लिए मूलभूत आवश्यकता व्यष्टि अथवा उसके वर्ग के गुणों का ज्ञान होना है। यह समान प्रकार के जीवों तथा अन्य प्रकार के जीवों में समानता तथा विभिन्नता को पहचानने में सहायता करता है।

## 1.3.1 स्पीशीज (जाति)

वर्गिकी अध्ययन में जीवों के वर्ग, जिसमें मौलिक समानता होती है, उसे स्पीशीज कहते हैं। हम किसी भी स्पीशज को उसमें समीपस्थ संबंधित स्पीशीज से, उनके आकारिकीय विभिन्नता के आधार पर उन्हें एक दूसरे से अलग कर सकते हैं। हम इसके लिए मैंजीफेरा इंडिका (आम) सोलेनम टयूवीरोसम (आलू) तथा पेंथरा लिओ (शेर) के उदाहरण लेते हैं। इन सभी तीनों नामों में इंडिका, टयूबीरोसम तथा लिओ जाति संकेत पद हैं। जबकि पहले शब्द मैंजीफेरा, सोलेनम, तथा पेंथरा वंश के नाम हैं और यह टैक्सा अथवा संवर्ग का भी निरूपण करते हैं। प्रत्येक वंश में एक अथवा एक से अधिक जाति संकेत पद हो सकते हैं जो विभिन्न जीवों, जिनमें आकारकीय गुण समान हों, को दिखाते हैं। उदाहरणार्थ, पेंथरा में एक अन्य जाति संकेत पद है जिसे टिगरिस कहते हैं। सोलेनम वंश में नाइग्रिम, मेलांजेना भी आते हैं। मानव की जाति सेपियंस है, जो होमों वंश में आता है। इसलिए मानव का वैज्ञानिक नाम होमोसेपियंस है।

#### 1.3.2 वंश ( जीनस )

वंश में संबंधित स्पीशीज का एक वर्ग आता है जिसमें स्पीशीज के गुण अन्य वंश में स्थित स्पीशीज की तुलना में समान होते हैं। हम कह सकते हैं कि वंश समीपस्थ संबंधित स्पीशीज का एक समूह है। उदाहरणार्थ आलू, टमाटर तथा बैंगन; ये दोनों अलग-अलग स्पीशीज हैं, लेकिन ये सभी *सोलेनम* वंश में आती हैं। शेर (*पेंथरा लिओ*), चीता (*पेंथर पारडस*) तथा (*पेंथर टिगरिस*) जिनमें बहुत से गुण हैं, वे सभी *पेंधरा* वंश में आते हैं। यह वंश दूसरे वंश फेलिस, जिसमें बिल्ली आती है, से भिन्न है।

#### 1.3.3 कुल

अगला संवर्ग कुल है जिसमें संबंधित वंश आते हैं। वंश स्पीशीज की तुलना में कम समानता प्रदर्शित करते हैं। कुल के वर्गीकरण का आधार पौधों के कायिक तथा जनन गुण हैं। उदाहरणार्थ; पौधों में तीन विभिन्न वंश *सोलेनम, पिटूनिआ* तथा धतूरा को *सोलेनेसी* कुल में रखते हैं। जबकि प्राणी वंश *पेंथरा* जिसमें शेर, बाघ, चीता आते हैं को *फेलिस* (बिल्ली) के साथ *फेलिडी* कुल में रखे जाते हैं। इसी प्रकार, यदि आप बिल्ली तथा कुत्ते के लक्षण को देखो तो आपको दोनों में कुछ समानताएं तथा कुछ विभिन्नताएं दिखाई पड़ेंगी। उन्हें क्रमश: दो विभिन्न कुलों कैनीडी तथा फेलिडी में रखा गया है।

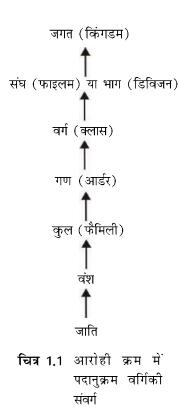
#### 1.3.4 गण (आर्डर)

आपने पहले देखा है कि संवर्ग जैसे स्पीशीज, वंश तथा कुल समान तीनों लक्षणों पर आधारित है। प्राय: गण तथा अन्य उच्चतर वर्गिकी संवर्ग की पहचान लक्षणों के समूहन के आधार पर करते हैं। गण में उच्चतर वर्ग होने के कारण कुलों के समूह होते हैं। जिनके कुछ लक्षण एक समान होते हैं। इसमें एक जैसे लक्षण कुल में शामिल विभिन्न वंश की अपेक्षा कम होते हैं। पादप कुल जैसे कोनवोलव्युलेसी, सोलेनेसी को पॉलिसोनिएलस गण में रखा गया है। इसका मुख्य आधार पुष्पी लक्षण है। जबकि प्राणी कारनीवोरा गण में फेलिडी तथा कैनीडी कुलों को रखा गया है।

#### 1.3.5 वर्ग (क्लास)

इस संवर्ग में संबंधित गण आते हैं। उदाहरणार्थ प्राइमेटा गण जिसमें बंदर, गोरिला तथा गिब्बॉन आते हैं, और कारनीवोरा गण जिसमें बाघ, बिल्ली तथा कुत्ता आते हैं, को मैमेलिया वर्ग में रखा गया है। इसके अतिरिक्त मैमेलिया वर्ग में अन्य गण भी आते हैं।

#### 1.3.6 संघ (फाइलम)


वर्ग जिसमें जंतु जैसे मछली, उभयचर, सरीसृप, पक्षी तथा स्तनधारी आते हैं, अगले उच्चतर संवर्ग, जिसे संघ कहते हैं, का निर्माण करते हैं। इन सभी को एक समान गुणों जैसे पृष्ठरज्जु (नोटोकॉर्ड) तथा पृष्ठीय खोखला तंत्रिका तंत्र के होने के आधार पर कॉर्डेटा संघ में रखा गया है। पौधों में इन वर्गो, जिसमें कुछ ही एक समान लक्षण होते हैं, को उच्चतर संवर्ग भाग (डिविजन) में रखा गया है।

#### 1.3.7 जगत ( किंगडम )

जंतु के वर्गिकी तंत्र में विभिन्न संघों के सभी प्राणियों को उच्चतम संवर्ग जगत में रखा गया है। जबकि पादप जगत में विभिन्न भाग (डिविजन) के सभी पौधों को रखा गया है। विभिन्न संघों के सभी प्राणियों को एक अलग जगत एनिमेलिया में रखा गया है जिससे कि उन्हें पौधों से अलग किया जा सके। पौधों को प्लांटी जगत में रखा गया है। भविष्य में हम इन दो वर्गों को जंतु तथा पादप जगत कहेंगे।

इनमें स्पीशीज से लेकर जगत तक विभिन्न वर्गिकी संवर्ग को आरोही क्रम में दिखाया गया है। ये संवर्ग हैं। यद्यपि वर्गिकी विज्ञानियों ने इस पदानुक्रम में उपसंवर्ग भी बताए हैं। इसमें विभिन्न टैक्सा का उचित वैज्ञानिक स्थान देने में सुविधा होती है।

चित्र 1.1 में पदानुक्रम को देखो। क्या आप इस व्यवस्था के आधार का स्मरण कर सकते हो ? उदाहरण के लिए जैसे-जैसे हम स्पीशीज से जगत की ओर ऊपर जाते हैं; वैसे ही समान गुणों में कमी आती जाती है। सबसे नीचे जो टैक्सा होगा उसके सदस्यों में सबसे अधिक समान गुण होंगे। जैसे-जैसे उच्चतर संवर्ग की ओर जाते हैं, उसी स्तर पर अन्य टैक्सा के संबंध निर्धारित करने अधिक कठिन हो जाते हैं। इसलिए वर्गीकरण की समस्या और भी जटिल हो जाती है।



11

तालिका 1.1 में कुछ सामान्य जीवों जैसे घरेलू मक्खी, मानव, आम तथा गेहूँ के विभिन्न वर्गिकी संवर्गों को दिखाया गया है।

| सामान्य<br>नाम | जैविक<br>नाम         | वंश       | कुल        | गण          | वर्ग          | संघ∕भाग       |
|----------------|----------------------|-----------|------------|-------------|---------------|---------------|
| मानव           | होमो सेपियन्स        | होमो      | होमोनिडी   | प्राइमेट    | मेमेलिया      | कॉरडेटा       |
| घरेलू मक्खी    | मस्का डोमस्टिका      | मस्का     | म्यूसीडी   | डिप्टेरा    | इंसेंक्टा     | आर्थ्रोपोडा   |
| आम             | मेंजीफेरा ईंडिका     | मेंजीफेरा | एनाकरडिएसी | सेपिन्डेल्स | डाइकोटीलिडनी  | एंजियोस्पर्मी |
| गेहूँ          | ट्रीटीकम<br>एइस्टीवम | ट्रीटीकम  | पोएसी      | पोएलस्      | मोनोकोटीलिडनी | एंजियोस्पर्मी |

#### तालिका 1.1 वर्गिकी संवर्ग सहित कुछ जीव

## 1.4 वर्गिकी सहायता साधन

जीवों की पहचान के लिए एक गहन तथा आधुनिक उपकरणों से संसाधित प्रयोगशाला तथा प्रयोगशाला के बाहर के पर्यावरण के अध्ययन की आवश्यकता होती है। पौधों तथा प्राणियों के वास्तविक नमूने एकत्र करने आवश्यक होते हैं। ये वर्गिकी अध्ययन के मुख्य स्रोत होते हैं। ये अध्ययन के मौलिक तथा वर्गीकरण विज्ञान के प्रशिक्षण के लिए आवश्यक हैं। इनका उपयोग जीवों के वर्गीकरण में किया जाता है। जो भी सूचनाएं एकत्र की जाती हैं। उन्हें नमूने सहित संचयित कर लेते हैं। जुछ मामलों में नमूने को भविष्य में अध्ययन के लिए परिरक्षित कर लेते हैं। जीवविज्ञानियों ने सूचना सहित नमूनों को संचय करने तथा उन्हें परिरक्षित करने की कुछ विधियाँ तथा तकनीक विकसित की हैं। उनमें से कुछ का वर्णन किया गया है जो आपको इन सहायता साधनों को उपयोग करने में सहायता करेंगे।

#### 1.4.1 हरबेरियम

वनस्पति संग्रहालय में पौधों के एकत्र नमूनों को कागज की शीट पर सुखाकर, दबाकर परिरक्षित करते हैं। इन शीटों को विश्वव्यापी मान्य वर्गीकरण प्रणाली के अनुसार व्यवस्थित करते हैं। ये नमूने सूचना सहित भविष्य में अध्ययन के लिए वनस्पति संग्रहालय में सुरक्षित रखे जाते हैं। हरबेरियम की शीट पर एक लेबल लगा दिया जाता है। इस लेबल पर पौधे को एकत्र करने की तिथि, स्थान, पौधे का इंग्लिश, स्थानीय तथा वैज्ञानिक नाम, कुल, एकत्र करने वाले का नाम आदि लिखा रहता है। हरबेरियम वर्गिकी अध्ययन के लिए तत्काल संदर्भ तंत्र उपलब्ध कराता है।



चित्र 1.2 वनस्पति संग्रहालय में पौधों के एकत्रित नमूने

#### 1.4.2 वनस्पति उद्यान ( बोटेनिकल गार्डन )

इन विशिष्ट उद्यानों में संदर्भ के लिए जीवित पौधों का संग्रहण होता है। इन उद्यानों में पौधों की स्पीशीज को पहचान के लिए उगाया जाता है और प्रत्येक पौधे पर लेबल लगा रहता है, जिस पर वनस्पति/वैज्ञानिक नाम तथा उसके कुल का नाम लिखा रहता है। प्रसिद्ध बोटेनिकल गार्डन क्यिू (इंगलैंड), इंडियन बोटेनिकल गार्डन हावड़ा (भारत) में तथा नेशनल बोटेनिकल रिसर्च इंस्टीट्यूट लखनऊ (भारत) में हैं।

#### 1.4.3 संग्रहालय (म्यूजियम)

वानस्पतिक संग्रहालय प्राय: शैक्षिक संस्थानों जैसे विद्यालय तथा कॉलेजों में स्थापित किए जाते हैं। संग्रहालय में अध्ययन के लिए परिरक्षित पौधों तथा प्राणियों के नमूने होते हैं। नमूने परिरक्षित घोल में डालकर जारों में रखे जाते हैं। पौधे तथा प्राणियों के नमूनों को सुखाकर परिरक्षित करते हैं। कीटों को एकत्र, मारने के बाद कीटों को डिब्बों में पिन लगाकर रखते हैं। बड़े प्राणी जैसे पक्षी तथा स्तनधारी को प्राय: भरकर परिरक्षित करते हैं। संग्रहालय में प्राय: प्राणियों के कंकाल भी रखे जाते हैं।

#### 1.4.4 प्राणि उपवन अथवा चिड़ियाघर ( जूलोजिकल पार्क )

इन उपवनों में अधिकांशत: वन्य आवासी जीवित प्राणी रखे जाते हैं। इनसे हमें वन्य जीवों की मानव की देख रेख में आहार-प्रकृति तथा व्यवहार को सीखने का अवसर प्राप्त होता है। जहाँ तक संभव होता है; प्राणी उपवनों में विभिन्न प्राणी उपलब्ध कराए जाते हैं। चिड़ियाघर में सभी प्राणियों को उनके प्राकृतिक आवासों वाली परिस्थितियों में रखने का प्रयास किया जाता है। इन उद्यानों को प्राय: चिड़ियाघर कहते हैं। इसे देखने के लिए बहुत से लोग तथा बच्चे आते हैं।



चित्र 1.3 भारत के विभिन्न चिडि़याघरों में वन्य प्राणी

# 1.4.5 कुंजी अथवा चाबी

यह एक अन्य साधन सामग्री है। जिसका प्रयोग समानताओं तथा असमानताओं पर आधारित होकर पौधों तथा प्राणियों की पहचान में किया जाता है। यह कुंजी विपर्यासी लक्षणों, जो प्राय: जोड़ों (युग्मों) जिन्हें युग्मित कहते हैं, के आधार पर होती है। कुंजी दो विपरीत विकल्पों को चुनने को दिखाती है। इसके परिणामस्वरूप एक को मान्यता तथा दूसरे को अमान्यता प्राप्त होती हैं। कुंजी में प्रत्येक कथन मार्गदर्शन का कार्य करता है। पहचानने के लिए प्रत्येक वर्गिकी संवर्ग जैसे कुल, वंश तथा जाति के लिए अलग वर्गिकी कुंजी की आवश्यकता होती है। विस्तृत वर्णन को लिखने के लिए नियम-पुस्तिका (मैन्युअल), मोनोग्राफ (पुस्तक जिसमें एक विषय पर विस्तृत जानकारी हो), तथा सूचीपत्र (कैटेलॉग) अन्य माध्यम हैं इसके अतिरिक्त यह सही पहचान में भी सहायता करते हैं। फ्लोरा पुस्तकों में किसी क्षेत्र के पौधों तथा उसके वासस्थानों के विषय में जानकारी होती है। ये उस विशेष क्षेत्र में मिलने वाली पौधों की स्पीशीज की विषय-सूची देती हैं। नियम पुस्तिका से उस क्षेत्र में पाई जाने वाली स्पीशीज को पहचानने में सहायता मिलती है। मोनोग्राफ में किसी एक टैक्सान की पूरी जानकारी होती है।

#### सारांश

जीव जगत में प्रचुर मात्रा में विविधताएं दिखाई पड़ती हैं। असंख्य पादप तथा प्राणियों की पहचान तथा उनका वर्णन किया गया है; परंतु अब भी इनकी बहुत बड़ी संख्या अज्ञात है। जीवों के एक विशाल परिसर को आकार, रंग, आवास, शरीर क्रियात्मक तथा आकारिकीय लक्षणों के कारण हमें जीवों की व्याख्या करने के लिए बाधित होना पड़ता है। जीवों की विविधता तथा इनकी किस्मों के अध्ययन को सुसाध्य एवं सरल बनाने के लिए जीव विज्ञानियों ने कुछ नियमों तथा सिद्धांतों का प्रतिपादन किया, जिससे जीवों की पहचान, उनका नाम पद्धति तथा वर्गीकरण संभव हो सकें। ज्ञान की इस शाखा को वर्गिकी का नाम दिया गया है। पादपों तथा प्राणियों की विभिन्न स्पीशीज का वर्गिकी अध्ययन कृषि वानिकी और हमारे जैव-संसाधन में भिन्नता के सामान्य ज्ञान में लाभदायक सिद्ध हुए। वर्गिकी के मूलभूत आधार जैसे जीवों की पहचान, उनका नामकरण, तथा वर्गीकरण विश्वव्यापी रूप से अंतर्राष्ट्रीय कोड के अंतर्गत विकसित किया गया है। समरूपता तथा विभिन्नताओं को आधार मानकर प्रत्येक जीव को पहचाना गया है तथा उसे द्विपद नाम दिया गया। सही वैज्ञानिक तंत्र के अनुसार द्विपद नाम पद्धति, जीव वैज्ञानिक नाम जो दो शब्दों से मिलकर बना होता है, दिया जा सकता है। जीव वर्गीकरण तंत्र में अपने स्थान को प्रदर्शित करता है। बहुत से वर्ग/पद होते हैं जिन्हें प्राय: वर्गिकी संवर्ग हैं। यह सभी वर्ग वर्गिकी पदानुक्रम बनाते हैं।

वर्गिकीविदों ने जीव की पहचान नामकरण तथा वर्गीकरण को सुगम बनाने के लिए विभिन्न वर्गिकी साधन सामग्री विकसित की। ये अध्ययन वास्तविक नमूनों पर किए जाते हैं जिन्हें भिन्न क्षेत्रों से एकत्रित किया जाता है। इन्हें हरबेरियम, म्यूजियम, बोटेनिकल गार्डन, जूलॉजिकल पार्क में संदर्भ के लिए परिरक्षित किया जाता है। हरबेरियम तथा म्यूजियम में नमूनों के एकत्रित करने तथा परिरक्षित करने के लिए विशिष्ट तकनीक की आवश्यकता होती है। वनस्पति उद्यान अथवा चिड़िया घर में पौधों तथा प्राणियों के जीवित नमूने होते हैं। वर्गिकीविदों ने वर्गिकी अध्ययन तथा सूचनाओं को प्रसारित करने के लिए मैनुअल तथा मोनोग्राफों को तैयार किया लक्षणों के आधार पर वर्गिकी कुंजी जीवों को पहचानने में सहायक सिद्ध हुई हैं।

#### अभ्यास

- 1. जीवों को वर्गीकृत क्यों करते हैं?
- 2. वर्गीकरण प्रणाली को बार-बार क्यों बदलते हैं ?
- जिन लोगों से आप प्राय: मिलते रहते हैं, आप उनको किस आधार पर वर्गीकृत करना पसंद करेंगे ? (संकेत : ड्रेस, मातृभाषा, प्रदेश जिसमें वे रहते हैं, आर्थिक स्तर आदि)।
- 4. व्यष्टि तथा समष्टि की पहचान से हमें क्या शिक्षा मिलती है?
- आम का वैज्ञानिक नाम निम्नलिखित हैं। इसमें से कौन सा सही है ? मेंजीफेरा इंडिका

मेंजीफेरा इंडिका

- 6. टैक्सॉन की परिभाषा दीजिए। विभिन्न पदानुक्रम स्तर पर टैक्सा के कुछ उदाहरण दीजिए।
- 7. क्या आप वर्गिकी संवर्ग का सही क्रम पहचान सकते हैं?

| (अ) | जाति (स्पीशीज) | $\rightarrow$ | गण (आर्डर) | $\rightarrow$ | संघ (फाइलम) | $\rightarrow$ | जगत (किंगडम) |
|-----|----------------|---------------|------------|---------------|-------------|---------------|--------------|
| (ब) | वंश (जीनस)     | $\rightarrow$ | जाति       | $\rightarrow$ | गण          | $\rightarrow$ | जगत          |
| (स) | जाति           | $\rightarrow$ | वंश        | $\rightarrow$ | गण          | $\rightarrow$ | संघ          |

 जाति शब्द के सभी मानवीय वर्तमान कालिक अर्थों को एकत्र कीजिए। क्या आप अपने शिक्षक से उच्च कोटि के पौधों तथा प्राणियों तथा बैक्टीरिया की स्पीशीज का अर्थ जानने के लिए चर्चा कर सकते हैं?

9. निम्नलिखित शब्दों को समझिए तथा परिभाषित कीजिए-

(i) संघ (ii) वर्ग (iii) कुल (iv) गण (v) वंश

- 10. जीव के वर्गीकरण तथा पहचान में कुंजी किस प्रकार सहायक है?
- 11. पौधों तथा प्राणियों के उचित उदाहरण देते हुए वर्गिकी पदानुक्रम का चित्रण कीजिए।

# अध्याय 2

# जीव जगत का वर्गीकरण

सभ्यता के प्रारंभ से ही मानव ने सजीव प्राणियों के वर्गीकरण के अनेक प्रयास किए हैं। वर्गीकरण के ये प्रयास वैज्ञानिक मानदंडों की जगह सहज बुद्धि पर आधारित हमारे भोजन, वस्त्र एवं आवास जैसी सामान्य उपयोगिता के वस्तुओं के उपयोग की आवश्यकताओं पर आधारित थे। इन प्रयासों में जीवों के वर्गीकरण के वैज्ञानिक मानदंडों का उपयोग सर्वप्रथम अरस्तू ने किया था। उन्होंने पादपों को सरल आकारिक लक्षणों के आधार पर वृक्ष, झाड़ी एवं शाक में वर्गीकृत किया था। जबकि उन्होंने प्राणियों का वर्गीकरण लाल रक्त की उपस्थिति अथवा अनुपस्थिति के आधार पर किया था।

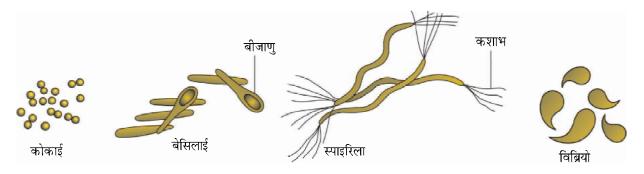
लीनियस के काल में सभी पादपों और प्राणियों के वर्गीकरण के लिए एक द्विजगत पद्धति विकसित की गई थी, जिसमें उन्हें क्रमश: प्लांटी (पादप) एवं एनिमैलिया (प्राणि) जगत में वर्गीकृत किया गया था। यह पद्धति कुछ काल तक अपनाई जाती रही थी। इस पद्धति के अनुसार यूकैरियोटी (ससीमकेंद्रकी) एवं प्रोकैरियोटी (असीमकेंद्रकी), एक कोशिक एवं बहुकोशिक तथा प्रकाश संश्लेषी (हरित शैवाल) एवं अप्रकाश संश्लेषी (कवक) के बीच विभेद स्थापित करना संभव नहीं था। पादपों एवं प्राणियों पर आधारित यह वर्गीकरण आसान एवं सरलता से समझे जाने के बावजूद बहुत से जीवधारियों को इनमें से किसी भी वर्ग में रखना संभव नहीं था। इसी कारण अत्यंत लंबे समय से चली आ रही वर्गीकरण की द्विजगत पद्धति अपर्याप्त सिद्ध हो रही थी। इसके अतिरिक्त, वर्गीकरण के लिए आकारिकी के साथ-साथ कोशिका संरचना, कोशिका भित्ति के लक्षण, पोषण की विधि, आवास, प्रजनन की विधियाँ एवं विकासीय संबंधों को भी समाहित करने की आवश्यकता महसूस की जाने लगी। अत: समय के साथ-साथ सजीवों के वर्गीकरण की पद्धति में अनेक परिवर्तन आए हैं। पादप एवं प्राणी जगत के वर्गीकरण की इन कठिन पद्धतियों, जिनमें सम्मिलित समुहों/जीवधारियों में होने वाले परिवर्तन शामिल हैं, सदा ही समाविष्ट रहे हैं। इसके अतिरिक्त जीवधारियों के विभिन्न जगत की संख्या एवं उनके लक्षणों की विभिन्न वैज्ञानिकों द्वारा अलग-अलग व्याख्या की गई है।

- 2.1 मॉनेरा किंगडम
- 2.2 प्रोटिस्टा किंगडम
- 2.3 फंजाई किंगडम
- 2.4 प्लांटी किंगडम
- 2.5 ऐनिमेलिया किंगडम
- 2.6 वायरस, विरोइड तथा लाइकेन

| लक्षण            | पाँच जगत                                                                                |                                           |                                  |                                |                                               |
|------------------|-----------------------------------------------------------------------------------------|-------------------------------------------|----------------------------------|--------------------------------|-----------------------------------------------|
|                  | मॉनेरा                                                                                  | प्रोटिस्टा                                | फंजाई                            | प्लांटी                        | ऐनिमेलिया                                     |
| कोशिका प्रकार    | प्रोकैरियोटिक                                                                           | यूकैरियोटिक                               | यूकैरियोटिक                      | यूकैरियोटिक                    | यूकैरियोटिक                                   |
| कोशिका<br>भित्ति | सेलूलोज रहित<br>(बहुशर्कराइड)<br>+ एमीनो अम्ल                                           | कुछ में<br>उपस्थित                        | उपस्थित<br>(सेल्युलोस<br>रहित)   | उपस्थित<br>(सेल्युलोस<br>सहित) | अनुपस्थित                                     |
| केंद्रक झिल्ली)  | अनुपस्थित                                                                               | उपस्थित                                   | उपस्थित                          | उपस्थित                        | उपस्थित                                       |
| काय संरचना       | कोशिकीय                                                                                 | कोशिकीय                                   | बहुकोशिक/<br>अदृढ़ ऊतक           | ऊतक/अंग                        | ऊतक/अंग/<br>अंग तंत्र                         |
| पोषण<br>की विधि  | स्वपोषी (रसायन<br>संश्लेषी एवं<br>प्रकाशसंश्लेषी) तथा<br>परपोषी (मृतपोषी<br>एवं परजीवी) | स्वपोषी<br>(प्रकाशसंश्लेषी)<br>तथा परपोषी | परपोषी<br>(मृतपोषी एवं<br>परजीवी | स्वपोषी<br>(प्रकाशसंश्लेषी)    | परपोषी<br>(प्राणि समभोजी,<br>मृतपोषी इत्यादि) |
| प्रजनन को विधि   | संयुग्मन                                                                                | युग्मक संलयन<br>एवं संयुग्मन              | निषेचन                           | निषेचन                         | निषेचन                                        |

तालिका - 2.1 पाँच जीव-जगत के लक्षण

सन् 1969 में आर.एच. व्हिटेकर द्वारा एक **पाँच जगत वर्गीकरण** की पद्धति प्रस्तावित की गई थी। इस पद्धति के अंतर्गत सम्मिलित किए जाने वाले जगतों के नाम **मॉनेरा, प्रोटिस्टा, फंजाई, प्लांटी** एवं **एनिमैलिया** हैं। कोशिका संरचना, थैलस संरचना, पोषण की प्रक्रिया, प्रजनन एवं जातिवृत्तीय संबंध उनके वर्गीकरण की पद्धति के प्रमुख मानदंड थे। तालिका 2.1 में इन सभी जगतों के विभिन्न लक्षणों का एक तुलनात्मक विवरण दिया गया है।<sup>4</sup>


अब हम पाँच जगत वर्गीकरण से जुड़े मुद्दों एवं धारणाओं पर विचार करेंगे, जिससे वर्गीकरण की यह पद्धति प्रभावित है। इससे पहले की वर्गीकरण पद्धति के अंतर्गत बैक्टीरिया, नील-हरित शैवाल, (फंजाई) मॉस, फर्न, जिम्नोस्पर्म एवं एन्जिओस्पर्म को 'पादपों' के साथ रखा गया था। इस जगत के समस्त जीवों की कोशिकाओं में कोशिका भित्ति का उपस्थित रहना एक समानता थी, जबकि उनके अन्य लक्षण एक दूसरे से एक दम अलग थे। प्रोकैरियोटिक बैक्टीरिया तथा नील-हरित शैवाल को अन्य यूकैरियोटिक जीवों के साथ वर्गीकृत कर दिया गया। इस पद्धति के अनुसार एक कोशिक जीवों को बहुकोशिक जीवों के साथ वर्गीकृत किया गया, जैसे- क्लेमाइडोमोनास एवं स्पाइरोगायरा शैवाल। इस वर्गीकरण में कवकों जैसे परपोषी का, हरित पादपों जैसे स्वपोषी, के बीच भी विभेद नहीं किया गया, जबकि कवकों की कोशिका भित्ति काइटिन की एवं हरित पादपों की सेलुलोस की बनी होती है। इन्हीं लक्षणों को ध्यान में रखते हुए कवकों को एक अलग जगत 'फंजाई' के अंतर्गत रखा गया है। सभी प्रोकैरियोटिक जीवधारियों के साथ 'मॉनेरा' तथा एककोशिक जीवधारियों को प्रोटिस्टा जगत के अंतर्गत रखा गया है। i **B**MLVkt xr oQv axZ d H k k fH (U), pr क्लैमाइडोमोनास एवं क्लोरेला (जिन्हें पहले पादपों के अंतर्गत शैवाल में रखा गया था) *पैरामीशियम* एवं अमीबा (जिन्हें पहले प्राणि जगत में रखा गया था) के साथ रखा गया है, जिनमें कोशिका भित्ति नहीं पाई जाती है। इस प्रकार इस पद्धति में अनेक जीवधारियों को एक साथ रखा गया है, जिन्हें पहले की पद्धतियों में अलग-अलग रखा गया था। ऐसा वर्गीकरण के मानदंडों में परिवर्तन के कारण हुआ है। इस प्रकार के परिवर्तन भविष्य में भी हो सकते हैं, जो लक्षणों तथा विकासीय संबंधों के प्रति हमारी समझ में सुधार पर निर्भर होगी। समय के साथ-साथ वर्गीकरण की एक ऐसी पद्धति विकसित करने का प्रयास किया गया है जो न सिर्फ आकारिक, कायिक एवं प्रजनन संबंधी समानताओं पर आधारित हों, बल्कि जातिवृत्तीय हो और विकासीय संबंधों पर भी आधारित हो।

इस अध्याय में हम व्हिटेकर पद्धति के अंतर्गत मॉनेरा, प्रोटिस्टा एवं फंजाई के लक्षणों का अध्ययन करेंगे। प्लांटी एवं एनिमेलिया जगत, जिन्हें सामान्य भाषा में क्रमश: पादप एवं प्राणि जगत कहते हैं, की चर्चा आगे के दो अध्यायों में अलग–अलग करेंगे।

# 2.1 मॉनेरा जगत

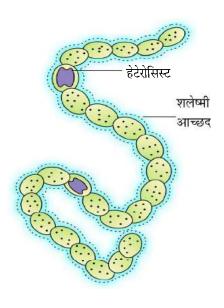
सभी बैक्टीरिया मॉनेरा जगत के अंतर्गत आते हैं। ये सूक्ष्मजीवियों में सर्वाधिक संख्या में होते हैं और लगभग सभी स्थानों पर पाए जाते हैं। मुट्ठी भर मिट्टी में सैकड़ों प्रकार के बैक्टीरिया देखे गए हैं। ये गर्म जल के झरनों, मरूस्थल, बर्फ एवं गहरे समुद्र जैसे विषम एवं प्रतिकूल वास स्थानों, जहाँ दूसरे जीव मुश्किल से ही जीवित रह पाते हैं, में भी पाए जाते हैं। कई बैक्टीरिया तो अन्य जीवों पर या उनके भीतर परजीवी के रूप में रहते हैं।

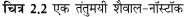
बैक्टीरिया को उनके आकार के आधार पर चार समूहों गोलाकार कोकस (बहुवचन कोकाई), छड़ाकार बैसिलस (बहुवचन बैसिलाई) कॉमा-आकार के, विब्रियम (बहुवचन-विब्रियाँ) तथा सर्पिलाकार स्पाइरिलम (बहुवचन स्पाइरिला) में बाँटा गया है (चित्र 2.1)।



चित्र 2.1 विभिन्न आकार के बैक्टीरिया

यद्यपि संरचना में बैक्टीरिया अत्यंत सरल प्रतीत होते हैं; परंतु इनका व्यवहार अत्यंत जटिल होता है। चयपचाय (उपापचय) की दृष्टि से अन्य जीवधारियों की तुलना में बैक्टीरिया में बहुत अधिक विविधता पाई जाती है। उदाहरण स्वरूप वे अपना भोजन अकार्बनिक पदार्थों से संश्लेषित कर सकते हैं। ये प्रकाश संश्लेषी स्वपोषी अथवा रसायन संश्लेषी स्वपोषी होते हैं, अर्थात् वे अपना भोजन स्वयं संश्लेषित नहीं करते हैं; अपितु भोजन के लिए अन्य जीवधारियों अथवा मृत कार्बनिक पदार्थों पर निर्भर रहते हैं।

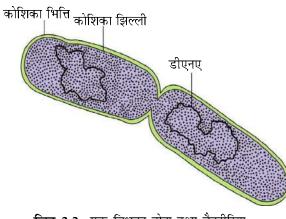

#### 2.1.1 आद्य बैक्टीरिया


ये विशिष्ट प्रकार के बैक्टीरिया होते हैं, ये बैक्टीरिया अत्यंत कठिन वास स्थानों, जैसे-अत्यंत लवणीय क्षेत्र (हैलोफी), गर्म झरने (थर्मोएसिडोफिलस) एवं कच्छ क्षेत्र (मैथेनोजेन) में पाए जाते हैं। आद्य बैक्टीरिया तथा अन्य बैक्टीरिया की कोशिका भित्ति की संरचना एक दूसरे से भिन्न होती है। यही लक्षण उन्हें प्रतिकूल अवस्थाओं में जीवित रखने के लिए उत्तरदायी हैं। मैथेनोजेन अनेक रूमिनेंट पशुओं (जैसे गाय एवं भैंस) के आंत्र में पाए जाते हैं तथा इनके गोबर से मिथेन (जैव गैस) का उत्पादन करते हैं।

#### 2.1.2 यूबैक्टीरिया

हजारों **यूबैक्टीरिया** अथवा वास्तविक बैक्टीरिया की पहचान एक कठोर कोशिका भित्ति एवं एक कशाभ (चल बैक्टीरिया) द्वारा की जाती है। **सायनो बैक्टीरिया** (जिन्हें नील-हरित शैवाल भी कहते हैं) में हरित पादपों की तरह क्लोरोफिल-ए पाया जाता है तथा ये **प्रकाश संश्लेषी स्वपोषी** होते हैं (चित्र 2.2)। सायनो बैक्टीरिया एककोशिक, क्लोनीय अथवा तंतुमय अलवण जलीय समुद्री अथवा स्थलीय शैवाल हैं। इनकी क्लोनी प्राय: जेलीनुमा आवरण से ढकी रहती हैं जो प्रदूषित जल में बहुत फलते-फूलते हैं। **बैक्टीरिया** जैसे *नॉस्टॉक* एवं एनाबिना पर्यावरण के नाइट्रोजन को टेटरोसिस्ट नामक विशिष्ट कोशिकाओं द्वारा स्थिर कर सकते हैं। रसायन संश्लेषी बैक्टीरिया नाइट्रेट, नाइट्राइट एवं अमोनिया जैसे विभिन्न अकार्बनिक पदार्थों को ऑक्सीकृत कर उनसे मुक्त ऊर्जा का उपयोग एटीपी उत्पादन के लिए करते हैं। ये नाइट्रोजन, फॉस्फोरस, आयरन एवं सल्फर जैसे पोषकों के पुनर्चक्रण में महत्वपूर्ण भूमिका निभाते हैं।

**परपोषी बैक्टीरिया** प्रकृति में बहुलता से पाए जाते हैं और इनमें अधिकतर महत्वपूर्ण अपघटक होते हैं। इन परपोषी बैक्टीरिया में से अनेक का मनुष्य के जीवन संबधी गतिविधियों पर महत्वपूर्ण प्रभाव पड़ता है। ये दूध से दही बनाने में, प्रतिजैविकों के उत्पादन में, लेग्युम पादप की जड़ों में नाइट्रोजन स्थिरिकरण में सहायता करते हैं। कुछ बैक्टीरिया रोगजनक होते हैं जो मनुष्यों, फसलों, फार्म एवं पालतू पशुओं को हानि पहुँचाते हैं। विभिन्न बैक्टीरिया के कारण हैजा, टायफॉयड, टिटनेस, साइट्रस, कैंकर जैसी बीमारियां होती हैं।






बैक्टीरिया प्रमुख रूप से कोशिका विभाजन द्वारा प्रजनन करते हैं। कभी-कभी, विपरीत परिस्थितियों में ये बीजाणु बनाते हैं। ये लैंगिक प्रजनन भी करते हैं, जिनमें एक

बैक्टीरिया से दूसरे बैक्टीरिया में डीएनए का पुरातन स्थानांतरण

माइकोप्लाज्मा ऐसे जीवधारी हैं, जिनमें कोशिका भित्ति बिल्कुल नहीं पाई जाती है। ये सबसे छोटी जीवित कोशिकाएं हैं, जो ऑक्सीजन के बिना भी जीवित रह सकती हैं। अनेक माइकोप्लाज्मा प्राणियों और पादपों के लिए रोगजनक



चित्र 2.3 एक विभक्त होता हुआ बैक्टीरिया

2.2 प्रोटिस्टा जगत

होता है।

होती हैं।

सभी एककोशिक यूकैरियोटिक को **प्रोटिस्टा** के अंतर्गत रखा गया है, परंतु इस जगत की सीमाएं ठीक तरह से निर्धारित नहीं हो पाई हैं। एक जीव वैज्ञानिक के लिए जो 'प्रकाशसंश्लेषी प्रोटिस्टा' है, वही दूसरे के लिए 'एक पादप' हो सकता है। क्राइसोफाइट, डायनोफ्लैजिलेट, युग्लीनॉइड, अवपंक कवक एवं प्रोटोजोआ सभी को इस पुस्तक में प्रोटिस्टा के अंतर्गत रखा गया है। प्राथमिक रूप से प्रोटिस्टा के सदस्य जलीय होते हैं। यूकैरियोटिक होने के कारण इनकी कोशिका में एक सुसंगठित केंद्रक एवं अन्य झिल्लीबद्ध कोशिकांग पाए जाते हैं। कुछ प्रोटिस्टा में कशाभ एवं पक्ष्माभ भी पाए जाते हैं। ये अलैंगिक, तथा कोशिका संलयन एवं युग्मनज (जाइगोट) बनने की विधि द्वारा लैंगिक प्रजनन करते हैं।

#### 2.2.1 क्राइसोफाइट

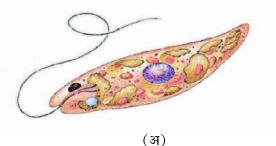
इस समूह के अंतर्गत डाइएटम तथा सुनहरे शैवाल (डेस्मिड) आते हैं। ये स्वच्छ जल एवं लवणीय (समुद्री) पर्यावरण दोनों में पाए जाते हैं। ये अत्यंत सूक्ष्म होते हैं तथा जलधारा के साथ निश्चेष्ट रूप से बहते हैं। डाइएटम में कोशिका भित्ति साबुनदानी की तरह इसी के अनुरूप दो अतिछादित कवच बनाती है। इन भित्तियों में सिलिका होती है, जिस कारण ये नष्ट नहीं होते हैं। इस प्रकार मृत डाइएटम अपने परिवेश (वास स्थान) में कोशिका भित्ति के अवशेष बहुत बड़ी संख्या में छोड़ जाते हैं। करोड़ों वर्षों में जमा हुए इस अवशेष को 'डाइएटमी मृदा' कहते हैं। कणमय होने के कारण इस मृदा का उपयोग पॉलिश करने, तेलों तथा सिरप के निस्यंदन में होता है। ये समुद्र के मुख्य उत्पादक हैं।

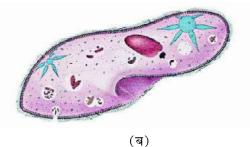
#### 2.2.2 डायनोफ्लैजिलेट

ये जीवधारी मुख्यत: समुद्री एवं प्रकाशसंश्लेषी होते हैं। इनमें उपस्थित प्रमुख वर्णकों के आधार पीले, हरे, भूरे, नीले अथवा लाल दिखते हैं। इनकी कोशिका भित्ति के बाह्य सतह पर सेल्युलोस की कड़ी पट्टिकाएं होती हैं। अधिकतर डायनोफ्लैजिलेट में दो कशाभ होते हैं, जिसमें एक लंबवत् तथा दूसरा अनुप्रस्थ रूप से भित्ति पट्टिकाओं के बीच की खांच में उपस्थित होता है। प्राय: लाल डायनोफ्लैसिलेट की संख्या में विस्फोट होता है, जिससे समुद्र का जल लाल (लाल तरंगें) दिखने लगता है। इतनी बड़ी संख्या के जीव से निकले जीव-विष के कारण मछली एवं अन्य समुद्री जीव मर जाते हैं। उदाहरण: गोनियालैक्स ।

#### 2.2.3 यूग्लीनॉइड

इनमें से अधिकांशत: स्वच्छ जल में पाए जाने वाले जीवधारी हैं, जो स्थिर जल में पाए जाते हैं। इनमें कोशिका भित्ति की जगह एक प्रोटीनयुक्त पदार्थ की पर्त पेलिकिल होती है, जो इनकी संरचना को लचीला बनाती है। इनमें दो कशाभ होते हैं जिसमें एक छोटा तथा दूसरा लंबा होता है। यद्यपि सूर्य के प्रकाश की उपस्थिति में ये प्रकाशसंश्लेषी होते हैं, लेकिन सूर्य के प्रकाश के नहीं होने पर अन्य सूक्ष्म जीवधारियों का शिकार कर परपोषी की तरह व्यवहार करते हैं। आश्चर्यजनक रूप से युग्लीनॉइड में पाए जाने वाले वर्णक उच्च पादपों में उपस्थित वर्णकों के समान होते हैं। उदाहरण: *युग्लीना* (चित्र 2.4 अ)।


#### 2.2.4 अवपंक कवक


अवपंक कवक मृतपोषी प्रोटिस्टा हैं। ये सड़ती हुई टहनियों तथा पत्तों के साथ गति करते हुए जैविक पदार्थों का भक्षण करते हैं। अनुकूल परिस्थितियों में ये समूह (प्लाज्मोडियम) बनाते हैं, जो कई फीट तक की लंबाई का हो सकता है। प्रतिकूल परिस्थितियों में ये बिखरकर सिरों पर बीजाणुयुक्त फलनकाय बनाते हैं। इन बीजाणुओं का परिक्षेपण वायु के साथ होता है।

#### 2.2.5 प्रोटोजोआ

सभी प्रोटोजोआ परपोषी होते हैं, जो परभक्षी अथवा परजीवी के रूप में रहते हैं। ये प्राणियों के पुरातन संबंधी हैं। प्रोटोजोआ को चार प्रमुख समूहों में बाँटा जा सकता है।

अमीबीय प्रोटोजोआ: ये जीवधारी स्वच्छ जल, समुद्री जल तथा नम मृदा में पाए जाते हैं। ये अपने कूटपादों की सहायता से अपने शिकार को पकड़ते हैं। इनके समुद्री प्रकारों की सतह पर सिलिका के कवच होते हैं। इनमें से कुछ जैसे एंटअमीबी परजीवी होते हैं।





चित्र 2.4 प्रोटोजोऑन - (अ) यूग्लीना (ब) पैरामीशियम

*कशाभी प्रोटोजोआ:* इस समूह के सदस्य स्वच्छंद अथवा परजीवी होते हैं, इनके शरीर पर कशाभ पाया जाता है। परजीवी कशाभी प्रोटोजोआ बीमारी के कारण हैं, जिनसे निद्रालु व्याधि नामक बीमारी होती है। उदाहरण: *ट्रिपैनोसोमा* ।

*पक्ष्माभी प्रोटोजोआ:* ये जलीय तथा अत्यंत सक्रिय गति करने वाले जीवधारी हैं, क्योंकि इनके शरीर पर हजारों की संख्या में पक्ष्माभ पाए जाते हैं। इनमें एक गुहा (ग्रसिका) होती है जो कोशिका की सतह के बाहर की तरफ खुलती है। पक्ष्माभों की लयबद्ध गति के कारण जल से पूरित भोजन गलेट की तरफ भेज दिया जाता है। उदाहरण-*पैरामीशियम*। *स्पोरोजोआ:* इस समूह में वे विविध जीवधारी आते हैं जिनके जीवन चक्र में संक्रमण करने योग्य बीजाणु जैसी अवस्था पाई जाती है। इसमें सबसे कुख्यात प्लाज्मोडियम (मलेरिया परजीवी) प्रजाति है, जिसके कारण मानव की जनसंख्या पर आघात पहुँचाने वाला प्रभाव पडा है।

# 2.3 कवक (फंजाई) जगत

परपोषी जीवों में फंजाई (कवक) का जीव जगत में विशेष अद्भुत स्थान है। इनकी आकारिकी तथा वास स्थानों में बहुत भिन्नता होती है। रोटी अथवा संतरे का सड़ना फंजाई के कारण होता है। सामान्य छत्रक (मशरूम) तथा कुकुरमुत्ता (टोडस्टूल) भी फंजाई हैं। सरसों की पत्तियों पर स्थित सफेद धब्बे परजीवी फंजाई के कारण होते हैं। कुछ एककोशिक फंजाई जैसे यीस्ट का उपयोग रोटी तथा बीयर बनाने के लिए किया जाता है। अन्य फंजाई पौधों तथा जंतुओं के रोग के कारण होते हैं। उदाहरण के लिए गेहूँ में किट्ट रोग पक्सिनिया के कारण होता है। कुछ फंगल जैसे *पेनिसिलियम* से प्रतिजैविक (एंटिबायोटिक) का निर्माण होता है। फंजाई विश्वव्यापी हैं और ये हवा, जल, मिट्टी में तथा जंतु एवं पौधों पर पाए जाते हैं। ये गरम तथा नम स्थानों पर सरलता से उग जाते हैं। क्या आपने कभी सोचा है कि हम अपने भोजन को रेफ्रिजरेटर में क्यों रखते हैं? हाँ, इससे हम अपने भोजन को बैक्टीरिया अथवा फंजाई के कारण खराब होने से बचाते हैं।

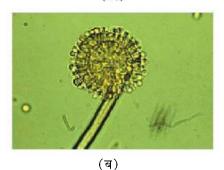
फंजाई तंतुमयी है, लेकिन यीस्ट जो एककोशिक है इसका अपवाद है। ये लंबी, पतली धागे की तरह की संरचनाएं होती हैं, जिन्हें कवक तंतु कहते हैं। कवक तंतु के जाल को कवक जाल (माइसीलियम) कहते हैं। कुछ कवक तंतु सतत नलिकाकार होते हैं, जिनमें बहुकेंद्रकित कोशिका द्रव्य (साइटोप्लाज्म) भरा होता है, जिन्हें संकोशिकी कवक तंतु कहते हैं। अन्य कवक तंतुओं में पटीय होते हैं। फंजाई की कोशिका भित्ति काइटिन तथा पॉलिसैकेराइड की बनी होती हैं।

अधिकांश फंजाई परपोषित होती हैं। वे मृत बस्ट्रेट्स से घुलनशील कार्बनिक पदार्थों को अवशोषित कर लेती हैं, अत: इन्हें **मृतजीवी** कहते हैं। जो फंजाई सजीव पौधों तथा जंतुओं पर निर्भर करती हैं, उन्हें **परजीवी** कहते हैं। ये शैवाल तथा लाइकेन के साथ तथा उच्चवर्गीय पौधों के साथ कवक मूल बना कर भी रह सकते हैं, ऐसी फंजाई **सहजीवी** कहलाती है।

फंजाई में जनन कायिक-खंडन, विखंडन, तथा मुकुलन विधि द्वारा होता है। अलैंगिक जनन बीजाणु, जिसे कोनिडिया कहते है अथवा धानी-बीजाणु अथवा चलबीजाणु, द्वारा होता है। लैंगिक जनन निषिक्तांड (ऊस्पोरा), ऐंस्कस बीजाणु तथा बेसिडियम बीजाणु द्वारा होता है। विभिन्न बीजाणु सुस्पष्ट संरचनाओं में उत्पन्न होते हैं जिन्हें फलनकाय कहते हैं। लैंगिक चक्र में निम्नलिखित तीन सोपान होते हैं:

- (i) दो चल अथवा अचल युग्मकों के प्रोटोप्लाज्म का संलयन होना। इस क्रिया को प्लैज्मोगैमी कहते हैं।
- (ii) दो केंद्रकों का संलयन होना जिसे केंद्र संलयन कहते हैं।
- (iii) युग्मनज में मिऑसिस के कारण अगुणित बीजाणु बनना लैंगिक जनन में संयोज्य संगम के दौरान दो अगुणित कवक तंतु पास-पास आते हैं और संलयित हो जाते हैं। कुछ फंजाई में दो गुणित कोशिकाओं में संलयन के तुरंत बाद एक द्विगुणित (2n) कोशिका बन जाती है, यद्यपि अन्य फंजाई (ऐस्कोमाइसिटीज) में एक मध्यवर्ती द्विकेंद्रकी अवस्था (n+n) अर्थात् एक कोशिका में दो केंद्रक बनते हैं; ऐसी परिस्थिति को केंद्रक युग्म कहते हैं तथा इस अवस्था को फंगस की द्विकेंद्रक प्रावस्था कहते हैं। बाद में पैतृक केंद्रक संलयन हो जाते हैं और कोशिका द्विगुणित बन जाती है। फंजाई फलनकाय बनाती है, जिसमें न्यूनीकरण विभाजन होता है जिसके कारण अगुणित बीजाणु बनते हैं। कवक जाल की आकारिकी, बीजाणु बनने तथा फलन काय बनने की

विधि जगत को विभिन्न वर्गों में विभक्त करने का आधार बनते हैं।


#### 2.3.1 फाइकोमाइसिटीज

फाइकोमाइसिटीज जलीय आवासों, गली-सड़ी लकड़ी, नम तथा सीलन भरे स्थानों अथवा पौधों पर अविकल्पी परजीवी के रूप में पाए जाते हैं। कवक जाल अपटीय तथा बहुकेंद्रकित होता है। अलैंगिक जनन चल बीजाणु अथवा अचल बीजाणु द्वारा होता है। ये बीजाणु धानी में अंतर्जातीय उत्पन्न होते हैं। दो युग्मकों के संलयन से युग्माणु बनते हैं। इन युग्मकों की आकारिकी एक जैसी (समयुग्मकता) अथवा भिन्न (असमयुग्मकी अथवा विषमयुग्मकी) हो सकती है। इसके सामान्य उदाहरण हैं *म्यूकर, राइजोपस* (रोटी के कवक पहले ही बता चुके हैं) तथा *ऐलबूगो* (सरसों पर परजीवी फंजाई) हैं।

#### 2.3.2 ऐस्कोमाइसिटीज

इसे सामान्यत: थैली फंजाई भी कहते हैं। विरले पाए जाने वाले ऐस्कोमाइसिटीज एककोशिक जैसे यीस्ट (*सकैरोमाइसीज*) के अलावा ये बहुकोशिक जैसे *पेनिसिलियम*, होती है। ये मृतजीवी, अपघटक, परजीवी अथवा शमलरागी (पशुविष्टा







(स)

चित्र 2.5 फंजाई: (अ) म्यूकर (ब) ऐश्पर्जिलस (स) एगेरिकस

पर उगनेवाली) होते हैं। कवक जालशाखित तथा पटीय होता है। अलैंगिक बीजाणु कोनिडिया होते हैं जो विशिष्ट कवकजाल जिसे कोनिडिमधर कहते हैं, पर बहिर्जात रूप से उत्पन्न होते हैं। कोनिडिया अंकुरित होकर कवक जाल बनाते हैं। लैंगिक बीजाणु को ऐस्कस बीजाणु कहते हैं। ये बीजाणु थैलीसम ऐस्कस में अंतर्जातीय रूप से उत्पन्न होते हैं। ये ऐसाई (एक वचन ऐस्कस) विभिन्न प्रकार की फलनकाय में लगी रहती हैं, जिन्हें ऐस्कोकार्प कहते हैं। इसके कुछ उदाहरण हैं *ऐस्पर्जिलस,* (चित्र 2.5 ब) क्लेवीसेप तथा न्यूरोस्पोरा हैं। न्यूरोस्पोरा का उपयोग जैवरासायनिक तथा आनुवंशिक प्रयोगों में बहुत किया जाता है। इसी कारण यह पादप जगत के ड्रोसोफिला के समान प्रसिद्ध है। इस वर्ग में आने वाले मॉरिल तथा ट्रफल खाने योग्य होते हैं और इन्हें सुस्वादु भोजन समझा जाता है।

#### 2.3.3 बेसिडियोमाइसिटीज

बेसिडियोमाइसिटीज के ज्ञात सामान्य प्रकार – मशरूम, ब्रेक्टफंजाई अथवा पफबॉल हैं। ये मिट्टी में, लट्ठे तथा वृक्ष के ठूँठों पर तथा सजीव पादपों के अंदर परजीवी के रूप में उगते हैं जैसे किट्ट तथा कंड (स्मट)। कवकजाल शाखित तथा पटीय होता है। इसमें अलैंगिक बीजाणु प्राय: नहीं होते हैं, लेकिन कायिक जनन खंडन विधि द्वारा बहुत सामान्य है। इसमें लैंगिक अंग नहीं होते, लेकिन इसमें प्लाज्मोगैमी विभिन्न स्ट्रेनो वाली दो कायिक कोशिकाओं अथवा जीन प्रारुप के संलयन से होती हैं। इसमें बनने वाली संरचना द्विकेंद्रकी होती है, जिससे अंतत: बेसिडियम बनते हैं। बेसिडियम में केंद्रक संलयन (कैरियोगैमी) तथा मिऑसिस होता है जिसके कारण चार बेसिडियम बीजाणु बनते हैं। बेसिडियमबीजाणु बेसिडियो कार्प कहते हैं, इसके कुछ सामान्य उदाहरण *ऐगैरिकस* (मशरूम) (चित्र 2.5 स), *आस्टीलैगो* (कंड) तथा *पक्सिनिया* (किट्ट फंगस) हैं।

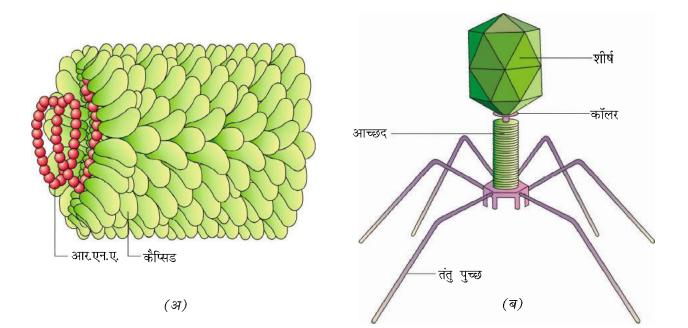
#### 2.3.4 डयूटिरोमाइसिटीज

इसे प्राय: अपूर्ण कवक भी कहते हैं; क्योंकि इसकी केवल अलैंगिक अथवा कायिक प्रवस्था ही ज्ञात हो पाई है। जब इस फंजाई की लैंगिक प्रवस्था की खोज हो जाती है, तब उसे उसके उचित वर्ग में रख दिया जाता है। यह भी संभव है कि अलैंगिक तथा कायिक प्रवस्थाओं को एक नाम दे दिया गया हो (और उन्हें डयूटिरोमासिटीज में रख दिया गया हो) और लैंगिक प्रवस्था को दूसरे वर्ग में। बाद में जब उनके अनुबंधों (कड़ी़) का पता लगा और फंजाई की उचित पहचान हो गई। तब उन्हें डयूटिरोमासिटीज से निकाल लिया गया। एक बार जब डयूटिरोमासिटीज के सदस्यों की उचित (लैंगिक) प्रवस्था का पता लग जाए तब उन्हें एस्कोमाइसिटीज के सदस्यों की उचित (लैंगिक) प्रवस्था का पता लग जाए तब उन्हें एस्कोमाइसिटीज और बेसिडियोमाइसिटीज में सम्मिलित कर लेते हैं। डयूटिरोमाइसिटीज केवल अलैंगिक बीजाणुओं, जिन्हें कोनिडिया कहते हैं, से जनन करते हैं। इसके कवक जाल पटीय तथा शाखित होते हैं। इसके कुछ सदस्य मृतजीवी अथवा परजीवी होते हैं। लेकिन उनके अधिकांश सदस्य अपशिष्ट के अपघटक होते हैं और खनिज के चक्रण में सहायता करते हैं। इसके कुछ उदाहरण *आल्टरनेरिया, कोलीटोट्राइकम* तथा *ट्राईकोडर्मा* हैं।

#### 2.4 पादप जगत (प्लांटी किंगडम)

पादप जगत में वे सभी जीव आते हैं जो यूकैरिऑटिक हैं और जिनमें क्लोरोफिल होते हैं। ऐसे जीवों को पादप कहते हैं। इनमें से कुछ पादप जैसे कीटभक्षी पौधे तथा परजीवी आंशिक रूप से विषमपोषी होते हैं। ब्लेडरवर्ट तथा वीनस फ्लाईट्रेप कीटभक्षी पौधों के और अमरबेल (*क्सकूटा*) परजीवी का उदाहरण हैं। पादप कोशिका में कोशिका भित्ति होती है जो सेल्यूलोज की बनी होती है और इसकी संरचना के बारे में विस्तृत विवरण अध्याय 3 में पढ़ेंगे। प्लांटी जगत में शैवाल, ब्रायोफाइट, टैरिडोफाइट, जिम्नोस्पर्म तथा एंजियोस्पर्म आते हैं।

पादप के जीवन चक्र में दो सुस्पष्ट अवस्थाएँ द्विगुणित बीजाणु-उद्भिद् तथा अगुणित युग्मकोद्भिद् होती हैं। इन दोनों में पीढ़ी एकंातरण होता है। विभिन्न प्रकार के पादप वर्गो में अगुणित तथा द्विगुणित प्रवस्थाओं की लंबाई, (और ये प्रवस्थाएँ मुक्तजीवी हैं अथवा दूसरों पर निर्भर करती हैं) के अनुसार विभिन्न होती हैं। युग्मनज (2n) में मिऑसिस विभाजन के द्वारा अगुणित (n) बीजाणु बनते हैं। ये बीजाणु अंकुरित होकर युग्मकोद्भिद् बनाते हैं। युग्मक (नर तथा मादा) युग्मकोद्भिद् पर बनते हैं जो संलयन होकर पुन: द्विगुणित युग्मनज बनाते हैं। युग्मनज से बीजाणु-उद्भिद् विकसित होता है। इस प्रक्रम को **संतति एकंातरण** कहते हैं। आप इस जगत का विस्तृत विवरण अध्याय 3 में पढ़ेंगे।


## 2.5 जंतु जगत (एनिमेलिया किंगडम)

इस जगत के जीव विषमपोषी यूकैरिऑटिक हैं जो बहुकोशिक हैं और उनकी कोशिका में कोशिका भित्ति नहीं होती। ये भोजन के लिए परोक्ष तथा अपरोक्ष रूप से पौधों पर निर्भर रहते हैं। ये अपने भोजन को एक आंतरिक गुहिका में पचाते हैं और भोजन को ग्लाइकोजन अथवा वसा के रूप में संग्रहण करते हैं। इनमें प्राणि समपोषण, अर्थात् भोजन, का अंतर्ग्रहण करना होता हैं। उनमें वृद्धि का एक निर्दिष्ट पैटर्न होता है और वे एक पूर्ण वयस्क जीव बन जाते हैं; जिसकी सुस्पष्ट आकृति तथा माप होती है। उच्चकोटि के जीवों में विस्तृत संवेदी तथा तंत्रिका प्रेरक क्रियाविधि विकसित होती है। इनमें से अधिकांश चलन करने में सक्षम होते हैं।

लैंगिक जनन नर तथा मादा के संगम से होता है और बाद में उसमें भ्रूण का विकास होता है। संघ के विभिन्न मुख्य अभिलक्षणों का विस्तृत वर्णन अध्याय 4 में किया गया है।

## 2.6 विषाणु (वाइरस), विरोइड तथा लाइकेन

विटेकर द्वारा सुझाए पाँच जगत वर्गीकरण में अकोशिक जीवों जैसे वाइरस तथा विरोइड तथा लाइकेन का उल्लेख नहीं किया गया है। इनका संक्षिप्त परिचय नीचे दिया गया है। हम सभी कभी न कभी जुकाम अथवा फ्लु से ग्रस्त होते हैं। क्या आप जानते हैं कि इसका वाइरस कैसे प्रभावित करता हैं? वाइरस का नाम वर्गीकरण में नहीं है, क्योंकि ये



चित्र 2.6 (अ) टोबैको मोजैक वाइरस (टीएमबी) (ब) जीवाणु भोजी

वास्तविक 'जीवन' नहीं है– यदि हम यह मानते हैं कि सजीवों की कोशिका संरचना होती है। वाइरस अकोशिक जीव हैं जिनकी संरचना सजीव कोशिका के बाहर रवेदार होती है। एक बार जब ये कोशिका को संक्रमित कर देते हैं, तब ये मेजबान कोशिका की मशीनरी का उपयोग अपनी प्रतिकृति बनाने में करते हैं और मेजबान को मार देते हैं। *क्या आप* वाइरस को सजीव अथवा निर्जीव कहेंगे?

वाइरस का अर्थ है विष अथवा विषैला तरल। पास्चर डी. जे. इबानोवस्की (1892) ने तंबाकू के मोजैक रोग के रोगाणुओं को पहचाना था, जिन्हें वाइरस नाम दिया गया। इनका माप बैक्टीरिया से भी छोटा था, क्योंकि ये बैक्टीरिया प्रूफ फिल्टर से भी निकल गए थे। एम. डब्ल्यु बेजेरिनेक (1898) ने पाया कि संक्रमित तंबाकू के पौधों का रस स्वस्थ तंबाकू के पौधे को भी संक्रमित करने में सक्षम है। उन्होंने इस रस (तरल) को 'कंटेजियम वाइनम फ्लुयइडम' (संक्रामक जीवित तरल) कहा। डब्ल्यु. एम. स्टानले (1935) ने बताया कि वाइरस को रवेदार बनाया जा सकता है और इस रवे में मुख्यत: प्रोटीन होता है। वे अपनी विशिष्ट मेजबान कोशिका के बाहर निष्क्रिय होते हैं। वाइरस अविकल्पी परजीवी हैं।

वाइरस में प्रोटीन के अतिरिक्त आनुवंशिक पदार्थ भी होता है, जो आरएनए (RNA) अथवा डीएनए (DNA) हो सकता है। किसी भी वाइरस में आरएनए तथा डीएनए दोनों नहीं होते। वाइरस केंद्रक प्रोटीन (न्यूक्लियो प्रोटीन) और इसका आनुवंशिक पदार्थ संक्रामक होता है। प्राय: सभी पादप वाइरस में एक लड़ी वाला आरएनए होता है, और सभी जंतु वाइरस में एक अथवा दोहरी लड़ी वाला आरएनए अथवा डीएनए होता है। बैक्टीरियल वाइरस अथवा जीवाणुभोजी (बैक्टीरियोफेज-आवरण वाइरस जो बैक्टीरिया पर संक्रमण करता है) प्राय: दोहरी लड़ी

26

वाले डीएनए वाइरस होते हैं। प्रोटीन के आवरण (अस्तर) को कैप्सिड कहते हैं और यह छोटी-छोटी उप-इकाइयों जिन्हें पेटिकोशक (कैप्सोमीयर) कहते हैं, से मिलकर बनता है। कैप्सिड न्यूक्लिक एसिड को संरक्षित करता है ये पेटिकांशक कुंडलिनी अथवा बहुफलक ज्यामिती रूप में लगे रहते हैं। वाइरस से मम्पस, चेचक, हर्पीज तथा इंफ्लूएंजा नामक रोग हो जाते हैं। मनुष्यों में एड्स (AIDS) भी वाइरस के कारण होता है। पौधों में मोजैक बनना, पत्तियों का मुड़ना तथा कुंचन, पीला होना तथा शिरा स्पष्टता, बौना तथा अवरुद्ध वृद्धि होना इसके लक्षण हैं।

#### विरोइड

सन 1971 में टी.ओ. डाइनर ने एक नया संक्रामक कारक खोजा जो वाइरस से भी छोटा तथा जिसके कारण 'पोटेटो स्पिंडल ट्यूबर' नामक रोग होता था। विरोइडो में आरएनए तथा प्रोटीन आवरण (अस्तर), जो वाइरस में पाए जाते हैं उनका अभाव होता है। इसलिए यह विरोइड के नाम से जाने जाते हैं। विरोइड के आरएनए का आण्विक भार कम था।

#### लाइकेन

लाइकेन शैवाल तथा कवक के सहजीवी सहवास अर्थात् पारस्परिक उपयोगी सहवास हैं। शैवाल घटक को **शैवालांश** तथा कवक के घटक को **माइकोवायंट** (कवकांश) कहते हैं, जो क्रमश: स्वपोषी तथा परपोषित होते हैं। शैवाल कवक (फंजाई) के लिए भोजन संश्लेषित करता है और कवक शैवाल के लिए आश्रय देता है तथा खनिज एवं जल का अवशोषण करता है। इनका सहवास इतना घनिष्ठ होता है कि यदि प्रकृति में लाइकेन को देख ले तो यह अनुमान लगाना असंभव है कि इसमें दो विभिन्न जीव हैं। लाइकेन प्रदूषण के बहुत अच्छे संकेतक हैं – वे प्रदूषित क्षेत्रों में नहीं उगते।

#### सारांश

सरल आकारिक लक्षणों पर आधारित पादपों और प्राणियों के वर्गीकरण को सर्वप्रथम अरस्तू ने प्रस्तावित किया था। बाद में लीनियस द्वारा सभी जीवधारियों को 'प्लांटी' तथा 'ऐनिमेलिया' जगत में वर्गीकृत किया गया। व्हिटैकर ने इसके बाद एक वृहत् पाँच जगत वर्गीकरण की पद्धति का प्रस्ताव किया। ये पाँच जगत मॉनेरा, प्रोटिस्टा, फंजाई, प्लांटी और ऐनिमेलिया हैं। पाँच जगत वर्गीकरण के प्रमुख मानदंड, कोशिका संरचना, दैहिक संगठन, पोषण एवं प्रजनन की विधि तथा जातिवृत्तीय संबंध हैं।

पाँच जगत वर्गीकरण के अंतर्गत बैक्टीरिया को मॉनेरा जगत में रखा गया है जो विश्वव्यापी है। इनमें उपापचय संबंधी विविधता अत्यंत वृहत् है। बैक्टीरिया में पोषण की विधि स्वपोषी अथवा परपोषी होती है। प्रोटिस्टा जगत में क्राइसोफाइट, डायनोफ्लैजिलेट, युग्लीनॉइड, अवपंक कवक एवं प्रोटोजोआ जैसे एक कोशिक युकैरियोटिक जीवधारी सम्मिलित किए गए हैं। प्रोटिस्टा जीवधारियों की कोशिका में संगठित केंद्रक तथा झिल्लीबद्ध कोशिकांग पाए जाते हैं। इनमें प्रजनन अलैंगिक तथा लैंगिक दोनों प्रकार का होता है। फंजाई (कवक) जगत की संरचना तथा आवास में बहुत विभिन्नता होती है। अधिकांश कवक में मृतजीवी प्रकार का पोषण होता है। उनमें लैंगिक तथा अलैंगिक जनन होता है। इस जगत के अंतर्गत चार वर्ग फाइकोमाइसिटीज, एस्कोमाइसिटीज, बेसिडिओमाइसिटीज तथा डयूटिरोमाइसिटीज आते हैं। प्लांटी (पादप-जगत) में सभी यूकैरियोटिक, क्लोरोफिलयुक्त जीव आते हैं। शैवाल, ब्रायोफाइट, टैरिजोफाइट, जिम्नोस्पर्म तथा एंजियोस्पर्म इस वर्ग में आते हैं। पौधों के जीवन चक्र में पीढ़ी युग्मकोद्भिद् और बीजाणु-उद्भिद् में एकांतरण होता है। परपोषित यूकैरिऑटिक बहुकोशिक जीवों, जिनकी कोशिका में कोशिका भित्ति नहीं होती, उन्हें एनिमेलिया किंगडम में शामिल किया गया है। इन जीवों में पोषण प्राणिसम होता है। इनमें प्राय: लैंगिक जनन होता है। कुछ अकोशिक जीव जैसे वाइरस तथा विरोइड एवं लाइकेन को वर्गीकरण के पाँच जगत प्रणाली नहीं रखा गया है।

#### अभ्यास

- 1. वर्गीकरण की पद्धतियों में समय के साथ आए परिवर्तनों की व्याख्या कीजिए।
- 2. निम्नलिखित के बारे में आर्थिक दृष्टि से दो महत्वपूर्ण उपयोगों को लिखें:
  - (क) परपोषी बैक्टीरिया
  - (ख) आद्य बैक्टीरिया
- 3. डाइएटम की कोशिका भित्ति के क्या लक्षण हैं?
- 4. 'शैवाल पुष्पन' (Algal Bloom) तथा 'लाल तरंगें' (red-tides) क्या दर्शाती हैं।
- 5. वाइरस से विरोइड कैसे भिन्न होते हैं?
- 6. प्रोटोजोआ के चार प्रमुख समूहों का संक्षिप्त वर्णन कीजिए।
- 7. पादप स्वपोषी है। क्या आप ऐसे कुछ पादपों को बता सकते हैं, जो आंशिक रूप से परपोषित हैं?
- 8. शैवालांश तथा कवकांश शब्दों से क्या पता लगता है?
- कवक (फंजाई) जगत के वर्गों का तुलनात्मक विवरण निम्नलिखित बिंदुओं पर करो: (क) पोषण की विधि (ख) जनन की विधि
- 10. युग्लीनॉइड के विशिष्ट चारित्रिक लक्षण कौन-कौन से हैं?
- संरचना तथा आनुवंशिक पदार्थ की प्रकृति के संदर्भ में वाइरस का संक्षिप्त विवरण दो। वाइरस से होने वाले चार रोगों के नाम भी लिखें।
- 12. अपनी कक्षा में इस शीर्षक क्या वाइरस सजीव है अथवा निर्जीव, पर चर्चा करें?

# अध्याय 3 वनस्पति जगत

- **3.1** शैवाल
- 3.2 ब्रायोफ्राइट
- 3.3 टेरिडोफाइट
- 3.4 जिम्नोस्पर्म
- 3.5 एंजियोस्पर्म
- 3.6 पादप जीवन चक्र एवं संतति एकांतरण या पीढ़ी एकांतरण

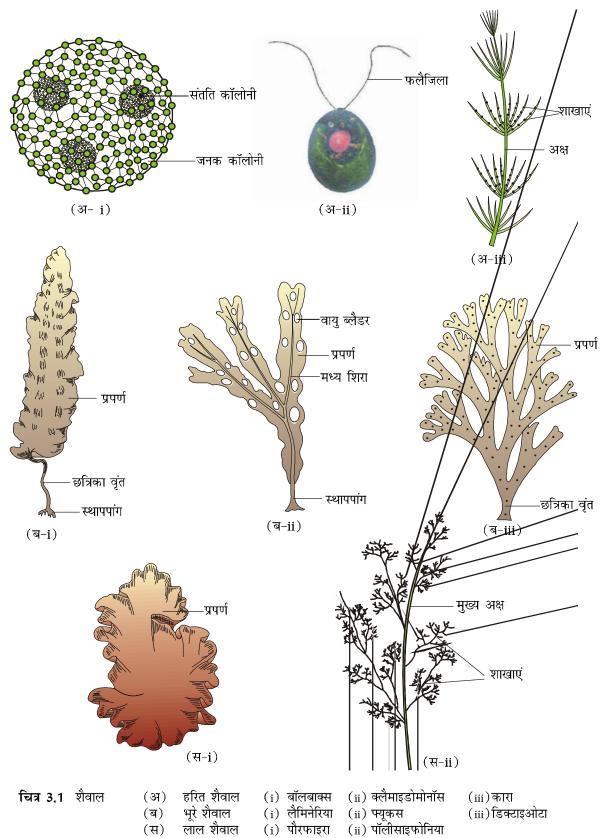
पिछले अध्याय में हमने विटेकर (1969) द्वारा सुझाए सजीवों के प्रमुख वर्ग के विषय में पढ़ा था। इसमें उन्होंने पाँच किंगडम मोनेरा, प्रोटिस्टा, फंजाई, एनिमेलिया तथा प्लांटी सुझाए थे। इस अध्याय में हम प्लांटी जगत, जिसे वनस्पति जगत भी कहते हैं, के बारे में तथा वर्गीकरण के विषय में विस्तार से पढेंगे।

हमें यहाँ पर इस बात पर ध्यान देने की आवश्यकता है कि वनस्पति जगत के विषय में समयानुसार परिवर्तन आया है। फंजाई (कवक) तथा मोनेरा तथा प्रोटिस्टा वर्ग के सदस्य, जिनमें कोशिका भित्ति होती है, अब प्लांटी वर्ग से निकाल दिए गए हैं। यद्यपि वे पहले दिए गए वर्गीकरण के अनुसार एक ही जगत में होते थे। इसलिए सायनोबैक्टीरिया, जिन्हें नील हरित शैवाल कहते थे अब शैवाल नहीं है। इस अध्याय में हम प्लांटी के अंतर्गत शैवाल, ब्रायोफाइट, टैरिडोफाइट, जिम्नोस्पर्म तथा एंजियोस्पर्म के विषय में पढ़ेंगे। आओ, इस तंत्र को प्रभावित करने वाले बिंदुओं को समझने के लिए एंजियोस्पर्म के

वर्गीकरण को देखें। पहले दिए वर्गीकरण में हम आकारिकी के गुणों जैसे प्रकृति, रंग, पत्तियों की संख्या तथा आकृति के आधार आदि पर वर्गीकरण करते थे। वे मुख्यत: कायिक गुणों अथवा पुमंग की रचना के आधार पर हैं तथा (लीनियस के अनुसार) ऐसे वर्गीकरण कृत्रिम थे, क्योंकि उन्होंने बहुत ही समीप वाली संबंधित स्पीशीज को अलग कर दिया था। इसका कारण था कि वे बहुत ही कम गुणों पर आधारित थे। कृत्रिम वर्गीकरण में कायिक तथा लैंगिक गुणों को समान मान्यता दी गई थी। यह अब स्वीकार नहीं है, क्योंकि हम जानते हैं कि कायिक गुणों में प्राय: पर्यावरण के अनुसार परिवर्तन हो जाता है। इसके विपरीत, **प्राकृतिक वर्गीकरण** जीवों में प्राकृतिक संबंध तथा बाह्य गुणों के साथ-साथ भीतरी गुणों, जैसे-परा-रचना, शारीर, भ्रूण विज्ञान तथा पादप रसायन के आधार पर विकसित हुआ है। पुष्पी पादपों के इस वर्गीकरण को जॉर्ज बेंथम तथा जोसेफ़ डॉल्टन हूकर ने सुझाया था। वर्तमान में हम जातिवृत्तीय वर्गीकरण तंत्र, जो विभिन्न जीवों में विकासीय संबंध पर आधारित है, को स्वीकार करते हैं। इससे यह पता लगता है कि समान टैक्सा के जीव के पूर्वज एक ही थे। अब, हम वर्गीकरण की कठिनाइयों को हल करने के लिए विभिन्न सूचनाओं तथा अन्य स्रोतों का उपयोग करते हैं। यह तब और भी कठिन हो जाता है, उसके पक्ष में कोई भी जीवाश्मी प्रमाण उपलब्ध न हो। संख्यात्मक वर्गिकी जिसे अब सरलता से कंयूटरीकृत किया जा सकता है, सभी अवलोकनीय गुणों पर आधारित है। सजीवों के सभी गुणों को एक नंबर तथा एक कोड दिया गया है और इसके बाद इसे प्रोसेस किया जाता है। इस प्रकार प्रत्येक गुण को समान महत्व दिया गया है और उसी समय सैकड़ों गुणों को ध्यान में रख सकते हैं। आज कल वर्गिकीविद् भ्रांतियों को दूर करने के लिए कोशिका वर्गिकी के कोशिका विज्ञानीय सूचनाओं जैसे क्रोमोसोम की संख्या, रचना, व्यवहार तथा रसायन वर्गिकी जो पादपों के रसायनिक कारकों का उपयोग करते हैं।

## 3.1 शैवाल

शैवाल क्लोरोफिलयुक्त, सरल, थैलॉयड, स्वपोषी तथा मुख्यत: जलीय (अलवणीय जल तथा समुद्री दोनों का) जीव है। वे अन्य आवास जैसे नमयुक्त पत्थरों, मिट्टी तथा लकड़ी में भी पाए जाते हैं। उनमें से कुछ कवक (लाइकेन में) तथा प्राणियों के संगठन में भी पाए जाते हैं (जैसे स्लाथ रीछ)।


शैवाल के माप तथा आकार में बहुत विभिन्नता होती है। (चित्र 3.1) इनका माप सूक्ष्मदर्शी एक कोशिक जैसे *क्लैमाइडोमोनॉस*, से लेकर कॉलोनिय जैसे *वॉल्वॉक्स* तथा तंतुमयी जैसे *यूलोथ्रिक्स, स्पाइरोगायरा* तक हो सकता है। इनमें से कुछ, शैवाल जैसे केल्प, बहुत विशालकाय होते हैं।

शैवाल कायिक, अलैंगिक तथा लैंगिक जनन करते हैं। कायिक जनन विखंडन विधि द्वारा होता है। इसके प्रत्येक खंड से थैलस बन जाता है। अलैंगिक जनन विभिन्न प्रकार के बीजाणुओं द्वारा होता है। सामान्यत: ये बीजाणु जूस्पोर होते हैं। इनमें कशाभिक (फ्लैजिला) होता है और ये चलायमान होते हैं। अंकुरण के बाद इनसे पौधे बन जाते हैं। लैंगिक जनन में दो युग्मक संगलित होते हैं। ये युग्मक कशाभिक युक्त (फ्लैजिला युक्त) तथा माप में समान हो सकते हैं (जैसे क्लैमाइडोमोनॉस) अथवा फ्लैजिला विहीन लेकिन समान माप वाले हो सकते हैं (जैसे स्पाइरोगायरा)। ऐसे जनन को समयुग्मकी कहते हैं। जब विभिन्न माप वाले दो युग्मक संगलित होते हैं तब उसे असमयुग्मकी कहते हैं (जैसे क्लैमाइडोमोनॉस) की कुछ स्पीशीज विषमयुग्मकी लैंगिक जनन में एक बड़े अचल (स्थैनिक) मादा युग्मक से एक छोटा चलायमान नरयुग्मक संमलित होता है। जैसे वॉलवॉक्स, फ्यूक्स।

शैवाल वर्ग तथा उनके महत्वपूर्ण गुणों का सारांश तालिका में दिया गया है।

मनुष्य के लिए शैवाल बहुत उपयोगी हैं। पृथ्वी पर प्रकाश-संश्लेषण के दौरान कुल स्थिरीकृत कार्बनडाइऑक्साइड का लगभग आधा भाग शैवाल स्थिर करते हैं। प्रकाश-संशलेषी





| डिविजन      | सामान्य नाम | प्रमुख<br>वर्णक                  | संचित भोजन           | कोशिका<br>भित्ति       | फ्लेजिला की संख्या<br>तथा उनकी निवेशन<br>की स्थिति | आवास                                           |
|-------------|-------------|----------------------------------|----------------------|------------------------|----------------------------------------------------|------------------------------------------------|
| क्लोरोफाइसी | हरे शैवाल   | क्लोरोफ़िल<br>a, b               | स्टार्च              | सेल्यूलोज              | 2-8, समान, शीर्ष                                   | अलवणजल,<br>लवणीय जल,<br>खारा जल                |
| फीयोफाइसी   | भूरे शैवाल  | क्लोरोफ़िल a, c,<br>फ्यूकोजैंथिन | मैनीटोल<br>लैमिनेरिन | सेल्यूलोज तथा<br>एलजिन | 2, असमान, पार्श्वीय                                | अलवणजल,<br>(बहुत कम) खारा<br>जल, लवणीयजल       |
| रोडोफाइसी   | लाल शैवाल   | क्लोरोफ़िल a,d,<br>फाइकोऐरीथ्रिन | फ्लोरिडिऑन स्टार्च   | सेल्यूलोज              | अनुपस्थित                                          | अलवण जल, (कुछ)<br>खारा जल, लवण<br>जल (अधिकांश) |

तालिका 3.1 शैवाल के डिवीजन अनुभाग तथा उनके प्रमुख अभिलक्षण

जीव होने के कारण शैवाल अपने आस-पास के पर्यावरण में घुलित ऑक्सीजन का स्तर बढ़ा देते हैं। ये ऊर्जा के प्राथमिक उत्पादक होने के कारण बहुत महत्वपूर्ण है क्योंकि ये जलीय प्राणियों के खाद्य चक्रों का आधार हैं। *पोरफायरा, लैमिनेरिया* तथा *सरगासम* की बहुत सी स्पीशीज (प्रजातियाँ), जो समुद्र की 70 स्पीशीज (प्रजातियाँ) में से है, भोजन के रूप में उपयोग की जाती है। कुछ समुद्री भूरे तथा लाल शैवाल बहुत ही अधिक कैरागीन (लाल शैवाल से) का उत्पादन करते हैं। जिनका व्यवसायिक उपयोग होता है। जिलेडियम तथा ग्रेसिलेरिआ से एगार प्राप्त होता है जिसका उपयोग सूक्ष्म जीवियों के संवर्धन में तथा आइसक्रीम और जैली बनाने में किया जाता है। क्लोरैला तथा स्प्रिलाइना एक कोशिक शैवाल हैं। इनमें प्रोटीन प्रचुर मात्रा में होता है। यहाँ तक कि इसका उपयोग अंतरिक्ष यात्री भी भोजन के रूप में करते हैं। शैवाल तीन प्रमुख भागों में विभक्त किया जाता है: क्लोरोफाइसी, फीयोफाइसी तथा रोडोफाइसी।

# 3.1.1 क्लोरोफाइसी

क्लोरोफाइसी के सदस्यों को प्राय: हरा शैवाल कहते हैं। ये एक कोशिक, कॉलोनीमय अथवा तंतुमयी हो सकते हैं। क्लोरोफिल a तथा b के प्रभावी होने के कारण इनका रंग हरी घास की तरह होता है। वर्णक सुस्पष्ट क्लोरोप्लास्ट में होते हैं। क्लोरोप्लास्ट डिस्क, प्लेट की तरह, जालिकाकार, कप के आकार, सर्पिल अथवा रिबन के आकार के हो सकते हैं। इसके अधिकांश सदस्यों के क्लोरोप्लास्ट में एक अथवा एक से अधिक पाइरीनॉइड होते हैं। पाइरीनॉइड स्टार्च होते हैं। कुछ शैवाल तेलबुदंक के रूप में भोजन संचित करते हैं। हरे शैवाल में प्राय: एक कठोर कोशिका भित्ति होती है। जिसकी भीतरी सतह सेल्युलोज की तथा बाहरी सतह पेक्टोज की बनी होती है।

कायिक जनन प्राय: तंतु के टूटने से अथवा विभिन्न प्रकार के बीजाणु (स्पोर) के बनने से होता है। अलैंगिक जनन फ्लैजिलायुक्त जूस्पोर से होता है। जूस्पोर जूस्पोरेजिंया

#### वनस्पति जगत

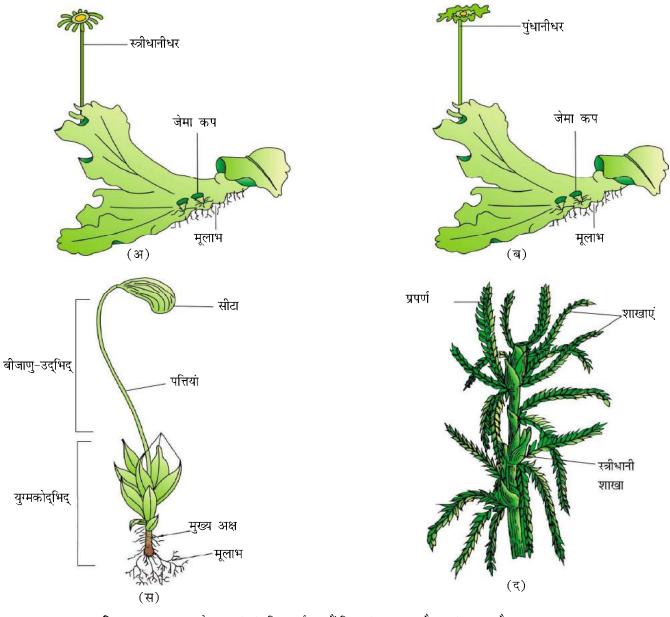
(चल बीजाणुधानी) में बनते हैं। लैंगिक जनन में लैंगिक कोशिकाओं के बनने में बहुत विभिन्नता दिखाई पड़ती है। ये समयुगमकी, असमयुगमकी अथवा विषमयुमकी हो सकते हैं इसके सामान्य सदस्य *क्लैमाइडोमोनास, वॉलवॉक्स, यूलोथ्रिक्सि, स्पाइरोगायरा* तथा *कारा* (चित्र 3.1 अ) हैं।

# 3.1.2 फीयोफाइसी

फीयोफाइसी अथवा भूरे शैवाल मुख्यतः समुद्री आवास में पाए जाते हैं। उनके माप तथा आकार में बहुत विभिन्नताएं होती हैं। ये सरल शाखित, तंतुमयी (*एक्टोकार्पस*) से लेकर सघन शाखित जैसे केल्प तक हो सकते हैं। केल्प की ऊँचाई 100 मीटर तक हो सकती है। इनमें क्लोरोफ़िल a, c, कैरोटिनॉइड तथा जैंथोफिल होता है। इनका रंग जैतूनी हरे से लेकर भूरे के विभिन्न शेड तक हो सकता है। ये शेड जैंथोफिल वर्णक, फ्युकोजैंथिन की मात्रा पर निर्भर करते हैं। इनमें जटिल कार्बोहाइड्रेट के रूप में भोजन संचित होता है। यह भोजन लैमिनेरिन अथवा मैनीटोल के रूप में हो सकता है। कायिक कोशिका में सेल्यूलोज से बनी कोशिका भित्ति होती है जिसके बाहर की ओर एल्जिन का जिलैटिनी अस्तर होता है। प्रोटोप्लास्ट में लवक के अतिरिक्त केंद्र में रसधानी तथा केंद्रक होते हैं। पौधा प्राय: संलग्नक द्वारा अध:स्तर (स्बस्ट्रेटम) से जुड़ा रहता है और इसमें एक वृंत तथा पत्ती की तरह का प्रकाश–संश्लेषी अंग होता है। इसमें कायिक जनन विखंडन विधि द्वारा होता है। अलैंगिक जनन नाशपाती के आकार वाले दो फ्लैजिला युक्त जूस्पोर द्वारा होता है। इसके फ्लैजिला असमान होते हैं तथा वे पार्श्वीय रूप से जुड़े होते हैं।

इसमें लैंगिक जनन समयुग्मकी, असमयुग्मकी अथवा विषययुग्मकी हो सकता है। युग्मकों का संगम जल में अथवा अंडधानी (विषमयुग्मकी स्पीशीज) (प्रजाति) में हो सकता है। युग्मक पाइरीफोर्म (नाशपाती आकार) की होती हैं और इसके पार्श्व में दो फ्लेजिला होते हैं। इसके सामान्य सदस्य- एक्टोकार्पस, डिक्टयोटा, लैमिनेरिया, सरगासम तथा फ्यूकस हैं (चित्र 3.1 ब)।

# 3.1.3 रोडोफाइसी


रोडोफाइसी **लाल शैवाल** हैं। इनका लाल रंग लाल वर्णक, आर-फाइकोएरिश्रिन के कारण है। अधिकांश लाल शैवाल समुद्र में पाए जाते हैं और इनकी बहुलता समुद्र के गरम क्षेत्र में अधिक होती है। ये पानी की सतह पर, जहाँ अधिक प्रकाश होता है, वहाँ भी पाए जाते हैं और समुद्र की गहराई में भी और जहाँ प्रकाश कम होता है, वहाँ भी पाए जाते हैं।

लाल शैवाल का लाल थैलस अधिकांशत: बहुकोशिक होता है और इनमें से कुछ की संरचना बड़ी जटिल होती है भोजन फ्लोरिडियन स्टार्च के रूप में संचित होता है। इस स्टार्च की रचना एमाइलो प्रोटीन तथा ग्लाइकोजन की तरह होती है।

इसमें कायिक जनन विखंडन, अलैंगिक जनन अचल स्पोर (बीजाणु) और लैंगिक जनन अचल युग्मकों द्वारा होता है। लैंगिक जनन विषमयुग्मकी होता है और इसके पश्चात निषेचनोत्तर विकास होता है। इसके सामान्य सदस्य- *पोलीसाइफोनिया, ग्रेसिलेरिया, पोरफायरा* तथा जिलेडियम हैं (चित्र 3.1 स)।

# 3.2 ब्रायोफाइट

ब्रायोफाइट में मॉस तथा लिवरवर्ट आते हैं जो प्राय: पहाड़ियों में नम तथा छायादार क्षेत्रों में पाए जाते हैं (चित्र 3.2)। ब्रायोफाइट को पादप जगत के जलस्थलचर भी कहते हैं;



चित्र 3.2 ब्रायोफाइट (अ) लिवरवर्ट-मारकैंशिया (अ) मादा थैलस (ब) नर थैलस मॉस - (स) फ्यूनेरिया, युग्मकोद्भिद् तथा बीजाणुद्गमिद् (द) स्फैगनम युग्मकोद्भिद्

क्योंकि ये भूमि पर भी जीवित रह सकते हैं, किंतु लैंगिक जनन के लिए जल पर निर्भर करते हैं। ये प्राय: नम, सीलन (आर्द्र), तथा छायादार स्थानों पर पाए जाते हैं। ये अनुक्रमण में महत्वपूर्ण भूमिका निभाते हैं।

इनकी पादपकाय शैवाल की अपेक्षा अधिक विभेदित होती है। यह थैलस की तरह होता है और शयान अथवा सीधा होता है और एक कोशिक तथा बहुकोशिक मूलाभ द्वारा स्बस्ट्रेटम से जुड़ा रहता है। इनमें वास्तविक मूल, तना अथवा पत्तियाँ नहीं होती। इनमें मूलसम, पत्तीसम अथवा तनासम संरचना होती है। ब्रायोफाइट की मुख्यकाय अगुणित होती है। ये युग्मक उत्पन्न करते हैं, इसलिए इन्हें **युग्मकोभिद्** कहते हैं। ब्रायोफाइट में लैंगिक अंग बहुकोशिक होते हैं। नर लैंगिक अंग को **पुंधानी** कहते हैं। ब्रायोफाइट में लैंगिक अंग बहुकोशिक होते हैं। नर लैंगिक अंग को **पुंधानी** कहते हैं। ये द्विकशाभिक पुमंग उत्पन्न करते हैं। मादा जनन अंग को **स्त्रीधानी** कहते हैं। यह फ्लास्क के आकार का होता है जिसमें एक अंड होता है। पुमंग को पानी में छोड़ दिया जाता है। ये स्त्रीधानी के संपर्क में आते हैं और अंडे से संगलित हो जाते हैं, जिसके कारण युग्मनज बनता है। युग्मनज में तुरंत न्यूनीकरण विभाजन नहीं होता और इससे एक बहुकोशिक बीजाणु-उद्भिद् (स्पोरोफाइट) बन जाता है। स्पोरोफाइट मुक्तजीवी नहीं है, बल्कि यह प्रकाश संश्लेषी युग्मकोद्भिद् से जुड़ा रहता है और इससे अपना पोषण प्राप्त करता रहता है। **स्पोरोफाइट** की कुछ कोशिकाओं में न्यूनीकरण विभाजन होता है।

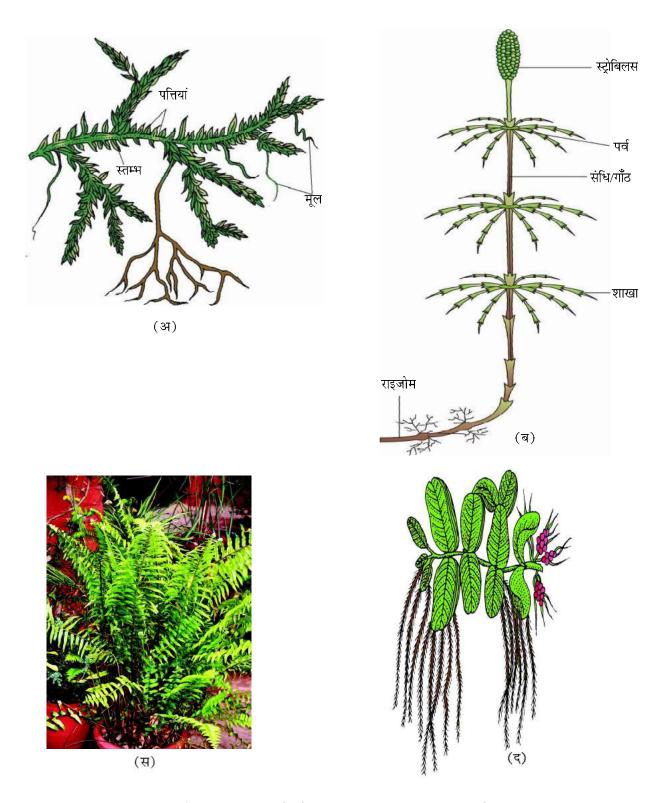
ब्रायोफाइट का बहुत कम आर्थिक महत्त्व है। लेकिन कुछ मॉस शाकाहारी स्तनधारियों, पक्षियों तथा अन्य प्राणियों को भोजन प्रदान करते हैं। स्फेगनम की कुछ स्पीशीज (जाति) पीट प्रदान करती हैं जिसका उपयोग ईंधन के रूप में करते हैं। इसका उपयोग पैकिंग में और सजीव पदार्थों को स्थानांतरित करने में भी करते हैं। इसका कारण यह है कि इनमें पानी को रोकने की क्षमता बहुत अधिक होती है। लाइकेन समेत मॉस सर्वप्रथम ऐसे सजीव हैं, जो चट्टानों पर उगते हैं। इनका परिस्थितिक दृष्टि से बहुत महत्व हैं। इन्होंने चट्टानों को अपघटित किया और अन्य उच्च कोटि के पौधों को उगने के अनुरूप बनाया। चूंकि मॉस मिट्टी पर एक सघन परत बना देते हैं, इसलिए वर्षा की बौछारें मृदा को अधिक हानि नहीं पहुँचा पाती और इस प्रकार ये मृदा अपक्षरण को रोकते हैं। ब्रायोफाइट को **लिवरवर्ट** तथा **मॉस** में विभक्त कर सकते हैं (चित्र 3.2)।

## 3.2.1 लिवरवर्ट

लिवरवर्ट प्राय: नमी छायादार स्थानों जैसे नदियों के किनारे, दल-दले स्थानों, गीली मिट्टी, पेड़ों की छालों आदि पर उगते हैं। लिवरवर्ट की पादपकाय थैलासाभ (*मारकेंशिया*) होती हैं। थैलस पृष्ठाधर होते हैं तथा अध:स्तर बिल्कुल चिपके रहते हैं। इसके पत्तीदार सदस्यों में पत्तियों की तरह की छोटी-छोटी संरचनाएँ होती हैं जो तने की तरह की रचना पर दो कतारों में होती हैं।

लिवरवर्ट में अलैंगिक जनन थैलस के विखंडन अथवा विशिष्ट संरचना जेमा द्वारा होता है। जेमा हरी बहुकोशिक अलैंगिक कलियाँ हैं। ये छोटे-छोटे पात्रों, जिन्हें **जेमा कप** कहते हैं, में स्थित होती हैं। ये अपने पैतृक पादप से अलग हो जाती हैं और इससे एक नया पादप उग आता है। लैंगिक जनन के दौरान नर तथा मादा लैंगिक अंग या तो उसी थैलस पर अथवा दूसरे थैलस पर बनते हैं। स्पोरोफाइट में एक पाद, सीटा तथा कैप्स्यूल (*मारकेंशिया*) होता है। मिऑसिस के बाद कैप्सूल में स्पोर बनते हैं। स्पोर से अंकुरण होने के कारण मुक्तजीवी युग्मकोदुभिद बनते हैं।

#### 3.2.2 मॉस


जीवन चक्र की प्रभावी अवस्था युग्मकोद्भिद् होती है, जिसकी दो अवस्थाएँ होती हैं। पहली अवस्था प्रथम तंतु है जो स्पोर से बनता है। यह विसर्पी, हरा, शाखित तथा प्राय: तंतुमयी होता है। इसकी दूसरी अवस्था पत्ती की तरह की होती है जो प्रथम तंतु से **पार्श्वीय कली** के रूप में उत्पन्न होती है। इसमें एक सीधा, पतला तना सा होता है। जिस पर सर्पिल रूप में पत्तियां लगी रहती हैं। ये बहुकोशिक तथा शाखित मूलाभ द्वारा मिट्टी से जुडी रहती हैं। इस अवस्था में लैंगिक अंग विकसित होते हैं।

मॉस में कायिक जनन द्वितीयक प्रथम तंतु के विखंडन तथा मुकुलन द्वारा होता है। लैंगिक जनन में लैंगिक अंग पुंधानी तथा स्त्रीधानी पत्तीदार प्ररोह की चोटी पर स्थित होते हैं। निषेचन के बाद, युग्मनज से स्पोरोफाइट विकसित होता है जो पाद, सीटा तथा कैप्स्यूल में विभेदित रहता है। मॉस में स्पोरोफाइट लिवरवर्ट की अपेक्षा अधिक विकसित होता है। कैप्स्यूल में स्पोर होते हैं। मिऑसिस के बाद स्पोर बनते हैं। मॉस में स्पोर विकिरण की बहुत विस्तृत प्रणाली होती हैं। इसके सामान्य सदस्य- *फ्यूनेरिया, पोलिट्राइकम* तथा *स्फेगनम* (चित्र 3.2) होते हैं।

# 3.3 टैरिडोफाइट

टैरिडोफाइट का सजावट में बहुत अधिक आर्थिक महत्व है। फूल वाले अधिकांश फर्न का उपयोग सजाने में करते हैं और सजावटी पौधे के रूप में उगाते हैं। विकास की दृष्टि से ये स्थल पर उगने वाले सर्वप्रथम पौधे हैं, जिनमें संवहन ऊतक-जाइलम तथा फ्लोएम होते हैं। आप इन ऊतकों के विषय में विस्तार से अध्याय 6 में पढ़ेंगे। जीवाश्मी रिकार्ड के अनुसार टैरिडोफाइट 350 मिलियन वर्ष पूर्व प्रभावी वनस्पति थे और वे तने रूपी थे। टैरिडोफाइट के अंर्तगत हॉर्सटेल तथा फर्न आते हैं। टैरिडोफाइट ठंडे, गीले, छायादार स्थानों पर पाए जाते हैं। यद्यपि कछ रेतीली मिटटी में भी अच्छी तरह उगते हैं।

आपको याद होगा कि ब्रायोफाइट के जीवन में युग्मकोद्भिद् प्रभावी अवस्था होती है (चित्र 3.3)। लेकिन टेरिडोफाइट में मुख्य पादपकाय स्पोरोफाइट है, जिसमें वास्तविक मूल, तना तथा पत्तियाँ होती हैं। इन अंगों में सुस्पष्ट संवहन ऊतक होते हैं। टैरिडोफाइट में पत्तियाँ छोटी, लघुपर्ण उदाहरणत: *सिलैजिनैला* अथवा बड़ी, बृहत्पर्ण हो सकती है; जैसे फर्न। स्पोरोफाइट में बीजाणुधानी होती हैं; जो पत्ती की तरह के बीजाणुपर्ण पर लगी रहती हैं। कुछ टैरिडोफाइट में बीजाणुपर्ण सघन होकर एक सुस्पष्ट रचना बनाते हैं जिन्हें **शंकु** कहते हैं। उदाहरणत: *सिलैजिनेला, इक्वीसीटम* । बीजाणुधानी के स्थित बीजाणुमातृ कोशिका में मिऑसिस के कारण बीजाणु बनते हैं। बीजाणु अंकुरित होने पर एक अस्पष्ट, छोटा बहुकोशिक, मुक्तजीवी, अधिकांशत: प्रकाशसंश्लेषी थैलाभ युग्मकोद्भिद् बनाते हैं; जिसे प्रोथैलस कहते हैं। इन युग्मकोद्भिदों को उगने के लिए ठंडा, गीला, छायादार स्थान



चित्र 3.3 टैरिडोफाइट (अ) सेलैजिनैला (ब) इक्वीस्टिम (स) फर्न (द) सैलबीनिया

37

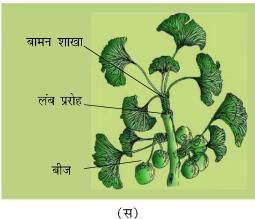
चाहिए। इसकी विशिष्ट, सीमित आवश्यकताएँ और निषेचन के लिए पानी की आवश्यकता कम होने के कारण जीवित टैरिडोफाइट का फैलाव भी सीमित है और कम भौगोलिक क्षेत्रों तक सीमित हैं। युग्मकोद्भिद् के नर तथा मादा अंग होते हैं; जिन्हें क्रमश: **पुंधानी** तथा **स्त्रीधानी** कहते हैं। युंधानी से पुमणु के निकलने के बाद उसे स्त्रीधानी के मुँह तक पहुँचने के लिए पानी की आवश्यकता होती हैं। स्त्रीधानी में स्थित अंडे से नर युग्मक संगलन हो जाता है और युग्मनज बनता है। उसके बाद युग्मनज से बहुकोशिक, सुस्पष्ट स्पोरोफाइट बन जाता है जो टैरिडोफाइट की प्रभावी अवस्था है। यद्यपि अधिकांश टैरिडोफाइट में, जहाँ स्पोर एक ही प्रकार के होते हैं, उन पौधों को समबीजाणुक कहते हैं। *सिलैजिनेला, साल्वीनिया* में दो प्रकार के – बृहद् (बड़े) तथा लघु (छोटे) स्पोर बनते हैं; जिन्हें विषमबीजाणु कहते हैं। बड़े बृहद् बीजाणु (मादा) तथा छोटे लघु बीजाणु (नर) से क्रमश: मादा तथा नर युग्मकोद्भिद् बन जाते हैं ऐसे पौधों में मादा युग्मकोद्भिद् में युग्मनज का विकास होता है; जिससे एक नया शैशव भ्रूण बनता है। यह घटना बहुत महत्त्वपूर्ण समझी जाती है जो बीजी **प्रकृति** की ओर ले जाती है।

टैरिडोफाइट के चार वर्ग (क्लास) होते हैं: साइलोपसीडा (साइलोटम), लाइकोपसीडा (सिलैजिनेला तथा लाइकोपोडियम), स्फीनोपसीडा (इक्वीसीटम) तथा टीरोपसीडा (ड्रायोप्टैरीस, टैरिस तथा एडिएंटम)।

# 3.4 जिम्नोस्पर्म

जिम्नोस्पर्म (जिम्नोस – अनावृत, स्पर्म – बीज) ऐसे पौधे हैं; जिनमें बीजांड अंडाशय भित्ति से ढके हुए नहीं होते और ये निषेचन से पूर्व तथा बाद में भी अनावृत ही रहते हैं। जिम्नोस्पर्म में मध्यम अथवा लंबे वृक्ष तथा झाड़ियाँ होती हैं (चित्र 3.4)। जिम्नोस्पर्म का सिकुआ वृक्ष सबसे लंबा है। इनकी मूल प्राय: मूसला मूल होती हैं। इसके कुछ जीनस की मूल कवक से सहयोग कर लेती हैं, जिसे कवक मूल कहते हैं, उदाहरण-*पाइनस* । जबकि कुछ अन्यों की छोटी विशिष्ट मूल नाइट्रोजन स्थिर करने वाले सायनो बैक्टीरिया के साथ सहयोग कर लेती हैं जिसे प्रवाल मूल कहते हैं उदाहरणत: साइकैस । इसके तने अशाखीय (साइकैस) अथवा शाखित (पाइनस, सीड्रस) होते हैं। इनकी पत्तियां सरल तथा संयुक्त होती हैं। साइकैस में पिच्छाकार पत्तियाँ कुछ वर्षों तक रहती है। जिम्नोस्पर्म में पत्तियाँ अधिक ताप, नमी, तथा वायु को सहन कर सकती हैं। शंक्वाकार पौधों में पत्तियाँ सुई की तरह होती हैं। इनकी पत्तियों का सतही क्षेत्रफल कम, मोटी क्यूटिकल तथा गर्तिकरंध्र होते हैं। इन गुणों के कारण पानी की हानि कम होती है।

जिम्नोस्पर्म विषम बीजाणु होते हैं; वे अगुणित लघुबीजाणु तथा वृहद् बीजाणु बनाते हैं। बीजाणुधानी में दो प्रकार के बीजाणु उत्पन्न होते हैं। बीजाणुधानी बीजाणुपर्ण पर होते हैं। बीजाणुपर्ण सर्पिल की तरह तने पर लगे रहते हैं। ये शलथ अथवा सघन शंकु बनाते हैं। शंकु जिन पर लघुबीजाणुपर्ण तथा लघुबीजाणुधानी होती हैं; उन्हें लघुबीजाणुधानिक अथवा नरशंकु कहते हैं। प्रत्येक लघुबीजाणु से नर युग्मकोद्भिद् संतति उत्पन्न होती है, जो बहुत ही न्यूनीकृत होती है और यह कुछ ही कोशिकाओं में सीमित रहती हैं। इस न्यूनीकृत नर युग्मकोद्भिद् को परागकण कहते हैं। परागकणों का विकास लघुबीजाणुधानी में होता है। जिस शंकु पर गुरु बीजाणुपर्ण तथा गुरु बीजाणुधानी होती है; उन्हें गुरु बीजाणुधानिक अथवा मादा शंकु कहते हैं। दो प्रकार के नर अथवा मादा शंकु एक ही वृक्ष (पाइनस) अथवा विभिन्न वृक्षों पर (साइकैस) पर स्थित हो सकते हैं। गुरु बीजाणू मातृ कोशिका बीजांड काय की एक कोशिका से विभेदित हो जाता है। बीजांडकाय एक अस्तर द्वारा सुरक्षित रहता है और इस सघन रचना को बीजांड कहते हैं। बीजांड गुरु बीजाणुपर्ण पर होते हैं, जो एक गुच्छा बनाकर मादा शंकु बनाते हैं। गुरु बीजाणु मात कोशिका में मिऑसिस द्वारा चार गुरु बीजाणु बन जाते हैं। गुरु बीजाणुधानी (बीजांडकाय) स्थित अकेला गुरुबीजाणु मादा युग्मकोद्भिद् में विकसित होता है। इसमें दो अथवा दो से अधिक स्त्रीधानी अथवा मादा जनन अंग होते हैं। बहुकोशिक मादा युग्मकोद्भिद् भी गुरु बीजाणुधानी में ही रह जाता है।


जिम्नोस्पर्म में दोनों ही नर तथा मादा युग्मकोद्भिद् ब्रायोफाइट तथा टैरिडोफाइट की तरह स्वतंत्र नहीं होते। वे स्पोरोफाइट पर बीजाणुधानी में ही रहते हैं। बीजाणुधानी से परागकण बाहर निकलते हैं। ये गुरु बीजाणुपर्ण पर स्थित बीजांड के छिद्र तक हवा द्वारा ले जाए जाते हैं। परागकण से एक परागनली बनती है जिसमें नर युग्मक होता हैं। यह परागनली स्त्रीधानी की ओर जाती है और वहाँ पर शुक्राणु छोड़ देती है। निषेचन के बाद युग्मनज बनता है, जिससे भ्रूण विकसित होता है और बीजांड से बीज बनते हैं। ये बीज ढके हुए नहीं होते।

# 3.5 एंजियोस्पर्म

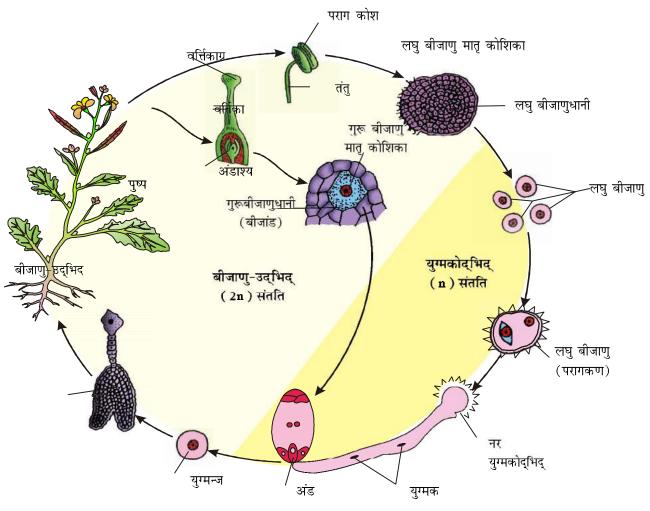
पुष्पी पादपों अथवा एंजियोस्पर्म में परागकण तथा बीजांड विशिष्ट रचना के रूप में विकसित होते हैं जिसे **पुष्प** कहते हैं। जबकि जिम्नोस्पर्म में बीजांड अनावृत होते हैं। एंजियोस्पर्म पुष्पी पादप हैं, जिसमें बीज फलों के भीतर होते हैं। यह पादपों में सबसे बड़ा वर्ग है। उनके वासस्थान भी बहुत व्यापक हैं। इनका माप सूक्ष्मदर्शी जीवों वुल्फिया से लेकर सबसे ऊंचे वृक्ष यूकेल्पिट्स (100 मीटर से अधिक ऊंचाई) तक होता है। इनसे हमें भोजन, चारा, ईंधन, औषधियाँ तथा अन्य दूसरे आर्थिक महत्त्व के उत्पाद प्राप्त होते हैं। ये दो वर्गों *द्विबीजपत्री* तथा एकबीजपत्री में विभक्त होते हैं।<sup>2</sup> द्विबीजपत्री पौधों के बीजों में







(ज) चित्र 3.4 जिम्नोस्पर्म (अ) साइकस (ब) पाइनस (द) गिंकगो


दो बीज पत्र होते हैं, जबकि एकबीपत्री में एक बीज पत्र होता है। पुष्प में नर लैंगिक अंग पुंकेसर (लघुबीजाणु पत्र) हैं।

प्रत्येक पुंकेसर में एक पतला तंतु होता है जिसकी चोटी पर परागकोश होता है। मिऑसिस के बाद परागकोश से परागकण बनते हैं। पुष्प में मादा लैंगिक अंग स्त्रीकेसर अथवा अंडप होते हैं। स्त्रीकेसर में अंडाशय होता है जिसके अंदर एक या एक से अधिक बीजांड होते हैं। बीजांड के अंदर बहुत ही न्यूनीकृत मादा युग्मकोद्भिद् होता है जिसे भ्रणकोश कहते हैं। भ्रणकोश बनने से पहले उसमें मिऑसिस होता है। इसलिए भ्रणकोश की प्रत्येक कोशिका अगुणित होती है। प्रत्येक भ्रुणकोश में तीन कोशिकीय अंड समुच्चय- एक अंड कोशिका तथा दो सहायक कोशिकाएं, तीन प्रतिव्यासांत कोशिकाएं तथा दो ध्रुवीय कोशिकाएं होती हैं। दो ध्रुवीय कोशिकाएँ आपस में जुड जाती है जिससे द्विगुणित द्वितीयक केंद्रक बनता है। परागकण परागकोश से निकलने के बाद हवा अथवा अन्य एजेंसियों द्वारा स्त्री केसर के वर्त्तिकाग्र पर स्थानांतरित कर दिए जाते हैं। इस स्थानांतरण को परागण कहते हैं। परागकण वर्त्तिकाग्र पर अंकृरित होते हैं, जिससे परागनली बनती है। परागनली वर्त्तिकाग्र तथा वर्त्तिका के ऊतकों के बीच से होती हुई बीजांड तक पहुँचती है। परागनली भ्रूणकोश के अंदर जाती है; जहाँ पर फटकर यह दो नर यग्मको को छोड देती है। इनमें से एक नर युग्मक अंड कोशिका से संगलित हो जाता है जिससे एक युग्मनज बनता है। दूसरा नर युग्मक द्विगुणित द्वितीयक केंद्रक से संगलित करता है जिससे त्रिगुणित प्राथमिक भ्रूणपोष केंद्रक बनता है। चूँकि इसमें दो संगलन होते हैं, इसलिए इसे द्विनिषेचन कहते हैं। द्विनिषेचन एंजियोस्पर्म का अद्वितीय गुण है। युग्मनज



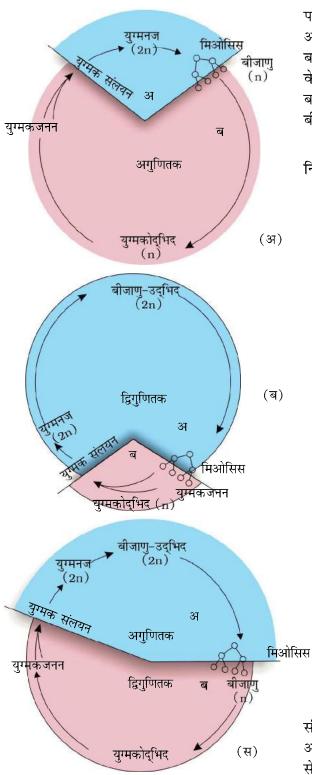
चित्र 3.5 ऐंजिओस्पर्म (अ) द्विबीजपत्री (ब) एकबीजपत्री

भ्रूण (जिससे एक अथवा दो बीजपत्र हो सकते हैं) में विकसित हो जाता है और प्राथमिक भ्रूणपोष केंद्रक भ्रूणपोष में विकसित हो जाता है। भ्रूणपोष विकासशील भ्रूण को पोषण प्रदान करता है। इन घटनाओं के दौरान बीजांड से बीज बन जाते हैं तथा अंडाशय से फल बन जाता है। निषेचन के बाद सहाय कोशिकाएँ तथा प्रतिव्यासांत कोशिकाएँ लुप्त हो जाती है। एंजियोस्पर्म के जीवन चक्र को चित्र 3.6 में दिखाया गया है।



चित्र 3.6 ऐन्जियोस्पर्म का जीवन चक्र

# 3.6 पादप जीवन चक्र तथा संतति या पीढ़ी-एकंातरण


पादप में अगुणित तथा द्विगुणित कोशिकाएँ माइटोसिस द्वारा विभक्त होती हैं। इसके कारण विभिन्न काय, अगुणित तथा द्विगुणित बनते हैं। अगुणित पादपकाय माइटोसिस द्वारा युग्मक बनाते हैं। इसमें पादप काय युग्मकोद्भिद् होता है। निषेचन के बाद युग्मनज भी माइटोसिस द्वारा विभक्त होता है जिसके कारण द्विगुणित स्पोरोफाइट पादपकाय बनाता है। इस 41

पादपकाय में मिऑसिस द्वारा अगुणित बीजाणु बनते हैं। ये अगुणित बीजाणु माइटोसिस विभाजन द्वारा पुन: अगुणित पादपकाय बनाते हैं। इस प्रकार किसी भी लैंगिक जनन करने वाले पौधों के जीवन चक्र के दौरान युग्मकों, जो अगुणित युग्मकोद्भिद् बनाते हैं; और बीजाणु, जो द्विगुणित स्पोरोफाइट बनाते हैं, के बीच संतति या पीढ़ी-एकांतरण होता है।

यद्यपि विभिन्न पादप वर्गों तथा उनकी व्यष्टियों में निम्नलिखित पैटर्न प्रदर्शित पाया जाता है।

- बीजाणु उद्भिद् (स्पोरोफिटिक) संतति में केवल एक कोशिका वाला युग्मनज होता है। उसमें कोई मुक्तजीवी स्पोरोफाइट नहीं होता। युग्मनज में मिओसिस विभाजन होता है जिससे अगुणित बीजाणु बनते हैं। अगुणित बीजाणु में माइटोटिक विभाजन द्वारा युग्मकोद्भिद् (गैमिटोफाइट) बनते हैं। ऐसे पौधों में प्रभावी, प्रकाश संश्लेषी अवस्था मुक्तजीवी युग्मकोद्भिद् होते हैं। इस प्रकार के जीवन चक्र को अगुणितक कहते हैं। बहुत से शैवाल जैसे वाल्वॉक्स, स्पाइरोगायरा, तथा क्लैमाइडोमोनॉस की कुछ स्पीशीज में इस प्रकार का पैटर्न होता है (चित्र 3.7अ)
- कुछ ऐसे उदाहरण भी हैं, जहाँ पादप में द्विगुणित बीजाणुद्भिद् प्रभावी, प्रकाश संश्लेषी, मुक्त होता है। युग्मकोद्भिद् एक कोशिकीय अथवा कुछ कोशिकीय अगुणित होते हैं। जीवन-चक्र की इस अवस्था को द्विगुणितक कहते हैं। एक शैवाल, फ्यूकस स्पीशीज, इसी पैटर्न का प्रतिनिधित्व करती है (चित्र 3.7 ब)। साथ ही, सभी बीजीय पादप, जिम्नोस्पर्म व एंजियोस्पर्म इसी पैटर्न का अनुसरण करते हैं, जिसमें युग्मकोद्भिद् अवस्था कुछ कोशिकीय से बहुकोशिकीय होती है।
   ब्रायोफाइट तथा टैरिडोफाइट में मिश्रित अवस्था अर्थात् दोनों प्रकार की अवस्थाएँ देखने को मिलती हैं। दोनों ही अवस्थाएँ बहुकोशिकीय होती है। लेकिन उनकी प्रभावी अवस्था में भिन्नता होती है।

एक प्रभावी, मुक्त, प्रकाश संश्लेषी थैलसाभ अथवा सीधी अवस्था **अगुणितक** युग्मकोद्भिद् में होती है। और यह अल्पआयु बहुकोशिकीय बीजाणुद्भिद् जो पूर्ण अथवा आंशिकरूप से जुड़े रहने तथा पोषण के लिए युग्मकोद्भिद् पर निर्भर करते हैं, पीढ़ी एकांतरण करता है। सभी ब्रायोफाइट में ऐसा ही पैटर्न होता है (चित्र 3.7 स)



चित्र 3.7 जीवन चक्र पैटर्न (अ) अगुणितक (ब) द्विगुणितक (स) अगुणितक -द्विगुणितक

द्विगुणित बीजाणुउद्भिद् प्रभावी, मुक्त, प्रकाशसंश्लेषी, संवहनी पादपकाय होता है। यह बहुकोशिक, मृतजीवी, स्वपोषी मुक्त लेकिन अल्पायु अगुणित युग्मकोद्भिद् से पीढ़ी एकांतरण करता है। ऐसे पैटर्न को अगुणितक जीवन चक्र कहते हैं (चित्र 3.7 स)। इसके कुछ अपवाद है- अधिकांश शैवाल में अगुणितक पैटर्न होता है, उनमें से कुछ जैसे *एक्टोकार्पस, पॉलिसाइफोनिआ,* कैल्प में अगुणितक-द्विगुणितक पैटर्न होते हैं। फाइकस एक शैवाल है जिसमें द्विगुणितक पैटर्न होता है।

#### सारांश

पादप जगत में शैवाल, ब्रायोफाइट, टैरिडोफाइट, जिम्नोस्पर्म तथा एंजियोस्पर्म आते हैं। शैवाल में क्लोरोफिल होता है। वे सरल, थैलासाभ, स्वपोषी तथा मुख्यत: जलीय जीव हैं। वर्णक के प्रकार तथा भोजन संग्रह के प्रकार के आधार पर शैवाल को तीन वर्गों (क्लास) में विभक्त किए गए हैं, ये हैं – क्लोरोफाइसी, फीयोफाइसी तथा रोडोफाइसी। शैवाल प्राय: विखंडन द्वारा कायिक प्रवर्धन करते हैं। अलैंगिक जनन में विभिन्न प्रकार के बीजाणु द्वारा तथा लैंगिक जनन लैंगिक कोशिकाओं द्वारा करते हैं। लैंगिक कोशिकाएँ समयुग्मकी, असमयुग्मकी तथा विषमयुग्मकी हो सकती हैं।

ब्रायोफाइट ऐसे पौधे हैं जो मिट्टी में उगते हैं लेकिन उनका लैंगिक जनन पानी पर निर्भर करता है। शैवाल की अपेक्षा उनकी पादपकाय अधिक विभेदित होती है। यह थैलस की तरह होता है। और शयान अथवा सीधा हो सकता है। ये मूलाभ द्वारा स्बस्ट्रेटम से जुड़े रहते हैं। इनमें मूल की तरह, तने की तरह तथा पत्तियों की तरह की रचनाएँ होती है। ब्रायोफाइट लिबरवर्ट तथा मॉस में विभक्त होते हैं। लिवरवर्ट थैलसाभ तथा पृष्ठाधर होते हैं। मॉस सीधे, पतले तने वाले होते हैं जिस पर पत्तियाँ सर्पिल ढंग से लगी रहती हैं। ब्रायोफाइट की मुख्यकाय युग्मकोद्भिद् होती है जो युग्मकों को उत्पन्न करते हैं। इसमें नर लैंगिक अंग होते हैं जो संगलित हो कहते हैं। मादा लैंगिक अंग को स्त्रीधानी कहते हैं। नर तथा मादा युग्मक इससे पैदा होते हैं। इससे अगुणित बीजाणु बनते हैं। बोजाणुओं से युग्मकोद्भिद् बनते हैं।

टैरिडोफाइट में मुख्य पौधा बीजाणु-उद्भिद् होता है। इसमें वास्तविक मूल, तना तथा पत्तियाँ होती हैं। इसमें सुविकसित संवहन ऊतक होते हैं। बीजाणु-उद्भिद् में बीजाणुधानी होती है। जिसमें मिऑसिस द्वारा बीजाणु बनते हैं। बीजाणु अंकुरित होकर युग्मकोद्भिद् बनाते हैं। इन्हें वृद्धि के लिए ठंडे, नम स्थानों की आवश्यकता होती है। युग्मकोद्भिद् में नर तथा मादा लैंगिक अंग होते हैं; जिन्हें क्रमशः पुंधानी तथा स्त्रीधानी कहते हैं। नरयुग्मक के मादा युग्मक तक जाने के लिए पानी की आवश्यकता होती है। निषेचन के बाद युम्मनज बनता है। युग्मनज से बीजाणु-उद्भिद् बनता है।

जिम्नोस्पर्म वे पौधे होते हैं, जिनमें बीजांड किसी अंडाशय भित्ति से ढका नहीं होता। निषेचन के बाद बीज अनावृत रहते हैं और इसीलिए इन्हें अनावृत बीजी पौधे कहते हैं। जिम्नोस्पर्म लघु बीजाणु तथा गुरु बीजाणु उत्पन्न करते हैं, जो लघु बीजाणुधानी तथा गुरु बीजाणुधानी (बीजांड) में बनते हैं। ये धानियाँ बीजाणु पर्ण में होती हैं। बीजाणु पर्ण - लघु बीजाणुपर्ण तथा गुरु बीजाणुपर्ण अक्ष पर सर्पिल रूप में लगी रहती हैं। जिनसे क्रमश: नर शंकु तथा मादा शंकु बनते हैं। परागकण अंकुरित होते हैं और पराग नली बनती है; जिससे नर युग्मक अंडाशय में निकल जाता हैं। यहां पर यह स्त्रीधानी में स्थित अंडकोशिका से संगलन हो जाता है। निषेचन के बाद, युग्मनज भ्रूण में तथा बीजांड बीज में विकसित हो जाता हैं।

एंजियोस्पर्म में नर लैंगिक अंग (पुंकेसर) तथा मादा लैंगिक अंग (स्त्रीकेसर) फूल में उत्पन्न होते हैं। प्रत्येक पुंकेसर में एक तंतु तथा एक परागकोश होता है। परागकोश में मिऑसिस के बाद परागकण (नर युग्मकोर्द्भिद्) बनते हैं। स्त्रीकेसर में एक अंडाशय होता है; जिसमें बहुत से बीजांड होते हैं। बीजांड में मादा युग्मक अथवा भ्रूणकोष होता है; जिसमें अंड कोशिका होती है। पराग नली भ्रूणकोष में जाती है जहाँ पर वह दो नर युग्मकों को छोड़ देती है। एक नर युग्मक अंड कोशिका से संगलन हो जाता है और दूसरा द्विगुणित द्वितीयक केंद्रक (त्रिसंलयन) से संगलन करता है। इस दो संगलन के प्रक्रम को द्विनिषेचन कहते हैं। यह प्रक्रम एंजियोस्पर्म के लिए अद्भुत है। एंजियोस्पर्म द्विबीजपत्री तथा एकबीजपत्री में विभक्त होता है। लैंगिक जनन करने वाले पौधों, जिसमें अगुणित युग्मकों तथा द्विगुणित बीजाणु-उद्भिद् उत्पन्न करने वाले बीजाणुओं के जीवन चक्र में पीढ़ी एकांतरण होता है। लेकिन विभिन्न पौधों के वर्गों तथा पौधों में जीवन चक्र अगुणितक, द्विगुणितक तथा मिश्रित प्रकार के पैटर्न हो सकते हैं।

#### अभ्यास

- 1. शैवाल के वर्गीकरण का क्या आधार है?
- 2. लिवरवर्ट, मॉस, फर्न, जिम्नोस्पर्म तथा एंजियोस्पर्म के जीवन-चक्र में कहाँ और कब निम्नीकरण विभाजन होता है?
- पौधे के तीन वर्गों के नाम लिखो, जिनमें स्त्रीधानी होती है। इनमें से किसी एक के जीवन-चक्र का संक्षिप्त वर्णन करो।
- 4. निम्नलिखित की सूत्रगुणता बताओ: मॉस के प्रथम तंतुक कोशिका; द्विबीजपत्री के प्राथमिक भ्रूणपोष का केंद्रक, मॉस की पत्तियों की कोशिका; फर्न के प्रोथैलस की कोशिकाएं, मारकेंशिया की जेमा कोशिका; एकबीजपत्री की मैरिस्टेम कोशिका, लिवरवर्ट के अंडाशय तथा फर्न के युग्मनज।
- 5. शैवाल तथा जिम्नोस्पर्म के आर्थिक महत्त्व पर टिप्पणी लिखो।
- 6. जिम्नोस्पर्म तथा एंजियोस्पर्म दोनों में बीज होते हैं, फिर भी उनका वर्गीकरण अलग-अलग क्यों हैं?
- 7. विषम बीजाणुता क्या है? इसकी सार्थकता पर संक्षिप्त टिप्पणी लिखो। इसके दो उदाहरण दो।
- 8. उदाहरण सहित निम्नलिखित शब्दावली का संक्षिप्त वर्णन करो:
  (i) प्रथम तंतु (ii) पुंधानी (iii) स्त्रीधानी (iv) द्विगुणितक (v) बीजाणुपर्ण (v) समयुग्मकी

#### वनस्पति जगत

- 9. निम्नलिखित में अंतर करो:
  - (i) लाल शैवाल तथा भूरे शैवाल
  - (ii) लिवरवर्ट तथा मॉस
  - (iii) विषम बीजाणुक तथा सम बीजाणुक टेरिडोफाइट
  - (iv) युग्मक संलयन तथा त्रिसंलयन
- 10. एकबीजपत्री को द्विबीजपत्री से किस प्रकार विभेदित करोगे?
- 11. स्तंभ I में दिए गए पादपों की स्तंभ II में दिए गए पादप वर्गों से मिलान करो।

| स्तंभ I ( पादप )          | स्तंभ <b>II</b> ( वर्ग ) |
|---------------------------|--------------------------|
| (अ) <i>क्लैमाइडोमोनॉस</i> | (i) मॉस                  |
| (ब) साइकस                 | (ii) टैरिडोफाइट          |
| (स) सिलैंजिनैल्ग          | (iii) शैवाल              |
| (द) स्फ्रैंगनम            | (iv) जिम्नोस्पर्म        |

12. जिम्नोस्पर्म के महत्वपूर्ण अभिलक्षणों का वर्णन करो।

# अध्याय 4 प्राणि जगत

4.1 वर्गीकरण का आधार

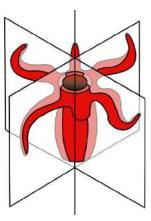
4.2 प्राणियों का वर्गीकरण जब आप अपने चारों ओर देखते हैं तो आप प्राणियों को विभिन्न संरचना एवं स्वरूपों में पाते हैं। अब तक लगभग दस लाख से अधिक प्राणियों का वर्णन किया जा चुका है, अत: वर्गीकरण का महत्व अधिक हो जाता है। इससे नई खोजी गई प्रजातियों को वर्गीकरण में उचित स्थान पर रखने में सहायता मिलती है।

# 4.1 वर्गीकरण का आधार

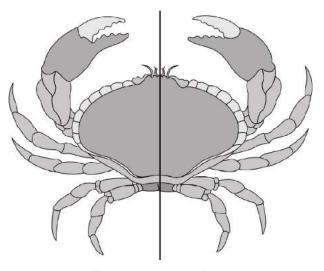
प्राणियों की संरचना एवं आकार में भिन्नता होते हुए भी उनकी कोशिका व्यवस्था, शारीरिक सममिति, प्रगुहा की प्रकृति, पाचन-तंत्र, परिसंचरण-तंत्र व जनन-तंत्र की रचना में कुछ आधारभूत समानताएं पाई जाती हैं। इन विशेषताओं को वर्गीकरण के आधार के रूप में प्रयुक्त किया गया है। इनमें से कुछ का वर्णन यहाँ किया गया है।

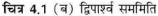
# 4.1.1 संगठन के स्तर

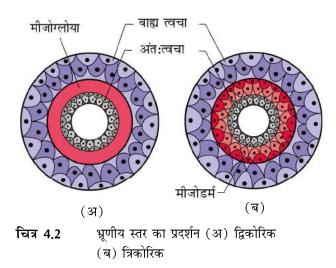
यद्यपि प्राणि जगत के सभी सदस्य बहुकोशिक हैं, लेकिन सभी एक ही प्रकार की कोशिका के संगठन को प्रदर्शित नहीं करते हैं। उदाहरण के लिए, स्पंज में कोशिका बिखरे हुए समूहों में हैं। अर्थात् वे कोशिकीय स्तर का संगठन दर्शाती हैं। कोशिकाओं के बीच श्रम का कुछ विभाजन होता है। सिलेंटरेट कोशिकाओं की व्यवस्था अधिक होती हैं। उसमें कोशिकाएं अपना कार्य संगठित होकर ऊतक के रूप में करती हैं। इसलिए इसे ऊतक स्तर का संगठन कहा जाता है। इससे उच्च स्तर का संगठन जो प्लेटीहेल्मिंथीज के सदस्य तथा अन्य उच्च संघों में पाया जाता है जिसमें ऊतक संगठित होकर अंग का निर्माण करता है और प्रत्येक अंग एक विशेष कार्य करता है। प्राणी में जैसे, ऐनेलिड, आर्थोपोड, मोलस्क, एकाइनोडर्म तथा रज्जुकी के अंग मिलकर तंत्र के रूप में शारीरिक कार्य करते हैं। प्रत्येक तंत्र एक विशिष्ट कार्य करता है। इस तरह की संरचना अंगतंत्र के स्तर का संगठन कहा जाता है। विभिन्न प्राणि समूहों में अंगतंत्र विभिन्न प्रकार की जटिलताएं प्रदर्शित करते हैं। उदाहरण के लिए पाचन भी अपूर्ण व पूर्ण होता है। अपूर्ण पाचन तंत्र में एक ही बाह्य द्वार होता है, जो मुख तथा गुदा दोनों का कार्य करता है, जैसे प्लेटीहेल्मिंथीज। पूर्ण पाचन-तंत्र में दो बाह्य द्वार होते हैं मुख तथा गुदा। इसी प्रकार परिसंचरण-तंत्र भी दो प्रकार का है खुला तथा बंद।

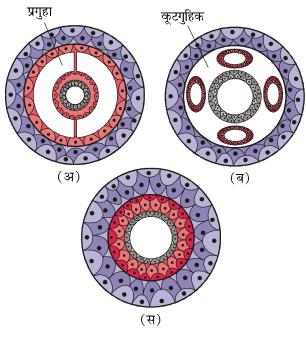

- (i) खुले परिसंचरण-तंत्र में रक्त का बहाव हृदय
   से सीधे बाहर भेजा जाता है तथा कोशिका एवं ऊतक इसमें डूबे रहते हैं।।
- (ii) बंद परिसंचरण-तंत्र— रक्त का संचार हृदय से भिन्न-भिन्न व्यास की वाहिकाओं के द्वारा होता है। (उदाहरण— धमनी. शिरा तथा कोशिकाएं)

### 4.1.2 सममिति


प्राणी को सममिति के आधार पर भी श्रेणीबद्ध किया जा सकता है। स्पंज मुख्यत: असममिति होते हैं; अर्थात् किसी भी केंद्रीय अक्ष से गुजरने वाली रेखा इन्हें दो बराबर भागों विभाजित नहीं करती। जब किसी भी केंद्रीय अक्ष से गुजरने वाली रेखा प्राणि के शरीर को दो समरूप भागों में विभाजित करती है तो इसे अरीय सममिति कहते हैं। सीलेंटरेट, टीनोफोर, तथा एकाइनोडर्म में इसी प्रकार की सममिति होती है (चित्र 4.1 अ)। किंतु ऐनेलिड, आर्थोपोड, आदि में एक ही अक्ष से गुजरने वाली रेखा द्वारा शरीर दो समरूप दाएं व बाएं भाग में बाँटा जा सकता है। इसे द्विपार्श्व सममिति कहते हैं। (चित्र 4.1 ब)


# 4.1.3 द्विकोरिक तथा त्रिकोरकी संगठन


जिन प्राणियों में कोशिकाएं दो भ्रूणीय स्तरों में व्यवस्थित होती हैं यथा- बाह्य एक्टोडर्म (बाह्य त्वचा) तथा आंतरिक एंडोडर्म (अंत: त्वचा) वे द्विकोरिक कहलाते हैं। जैसे सिलेन्टरेट (चित्र 4.2 अ) वे प्राणी जिनके विकसित भ्रूण में तृतीय भ्रूणीय स्तर मीजोडर्म होता है, त्रिकोरकी कहलाते हैं (जैसे प्लेटीहेल्मिंथीज से रज्जुकी तक चित्र. 4.2 ब)।




चित्र 4.1 (अ) अरीय सममिति









चित्र 4.3 (अ) प्रगुहीय (ब) कूटगुहिक (स) अगुहीय का अनुप्रस्थ रेखाचित्र

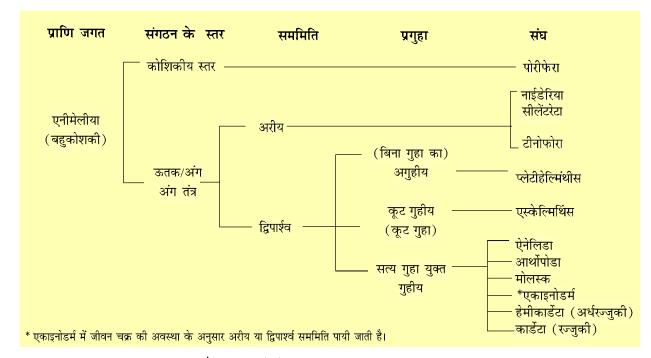
# 4.1.4 प्रगुहा (सीलोम)

शरीर भित्ति तथा आहार नाल के बीच में गुहा की उपस्थिति अथवा अनुपस्थिति वर्गीकरण का महत्वपूर्ण आधार है। मीजोडर्म (मध्य त्वचा) से आच्छादित शरीर गुहा को **देहगुहा** (प्रगुहा) कहते हैं। तथा इससे युक्त प्राणी को **प्रगुही** प्राणी कहते हैं। उदाहरण– ऐनेलिड, मोलस्क, आर्थोपोड, एकाइनोडर्म, हेमीकॉर्डेट तथा कॉर्डेट। कुछ प्राणियों में यह गुहा मीसोडर्म से आच्छादित नहीं होती, बल्कि मध्य त्वचा (मीसोडर्म) बाह्य त्वचा एवं अंत: त्वचा के बीच बिखरी हुई थैली के रूप में पाई जाती है, उन्हें कूटगुहिक कहते हैं जैसे– ऐस्केल्मिंथीज। जिन प्राणियों में शरीर गुहा नहीं पाई जाती है उन्हें अगुहीय कहते हैं, जैसे– प्लेटीहेल्मिंथीज (चित्र 4.3 स)।

# 4.1.5 खंडीभवन (सैगमेंटेशन)

कुछ प्राणियों में शरीर बाह्य तथा आंतरिक दोनों ओर श्रेणीबद्ध खंडों में विभाजित रहता है, जिनमें कुछेक अंगों की क्रमिक पुनरावृति होती है। उस प्रक्रिया को खंडीभवन कहते हैं। उदाहरण के लिए के केंचुए में शरीर का विखंडी खंडीभवन होता है और यह विखंडावस्था कहलाती है।

# 4.1.6 पृष्ठरज्जु

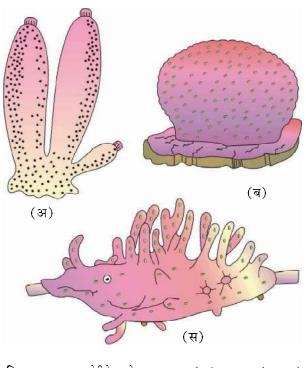

शलाका रूपी पृष्ठरज्जु (नोटोकोर्ड) मध्यत्वचा (मीसोडर्म) से उत्पन्न होती है जो भ्रूणीय परिवर्धन विकास के समय पृष्ठ सतह में बनती होती है। पृष्ठरज्जु युक्त प्राणी को रज्जुकी (कॉर्डेट) कहते हैं तथा पृष्ठरज्जु रहित प्राणी) को अरज्जुकी (नोनकॉर्डेट) कहते हैं।

# 4.2 प्राणियों का वर्गीकरण

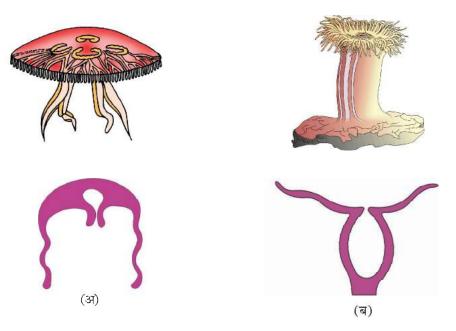
प्राणियों का विस्तृत वर्गीकरण उपर्युक्त वर्णित मौलिक लक्षणों के आधार पर किया गया है, जिसका वर्णन इस अध्याय के शेष भाग में किया गया है (चित्र 4.4)।

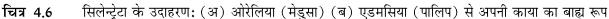
# 4.2.1 संघ पोरीफेरा (Porifera)

इस संघ के प्राणियों को सामान्यत: स्पंज कहते हैं। सामान्यत: लवणीय एवं असममिति होते हैं। ये सब आद्यबहुकोशिक प्राणी हैं (चित्र 4.5), जिनका शरीर संगठन कोशिकीय स्तर का है। स्पंजों में जल परिवहन तथा नाल-तंत्र पाया जाता है। जल सूक्ष्म रंध्र ऑस्टिया द्वारा शरीर की केंद्रीय स्पंज गुहा (स्पंजोशील) में प्रवेश करता है तथा बड़े रंध्र ऑस्कुलम द्वारा बाहर निकलता है। जल परिवहन का यह रास्ता भोजन जमा करने,




चित्र 4.4 मौलिक लक्षणों के आधार पर प्राणि जगत का विस्तृत वर्गीकरण


श्वसन तथा अपशिष्ट पदार्थों को उत्सर्जित करने में सहायक होता है। कोएनोसाइट या कॉलर कोशिकाएं स्पंजगुहा तथा नाल-तंत्र को स्तरित करती हैं। कोशिकाओं में पाचन होता है (अंतराकोशिक)। कंकाल शरीर को आधार प्रदान करता है। जो कंटिकाओं तथा स्पंजिन तंतुओं का बना होता है। स्पंज प्राणी में नर तथा मादा पृथक् नहीं होते। वे उभयलिंगाश्रयी होते हैं। अंडे तथा शुक्राणु दोनों एक द्वारा ही बनाए जाते हैं। उनमें अलैंगिक जनन विखंडन द्वारा तथा लैंगिक जनन युग्मकों द्वारा होता है। निषेचन आंतरिक होता तथा परिवर्धन अप्रत्यक्ष होता है, जिसमें वयस्क से भिन्न आकृति की लार्वा अवस्था पाई जाती है। उदाहरण साइकन (साइफा), स्पंाजिला (स्वच्छ जलीय स्पंज) तथा **युस्पंजिया** (बाथस्पंज)।


# 4.2.2 संघ सिलेन्ट्रेटा (नाइडेरिया)

ये जलीय अधिकांशत: समुद्री स्थावर अथवा मुक्त तैरने वाले सममिति प्राणी हैं (चित्र 4.6)। नाइडेरिया नाम इनकी दंश कोशिका, नाइडोब्लास्ट या निमेटोब्लास्ट से बना है। यह कोशिकाएं स्पर्शकों तथा शरीर में अन्य स्थानों पर पाई जाती हैं। दंशकोरक (नाइडोब्लास्ट) स्थिरक, रक्षा तथा शिकार



चित्र 4.5 पोरीफेरा के उदाहरण: (अ) *साइकन* (साइफा) (ब) यूस्पांजिया (स) स्पांजिला

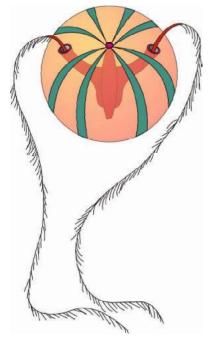




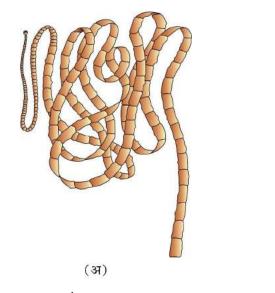
पकड़ने में सहायक हैं (चित्र 4.7)। नाइडेरिया में ऊतक स्तर संगठन होता है और ये द्विकोश्की होते हैं। इन प्राणियों में केंद्रीय जठर संवहनी (गैस्ट्रोवेस्क्यूलर) गुहा पाई जाती है, जो अधोमुख (हाईपोस्टोम) पर स्थित मुख द्वारा खुलती है। इनमें अंत:कोशिकी एवं अंतराकोशिक दोनों प्रकार का है। इनके कुछ सदस्यों (जैसे प्रवाल/कोरल) में कैल्सियम कार्बोनेट से बना कंकाल पाया जाता है। इनका शरीर दो आकारों पालिप तथा मेडुसा से बनता है। पॉलिप स्थावर तथा बेलनाकार होता है। जैसे– हाइड्रा। मेडुसा छत्री के आकार का तथा मुक्त प्लावी होता है। जैसे– ओरेलिया या जेली फिश। वे नाइडेरिया जिन में दोनों पॉलिप तथा मेडुसा दोनों रूप में पाए जाते हैं, उनमें पीढ़ी एकांतरण (मेटाजनेसिस) होता है जैसे ओबेलिया में। पॉलिप अलैंगिक जनन के द्वारा मेडुसा उत्पन्न करता है तथा मेडुसा लौंगिक जनन के द्वारा पॉलिप उत्पन्न करता है। उदाहरण– फाइसेलिया (पुर्तगाली युद्ध मानव) एडमसिया (समुद्र ऐनीमोन) पेनेट्युला (समुद्री पिच्छ) गोरगोनिया (समुद्री व्यंजन) तक्ष तथा मेन्डरीना (ब्रेन कोरल)।

# 4.2.3 संघ टीनोफोर

टीनोफोर (कंकतधर) को सामान्यत: समुद्री अखरोट (सी वालनट) या कंकाल जैली (कॉम्ब जैली) कहते हैं। ये सभी समुद्रवासी अरीय सममिति, द्विकोरिक जीव होते हैं तथा इनमें ऊतक श्रेणी का शरीर संगठन होता है। शरीर में आठ बाह्य पक्ष्माभी कंकत पट्टिका होती है, जो चलन में सहायता करती है (चित्र 4.8)। पाचन अंत:कोशिक तथा अंतरा: कोशिक दोनों प्रकार का होता है। जीवसंदीप्ति (प्राणी के द्वारा प्रकाश उत्सर्जन करना)




चित्र 4.7 नाइडोब्लास्ट का आरेखीय दृश्य


टीनोफोर की मुख्य विशेषता है। नर एवं मादा अलग नहीं होते हैं। जनन केवल लैगिंक होता है। निषेचन बाह्य होता है तथा अप्रत्यक्ष परिवर्धन होता है, जिसमें लार्वा अवस्था नहीं होती (उदाहरण-प्लूरोब्रेकिआ तथा टीनोप्लाना)।

# 4.2.4 संघ प्लेटीहैल्मिंथीज (चपटे कृमि)

इस संघ के प्राणी पृष्ठाधर रूप से चपटे होते हैं। इसलिए इन्हें सामान्यतः चपटे कृमि कहा जाता है। इस समूह के अधिकांश प्राणी मनुष्य तथा अन्य प्राणियों में अंतः परजीवी के रूप में पाए जाते हैं। चपटे कृमि द्विपार्शव सममिति, त्रिकोरकी तथा अप्रगुही होते हैं। इनमें अंग स्तर का शरीर संगठन होता है। परजीवी प्राणी में अंकुश तथा चूषक पाए जाते हैं (चित्र 4.9)। कुछ चपटेकृमि खाद्य पदार्थ को परपोषी से सीधे अपने शरीर की सतह से अवशोषित करते हैं। ज्वाला कोशिकाएं परासरण नियंत्रण तथा उर्त्सजन में सहायता करती हैं। नर मादा अलग नहीं होते हैं। निषेचन आंतरिक होता है तथा परिवर्धन में बहुत सी लार्वा अवस्थाएं पाई जाती हैं। प्लैनेरिया में पुनरुद्भवन की असीम क्षमता होती है। उदाहरण– टीनिया (फीताकृमि), फेसियोला (पर्णकृमि)



चित्र 4.8 टीनोप्लाना (प्लूरोब्रेकिआ) का उदाहरण



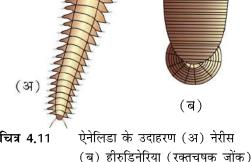
चित्र 4.9 प्लेटीहैल्मिंथीज के उदाहरण (क) पीताकृमि (टीनिया) (ब) पर्णकृमि (फैसियोला)

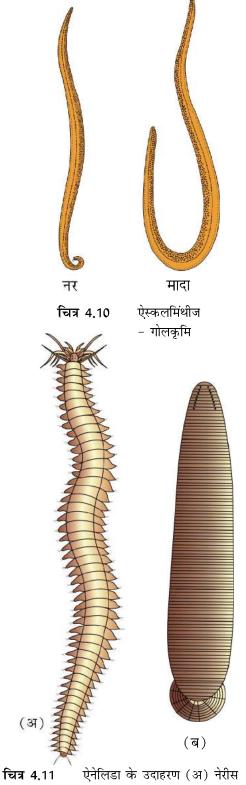
(ब)

# 4.2.5 संघ ऐस्केलमिंथीज (गोल कृमि)

ऐस्केलमिंथीज प्राणी अनुप्रस्थ काट में गोलाकार होते हैं, अतः इन्हें **गोलकृमि** कहते हैं। ये मुक्तजीवी, जलीय अथवा स्थलीय तथा पौधे एवं प्राणियों में परजीवी भी होते हैं। ये **द्विर्पाश्व** सममिति, त्रिकोरकी, तथा कूटप्रगुही प्राणी होते हैं। इनका शरीर संगठन अंगतंत्र

#### जीव विज्ञान

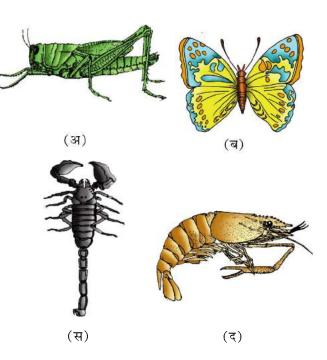

स्तर का है। आहार नाल पूर्ण होती है, जिसमें सुपरिवर्धित पेशीय ग्रसनी होती है। उत्सर्जन नाल शरीर से अपशिष्ट पदार्थों को उत्सर्जन रंध्र के द्वारा बाहर निकालती है (चित्र 4.10)। नर तथा मादा (एकलिंगाश्रयी) होते हैं। प्राय: मादा नर से बडी होती है। निषेचन आंतरिक होता है तथा (परिवर्धन प्रत्यक्ष (शिश वयस्क के समान ही दिखते हैं) अथवा अप्रत्यक्ष (लार्वा अवस्था द्वारा) होता है। उदाहरण- एस्केरिस (गोलकृमि), वुचेरेरिया (फाइलेरियाकृमि) एनसाइलोस्टोमा (अंकुशकृमि)


# 4.2.6 संघ ऐनेलिडा

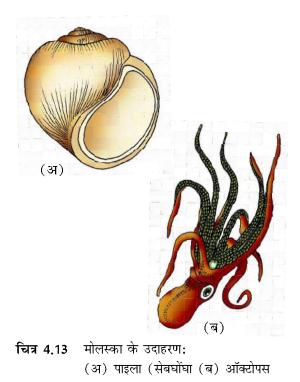
ये प्राणी जलीय (लवणीय तथा अलवण जल) अथवा स्थलीय, स्वतंत्र जीव तथा कभी-कभी परजीवी होते हैं। ये अंगतंत्र स्तर के संगठन को प्रदर्शित करते हैं तथा द्विपार्शव सममिति होते हैं। ये त्रिकोरकी क्रमिक पुनरावृत्ति, विखंडित खंडित तथा गृहीय प्राणी होते हैं। इनकी शरीर सतह स्पष्टत: खंड अथवा विखंडों में बँटा होता है। (लैटिन एनुलस अर्थात् सूक्ष्म वलय) इसलिए इस संघ को एनेलिडा कहते हैं (चित्र 4.11)। इन प्राणियों में अनुदैर्घ्य तथा वृत्ताकार दोनों प्रकार की पेशियां पाई जाती हैं जो चलन में सहायता करती हैं। जलीय एनेलिडा जैसे नेरिस में पाईवपाद (उपांग) **पैरापोडिया** पाए जाते हैं जो तैरने में सहायता करते हैं। इसमें बंद परिसंचरण-तंत्र उपस्थित होता है। **वृक्कक** (एक वचन **नेफ्रिडियम**) परासरण नियमन तथा उत्सर्जन में सहायक हैं। तंत्रिका-तंत्र में एक जोड़ी गुच्छिकाएं (एक वचन-गैंग्लियोन) होती है, जो पार्श्व तंत्रिकाओं द्वारा दोहरी अधर तंत्रिका रज्जू से जुडी होती हैं (चित्र 4.11)। नेरीस, एक जलीय एनेलिड है, जिसमें नर तथा मादा अलग होते हैं (एकलिंगाश्रयी) लेकिन केंचुए तथा जोंक में नर तथा मादा पृथक् नहीं होते (उभयलिंगाश्रयी) हैं। जनन लैंगिक विधि द्वारा होता है। उदाहरण- नेरीस फेरेटिमा (केंचुआ) तथा हीरुडिनेरिया (रक्तचूषक जोंक)

# 4.2.7 आर्थोपोडा

आर्थोपोडा प्राणि जगत का सबसे बड़ा संघ है, जिसमें कीट भी सम्मिलित हैं। लगभग दो तिहाई जाति पृथ्वी पर आर्थोपोडा

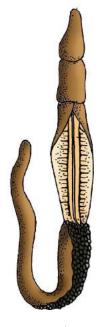






ही हैं (चित्र 4.12)। इसमें अंग-तंत्र स्तर का शरीर संगठन होता है। तथा ये द्विर्पाश्व सममिति, त्रिकोरकी, विखंडित तथा प्रगृही प्राणी हैं। आर्थोपोड का शरीर काईटीनी वहिकंकाल से ढका रहता है। शरीर सिर, वक्ष तथा उदर में विभाजित होते हैं। (आर्थोस मतलब संधि, पोडा मतलब उपांग) इसमें संधियुक्त पाद होता है। श्वसन अंग क्लोम, पुस्त-क्लोम, पुस्त फुप्फुस अथवा श्वसनिकाओं के द्वारा होता है। परिसंचरण-तंत्र खुला होता है। संवेदी अंग जैसे- श्रंगिकाएं, नेत्र (सामान्य तथा संयुक्त), संतुलनपुटी (स्टेटोसिस्ट) उपस्थित होते हैं। उत्सर्जन **मैलपिगी नलिका** के द्वारा होता है। नर-मादा पथक होते हैं तथा अधिकांशत: अंडप्रजक होते हैं। परिवर्धन प्रत्यक्ष अथवा लार्वा अवस्था द्वारा (अप्रत्यक्ष) होता है। आर्थिक रूप से महत्वपूर्ण कीट है: ऐपिस (मधुमक्खी) व बांबिक्स (रेशम कीट), लैसिफर (लाख कीट); रोग वाहक कीट, एनाफलीज, क्यूलेक्स तथा एडीज (मच्छर); यूथपीडक टिड्डी (लोकस्टा); तथा जीवित जीवाश्म लिमूलस (राज कर्कट किंग क्रेब) आदि।

# 4.2.8 संघ मोलस्का ( कोमल शरीर वाले प्राणी )

मोलस्का **दूसरा सबसे बड़ा** प्राणी संघ है (चित्र 4.13)। ये प्राणी स्थलीय अथवा जलीय (लवणीय एवं अलवणीय) तथा अंगतंत्र स्तर के संगठन वाले होते हैं। ये द्विपार्श्व सममिति त्रिकोरकी तथा प्रगुही प्राणी हैं। शरीर कोमल परंतु कठोर कैल्सियम के कवच से ढका रहता है। इसका शरीर अखंडित जिसमें सिर, पेशीय पाद तथा एक अंतरंग ककुद होता है। त्वचा की नरम तथा स्पंजी परत ककुद के ऊपर प्रावार बनाती है। ककुद तथा प्रावार के बीच के स्थान को प्रावार गुहा कहते हैं, जिसमें पख के समान क्लोम पाए जाते हैं, जो श्वसन एवं उत्सर्जन दोनों में सहायक हैं। सिर पर संवेदी स्पर्शक पाए जाते हैं। मुख में भोजन के लिए रेती के समान घिसने का अंग होता है। इसे रेतीजिह्वा (रेडुला) कहते हैं। सामान्यतः नर




चित्र 4.12 आर्थोपोडा के उदाहरण: (अ) टिड्डी (ब) तितली (स) बिच्छू (द) झींगा (प्रॉन)





(ब) भंगुरतारा



चित्र 4.15 बेलैनोग्लोसस

मादा पृथक् होते हैं तथा अंडप्रजक होते हैं। परिवर्धन सामान्यतः लार्वा के द्वारा होता है।

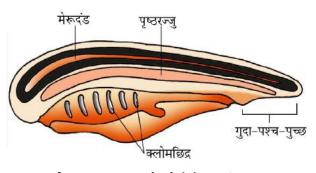
उदाहरण— *पाइला* (सेब घोंघा), *पिंकटाडा* (मुक्ता शुक्ति), *सीपिया* (कटलफिश), *लोलिगो* (स्क्विड), *ऑक्टोपस* (बेताल मछली), एप्लाइसिया (समुद्री खरगोश), डेन्टेलियम (रद कवचर), कीटोप्लयूरा (काइटन)

## 4.2.9 संघ एकाइनोडर्मेटा ( शूलयुक्त प्राणी )

इस संघ के प्राणियों में कैल्सियम युक्त अंत: कंकाल पाया जाता है। इसलिए इनका नाम एकाइनोडर्मेटा (शूलयुक्त शरीर) (चित्र 4.14) है। सभी समुद्रवासी हैं तथा अंग-तंत्र स्तर का संगठन होता है। वयस्क एकाइनोडर्म अरीय रूप से सममिति होते हैं, जबकि लार्वा द्विपार्श्व रूप से सममिति होते हैं। ये सब त्रिकोरकी तथा प्रगुही प्राणी होते हैं। पाचन-तंत्र पूर्ण होता है तथा सामान्यत: मुख अधर तल पर एवं मलद्वार पृष्ठ तल पर होता है। जल संवहन-तंत्र इस संघ की विशिष्टता है, जो चलन (गमन) तथा भोजन पकड़ने में तथा श्वसन में सहायक है। स्पष्ट उत्सर्जन-तंत्र का अभाव होता है। नर एवं मादा पृथक् होते हैं तथा लैंगिक जनन पाया जाता है। निषेचन सामान्यत: बाह्य होता है। परिवर्धन अप्रत्यक्ष एवं मुक्त प्लावी लार्वा अवस्था द्वारा होता है।

उदाहरण एस्टेरियस (तारा मीन) एकाइनस (समुद्री-अर्चिन) एंटीडोन (समुद्री लिली) कुकुमेरिया (समुद्री कर्कटी) तथा ओफीयूरा (भंगुर तारा)

# 4.2.10 संघ हेमीकार्डेटा


इन्हें हेमीकॉर्डेटा पहले कशेरुकी संघ में एक उप संघ के रूप में रखा गया था; लेकिन अब इसे अरज्जुकियों में एक अलग संघ के रूप में रखा गया है।

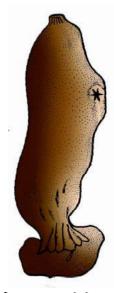
इस संघ के प्राणी कृमि के समान तथा समुद्री जीव हैं जिनका संगठन अंगतंत्र स्तर का होता है। ये सब द्विपार्श्व रूप से सममिति, त्रिकोरकी तथा प्रगुही प्राणी हैं। इनका शरीर बेलनाकार है तथा शुंड, तथा कॉलर लंबे वक्ष में विभाजित होता है (चित्र 4.15)। परिसंचरण–तंत्र बंद प्रकार का होता है। श्वसन क्लोम द्वारा होता है तथा शुंड ग्रंथि इसके उत्सर्जी अंग है। नर एवं मादा अलग होते हैं। निषेचन बाह्य होता है। परिवर्धन लार्वा (टॉनेरिया लार्वा) के द्वारा (अप्रत्यक्ष) होता है।

उदाहरण– बैलैनोग्लोसस तथा सैकोग्लोसस

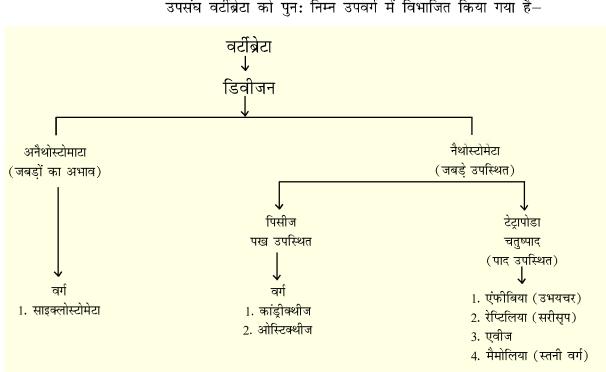
# 4.2.11 संघ- कॉर्डेटा (रज्जुकी)

कशेरुकी संघ के प्राणियों में तीन मूलभूत लक्षण -**पृष्ठ** रज्जु, **पृष्ठ खोखली तंत्रिका-रज्जु** तथा युग्मित ग्रसनी क्लोम छिद्र पाए जाते हैं। ये सब द्विपार्श्वत: सममित त्रिकोरकी तथा प्रगुही प्राणी हैं। इनमें अंग तंत्र स्तर का संगठन पाया जाता है। इसमें गुदा-पश्च पुच्छ तथा बंद परिसंचरण-तंत्र होता है (चित्र 4.16)। सारणी 4.1 अरज्जुकी एवं रज्जुकी में विशिष्ट लक्षणों की तुलना।

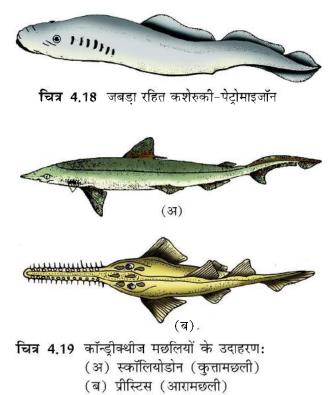



चित्र 4.16 रज्जुकी की विशिष्टताएं

| <u> </u>  | <u> </u>    | •    | <u> </u>            | <u></u> . | <u> </u>  |         | <b>•</b>  |  |
|-----------|-------------|------|---------------------|-----------|-----------|---------|-----------|--|
| सारणी 4.1 | ALC: PARTY  | TTAT | Transf              | T         | TATOTA    | TACTURE | जन जन्म । |  |
|           | ଔଷ୍ଟ୍ୟାମସନା | U CI | <b>v v v i ch</b> i | н.        | I GI SI C | ୯୮୫୮୦୮୮ | କମ ମମ୍ମମା |  |
|           | •••• 3 ···  | · ·  |                     |           |           |         |           |  |


|   | रज्जुकी                                                       | अरज्जुकी                                                     |
|---|---------------------------------------------------------------|--------------------------------------------------------------|
| 1 | पृष्ठ रज्जु उपस्थित होता है।                                  | पृष्ठ रज्जु अनुपस्थित होता है।                               |
| 2 | केंद्रीय तंत्रिका-तंत्र, पृष्ठीय एवं खोखला<br>तथा एकल होता है | केंद्रीय तंत्रिका-तंत्र अधरतल में, ठोस एवं<br>दोहरा होता है। |
| 3 | ग्रसनी में क्लोम छिद्र पाए जाते हैं।                          | क्लोम छिद्र अनुपस्थित होते हैं।                              |
| 4 | हृदय अधर भाग में होता है।                                     | हृदय पृष्ठ भाग में होता है (अगर उपस्थित है)                  |
| 5 | एक गुदा-पश्च पुच्छ उपस्थित होती है।                           | गुदा-पश्चपुच्छ अनुपस्थित होती है।                            |

संघ कॉर्डेटा तीन उपसंघों में विभाजित किया गया है- **यूरोकॉर्डेटा** या **ट्यूनिकेटा, सेफैलोकॉर्डेटा** तथा **वर्टीब्रेटा**। उपसंघ यूरोकॉर्डेटा तथा सेफैलोकॉर्डेटा को सामान्यत: प्रोटोकॉर्डेटा कहते हैं (चित्र 4.17)। ये सभी समुद्री प्राणी हैं। यूरोकॉर्डेटा में पृष्ठरज्जु केवल लार्वा की पूंछ में पाई जाती है, जबकि सेफेलोकॉर्डेटा में पृष्ठ रज्जु सिर से पूंछ तक फेली रहती है जो जीवन के अंत तक बनी रहती है। उदाहरण– यूरोकॉर्डेटा– एसिडिया, सैल्पा, डोलिओलम सेफैलोकॉर्डेटा– ब्रैंकिओस्टोमा (एम्फीऑकसस या लैसलेट)


कशेरुकी संघ के प्राणियों में पृष्ठ रज्जु भ्रूणीय अवस्था में पाई जाती है। वयस्क अवस्था में पृष्ठरज्जु अस्थिल अथवा **उपास्थिल मेरुदंड** में परिवर्तित हो जाती है। कशेरुकी रज्जुकी भी हैं, किन्तु सभी रज्जुकी, कशेरुकी नहीं होते। रज्जुकी के मुख्य लक्षण के अतिरिक्त कशेरुकी में दो-तीन अथवा चार प्रकोष्ठ वाला पेशीय अधर हृदय होता है। वृक्क उत्सर्जन तथा जल संतुलन का कार्य करते हैं तथा पख



चित्र 4.17 एसिडिया



(फिन) या पाद के रूप में दो जोड़ी युग्मित उपांग होते हैं। उपसंघ वर्टीब्रेटा को पुन: निम्न उपवर्ग में विभाजित किया गया है–



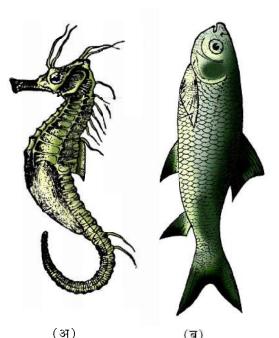
## 4.2.11.1 वर्ग- साइक्लोस्टोमेटा

साइक्लोस्टोमेटा वर्ग के सभी प्राणी कुछ मछलियों के बाह्य परजीवी होते हैं। इसका शरीर लंबा होता है, जिसमें श्वसन के लिए 6–15 जोड़ी क्लोछिद्र होते हैं। साइक्लोस्टोम में बिना जबड़ों का चूषक तथा वृत्ताकार मुख होता है (चित्र 4.18)। इसके शरीर में शल्क तथा युग्मित पखों का अभाव होता है। कपाल तथा मेरुदंड उपास्थिल होता है। परिसंचरण–तंत्र बंद प्रकार का है। साइक्लोस्टोम समुद्री होते हैं; किंतु जनन के लिए अलवणीय जल में प्रवास करते हैं। जनन के कुछ दिन के बाद वे मर जाते हैं। इसके लार्वा कायांतरण के बाद समुद्र में लौट जाते हैं।

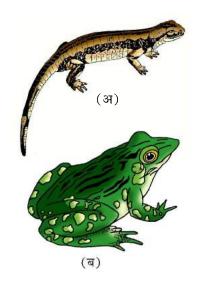
उदाहरण— *पेट्रोमाइजॉन* (लैम्प्रे) तथा *मिक्सीन* (हैग फीश)

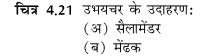
# 4.2.11.2 वर्ग केंड्रीक्थीज

ये धारारेखीय शरीर के समुद्री प्राणी हैं तथा इसका अंत कंकाल उपास्थिल है। (चित्र 4.19) मुख अधर पर स्थित होता है। **पृष्ठ रज्जु चिरस्थाई** होती है। क्लोम-छिद्र अलग अलग होते हैं तथा प्रच्छद (ऑपरकुलम) से ढके नहीं होते। त्वचा दृढ़ एवं सूक्ष्म पट्टाभ शल्कयुक्त होती है। पट्टाभ दांत पट्टाभ शल्क के रूप में रूपांतिरत और पीछे की ओर मुड़े दंत होते हैं। इनके जबड़े बहुत शक्तिशाली होते हैं। ये सब मछलियां हैं। वायु कोष की अनुपस्थिति के कारण ये डूबने से बचने के लिए लगातार तैरते रहते हैं। हृदय दो प्रकोष्ठ वाला होता है, जिसमें एक अलिंद तथा एक निलय होता है। इनमें से कुछ में विद्युत अंग होते हैं (टॉरपीडो) तथा कुछ में विष दंश (ट्रायगोन) होते हैं। ये सब असमतापी (पोइकिलोथर्मिक) हैं, अर्थात् इनमें शरीर का ताप नियंत्रित करने की क्षमता नहीं होती है। नर तथा मादा अलग होते हैं। नर में श्रोणि पख में आलिंगक (क्लेस्पर) पाए जाते हैं। निषेचन आंतरिक होता है तथा अंधिकांश जरायुज होते हैं। उदाहरण– स्कॉलियोडोन (कुत्ता मछली) प्रीस्टिस (आरा मछली) कारकेरोडोन (विशाल सफेद शार्क) ट्राइगोन (व्हेल शार्क)


### 4.2.11.3 वर्ग ओस्टिकथीज

इस वर्ग की मछलियां लवणीय तथा अलवणीय दोनों प्रकार के जल में पाई जाती हैं। इनका अंत: कंकाल अस्थिल होता है (चित्र 4.20)। इनका शरीर धारारेखित होता है। मुख अधिकांशत: अग्र सिरे के अंत में होता है। इनमें चार जोड़ी क्लोम छिद्र दोनों ओर **प्रच्छद** (ऑपरकुलम) से ढके रहते हैं। त्वचा साइक्सोयड, टीनोयोड शल्क से ढकी रहती है। इनमें वायु कोष उपस्थित होता है। जो उत्पलावन में सहायक है। हृदय दो प्रकोष्ठ का होता है (एक अलिंद तथा एक निलय) ये सभी असमतापी होते हैं। नर तथा मादा अलग अलग होते हैं। ये अधिकांशत: अंडज होते हैं। निषेचन प्राय: बाह्य होता है। परिवर्धन प्रत्यक्ष होता है।


उदाहरण: समुद्री-*एक्सोसिटस* (उड्न मछली) *हिपोकेम्पस* (समुद्री घोड़ा) अलवणीयलेबिओ (रोहु), कत्ला, कलेरियस (मांगुर) एक्वोरियम *बेटा* (फाइटिंग फिश), पेट्रोप्इसम (एंगज मछली)

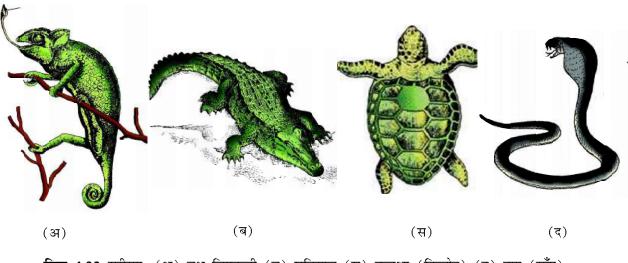

#### 4.2.11.4 वर्ग एंफिबिया (उभयचर)

जैसा कि नाम से इंगित है, (ग्रीक एम्फी-दो + बायोस-जीवन) कि उभयचर जल तथा स्थल दोनों में रह सकते हैं (चित्र 4.21)। इनमें अधिकांश में दो जोड़ी पैर होते हैं। शरीर सिर तथा धड़ में विभाजित होता है। कुछ में पूंछ उपस्थित होती है। उभयचर की त्वचा नम (शल्क रहित) होती है, नेत्र पलक वाले होते हैं। बाह्य



 (अ) (ब)
 चित्र 4.20 अस्थिल मछलियों के उदाहरण: समुद्री घोडा (ब) कतला

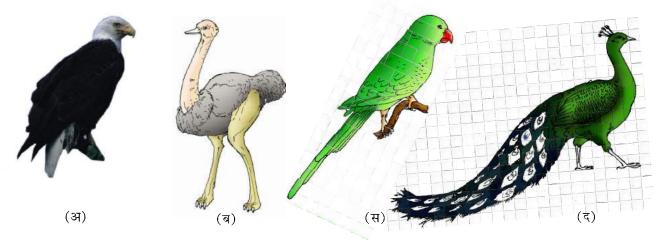





कर्ण की जगह **कर्णपटल** पाया जाता है। आहार नाल, मूत्राशय तथा जनन पथ एक कोष्ठ में खुलते हैं जिसे **अवस्कर** कहते हैं और जो बाहर खुलता है। श्वसन क्लोम, फुप्फुस तथा त्वचा के द्वारा होता है। हृदय तीन प्रकोष्ठ का बना होता है। (दो अलिंद तथा एक निलय)। ये असमतापी प्राणी है। नर तथा मादा अलग अलग होते हैं। निषेचन बाह्य होता है। ये अंडोत्सर्जन करते हैं तथा विकास परिवर्धन प्रत्यक्ष अथवा लार्वा के द्वारा होता है। उदाहरण– बूफो (टोड), राना टिग्रीना (मेंढक), हायला (वृक्ष मेंढक) सैलेमेन्ड्रा (सैलामेंडर) इक्थियोफिस (पादरहित उभयचर)

#### 4.2.11.5 वर्ग सरीसृप

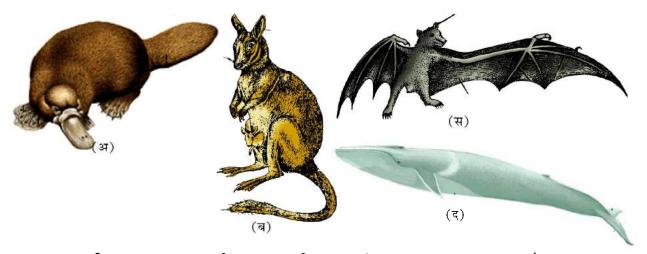
सरीसृप नाम प्राणियों के रेंगने या सरकने के द्वारा गमन के कारण है (*लैटिन* शब्द रेंपेरे अथवा रेंपटम रेंगना या सरकना)। ये सब अधिकांशत: स्थलीय प्राणी हैं, जिनका शरीर शुष्क शल्क युक्त त्वचा से ढका रहता है। इसमें किरेटिन द्वारा निर्मित बाह्य त्वचीय **शल्क** या **प्रशल्क** पाए जाते हैं (चित्र 4.22)। इनमें बाह्य कर्ण छिद्र नहीं पाए जाते हैं। कर्णपटल बाह्य कान का प्रतिनिधित्व करता है। दो जोड़ी पाद उपस्थित हो सकते हैं। हृदय सामान्यत: तीन प्रकोष्ठ का होता है। लेकिन मगरमच्छ में चार प्रकोष्ठ का होता है। सरीसृप असमतापी होते हैं। सर्प तथा छिपकली अपनी शल्क को त्वचीय केंचुल के रूप में छोड़ते हैं। लिंग अलग–अलग होते हैं। निषेचन आंतरिक होता है। ये सब अंडज हैं तथा परिवर्धन प्रत्यक्ष होता है।


उदाहरण – किलोन (टर्टल), टेस्ट्यूडो (टोरटॉइज), केमलियॉन (वृक्ष छिपकली) केलोटस (बगीचे की छिपकली) *ऐलीगेटर* (ऐलीगेटर), क्रोकोडाइलस (घडियाल), *हैमीडेक्टायलस* (घरेलू छिपकली) जहरीले सर्प-*नाजा* (कोबरा), वंगैरस (क्रेत), *वाइपर* 



#### 4.2.11.6 वर्ग एवीज (पक्षी)

एवीज का मुख्य लक्षण शरीर के ऊपर **पंखों** की उपस्थिति तथा उड़ने की क्षमता है (कुछ नहीं उड़ने वाले पक्षी जैसे ऑस्ट्रिच-शुतुरमुर्ग को छोड़कर)। इनमें **चोंच** पाई जाती है (चित्र 4.23)। अग्रपाद रूपांतरित होकर **पख** बनाते हैं। पश्चपाद में सामान्यत: शल्क होते हैं जो रूपांतरित होकर चलने, तैरने तथा पेड़ों की शाखाओं को पकड़ने में सहायता करते हैं। त्वचा शुष्क होती है, पूंछ में तेल ग्रंथि को छोड़कर कोई और त्वचा ग्रंथि नहीं पाई जाती। अंत:कंकाल की लंबी अस्थियाँ खोखली होती हैं तथा **वायुकोष** युक्त होती हैं। इनके पाचन पथ में सहायक संरचना क्रॉप तथा पेषणी होती हैं। हृदय पूर्ण चार प्रकोष्ठ का बना होता है। यह **समतापी** (होमियोधर्मस) होते हैं, अर्थात् इनके शरीर का ताप नियत बना रहता है। श्वसन फुप्फुस के द्वारा होता है। वायु कोष फुप्फुस से जुड़कर सहायक श्वसन अंग का निर्माण करता है।


उदाहरण *कार्वस* (कौआ), *कोलुम्बा* (कपोत), *सिटिकुला* (तोता), *स्ट्रयिओ* (ओस्ट्रिच), *पैवो* (मोर), *एटीनोडायटीज* (पेग्विन), *सूडोगायपस* (गिद्ध)



चित्र 4.23 कुछ पक्षी: (अ) चील (ब) शुतुरमुर्ग (स) तोता (द) मोर

#### 4.2.11.7 वर्ग स्तनधारी

इस वर्ग के प्राणी सभी प्रकार के वातावरण में पाए जाते हैं जैसे ध्रुवीय ठंडे भाग, रेगिस्तान, जंगल घास के मैदान तथा अंधेरी गुफाओं में। इनमें से कुछ में उड़ने तथा पानी में रहने का अनुकूलन होता है। स्तनधारियों का सबसे मुख्य लक्षण दूध उत्पन्न करने वाली ग्रंथि (स्तन ग्रंथि) है जिनसे बच्चे पोषण प्राप्त करते हैं। इनमें दो जोड़ी पाद होते हैं, जो चलने-दौड़ने, वृक्ष पर चढ़ने के लिए, बिल में रहने, तैरने अथवा उड़ने के लिए अनुकूलित होते हैं (चित्र 4.24)। इनकी त्वचा पर रोम पाए जाते हैं। बाह्य कर्णपल्लव पाए जाते हैं। जबड़े में विभिन्न प्रकार के दाँत, जो मसूड़ों की गर्तिका में लगे होते हैं। हृदय चार प्रकोष्ठ का होता है। श्वसन की क्रिया पेशीय डायफ्राम के द्वारा होती है। लिंग अलग होते हैं तथा निषेचन आंतरिक होता है। कुछ को छोड़कर सभी स्तनधारी बच्चे को जन्म देते हैं (जरायुज) तथा परिवर्धन प्रत्यक्ष होता है। उदाहरण– अंडज-*औरनिथोरिंकस,* (प्लैटीपस या डकबिल) जरायुज– मैक्रोपस (कंगारु), टैरोपस (प्लाइंग फौक्स), केमिलस (ऊँट), मकाका (बंदर), रैट्स (चूहा), केनिस (कुत्ता), फेसिस (बिल्ली), एलिफस (हाथी), इक्वुस (घोडा़), डेलिफिनस (सामान्य डॉलफिन), वैलेनिप्टेरा (ब्लू व्हेल), पैंथरा टाइग्रिस (बाघ), पैंथरा लियो (शेर)



चित्र 4.24 कुछ स्तनधारी : (अ) डकबिल (ब) कंगारू (स) चमगादड़ (द) ब्लूव्हेल

| संघ                          | संगठन<br>की स्तर    | सममिति            | गुहा        | खंडीभवन   | पाचन<br>तंत्र | परिसंचरण<br>तंत्र | श्वसन<br>तंत्र | विशेष लक्षण                        |
|------------------------------|---------------------|-------------------|-------------|-----------|---------------|-------------------|----------------|------------------------------------|
| पोरिफेरा                     | कोशिक               | अनेक प्रकार<br>की | अनुपस्थित   | अनुपस्थित | अनुपस्थित     | अनुपस्थित         | अनुपस्थित      | शरीर में छिद्र<br>तथा नाल तंत्र    |
| सिलेन्ट्रेटा या<br>नाइडेरिया | ऊतक                 | अरीय              | अनुपस्थित   | अनुपस्थित | अपूर्ण        | अनुपस्थित         | अनुपस्थित      | निडोब्लस्ट (दंश)<br>कोशिका उपस्थित |
| टीनोफोरा                     | ऊतक                 | अरीय              | अनुपस्थित   | अनुपस्थित | अपूर्ण        | अनुपस्थित         | अनुपस्थित      | कंकत चलन के<br>लिए पट्टिकाएं       |
| प्लेटीहेल्मिं<br>- थीज       | अंग तथा<br>अंगतंत्र | द्विपार्श्व       | अनुपस्थित   | अनुपस्थित | अपूर्ण        | अनुपस्थित         | अनुपस्थित      | चपटा<br>शरीर, चूषक                 |
| ऐस्केलमिन<br>-थीज            | अंगतंत्र            | द्विपार्श्व       | कूट प्रगुहो | अनुपस्थित | पूर्ण         | अनुपस्थित         | अनुपस्थित      | प्रायः कृमिरूप,<br>लंबे            |
| ऐनेलिडा                      | अंगतंत्र            | द्विपार्श्व       | प्रगुही     | उपस्थित   | पूर्ण         | उपस्थित           | अनुपस्थित      | शरीर वलयों की<br>तरह खंडित         |
| आर्थ्रोपोडा                  | अंगतंत्र            | द्विपार्श्व       | प्रगुही     | उपस्थित   | पूर्ण         | उपस्थित           | उपस्थित        | बाह्य कंकाल<br>काइटिनी संधिपाद     |

## सारणी 4.2 प्राणि-जगत के विभिन्न संघों के प्रमुख लक्षण

| मोलस्का               | अंगतंत्र | द्विपार्श्व | प्रगुही | अनुपस्थित | पूर्ण | उपस्थित | उपस्थित | बाह्य कंकाल<br>कवच प्राय:<br>उपस्थित                                           |
|-----------------------|----------|-------------|---------|-----------|-------|---------|---------|--------------------------------------------------------------------------------|
| एकाइनोड-<br>र्मेटा    | अंगतंत्र | अरीय        | प्रगुही | अनुपस्थित | पूर्ण | उपस्थित | उपस्थित | जल संवहनतंत्र,<br>अरीय सममित                                                   |
| हेमीकॉर्डेटा          | अंगतंत्र | द्विपार्श्व | प्रगुही | अनुपस्थित | पूर्ण | उपस्थित | उपस्थित | कृमि के समान,<br>शुंड, कॉलर<br>तथा धड़ उपस्थित                                 |
| कॉर्डेटा<br>(रज्जुकी) | अंगतंत्र | द्विपार्श्व | प्रगुही | उपस्थित   | पूर्ण | उपस्थित | उपस्थित | पृष्ठ-रज्जु, खोखली<br>पृष्ठ तंत्रिका रज्जु,<br>क्लोम छिद्र तथा<br>पाद, अथवा पख |

# सारांश

मूलभूत लक्षण जैसे संगठन के स्तर, सममिति, कोशिका संगठन, गुहा, खंडीभवन, पृष्ठरज्जु आदि प्राणि जगत के वर्गीकरण के आधार हैं। इन लक्षणों के अलावा कई ऐसे भी लक्षण हैं जो संघ या वर्ग के विशिष्ट लक्षण होते हैं।

पॉरीफेरा, जिसमें बहुकोशकीय प्राणी होते हैं, का कोशिकीय स्तर का संगठन तथा कशाभी कीपकोशिका (कोएनोसाइट) मुख्य लक्षण है। सीलेंटरेटा में स्पर्शक एवं दंशकोरक (निडोब्लास्ट) पाए जाते हैं। ये सामान्यतया: जलीय, स्थिर या स्वतंत्र तैरने वाले होते हैं। टीनोफोर लवणीय तथा कंकत पट्टिका वाले जीव होते हैं। प्लेटीहेल्मिंथीज (चपटे कृमि) प्राणियों का शरीर चपटी तथा द्विपार्श्व सममिति वाला होता है। परजीवी प्लेटीहेल्मिंथ में स्पष्ट चूषक और अंकुश होते हैं। ऐस्के लमिंथीज कूटप्रगुही वाले गोलाकृति प्राणी होते हैं।

ऐनेलिड प्राणी विखंडत: खंडित होते हैं, जिनमें प्रगुहा होती है, में बाह्य एवं अंत खंड एकीकृत एवं गुदा होते हैं। आर्थोपोडा प्राणि जगत का बड़ा समूह होता है जिसमें संधियुक्त पाद होता है। मोलस्का का कोमल शरीर के ल्सियमी कवच से ढका होता है तथा बाहरी कंकाल काइटिन का होता है। ऐकाइनोडर्म की त्वचा कांटेदार होती है। इन प्राणियों का मुख्य लक्ष्ण जल संवहन तंत्र होता है। हेमीकॉर्डेटा कृमि की तरह लवणीय प्राणी होते हैं। इन प्राणियों का शरीर बेलनाकार होता है जिसमें शुंड, कालर एवं वक्ष होते हैं।

संघ कॉर्डेटा के प्राणियों में पृष्ठरज्जु (नोटोकार्ड) या तो प्रारंभिक भ्रूणीय अवस्था में अथवा जीवन की किसी अवस्था में पाया जाता है। इसके दूसरे सामान्य लक्षण पृष्ठीय, खोखली तंत्रिका-रज्जु तथा क्लोम छिद्र होते हैं। कुछ कशेरुकी (प्राणियों में जबड़े का अभाव अग्नेथा) तथा अन्य में जबड़े (नैथोस्टोमेटा) मिलते हैं। साइक्लोस्टोमेटा ऐग्नेथा का प्रतिनिधित्व करता है। ये अत्यंत प्राचीन कॉर्डेटा होते हैं तथा मछलियों के बाह्य परजीवी होते हैं।

नैथोस्टोमेटा को दो अधिवर्ग में विभाजित किया गया है– पिसीज तथा टेट्रापोडा। वर्ग कोंड्रिक्थीज तथा ऑस्टिक्थीज का चलन पख द्वारा होता हैं तथा ये पिसीज के अंतर्गत हैं। कोंड्रिक्थीज लवणीय मछलियों में वहिकंकाल उपास्थिल होता है। उभयचर (एंफिबिया), सरीसृप (रेप्टीलिया), पक्षिवर्ग (एवीज) तथा स्तनधारी (मैमेलिया) वर्गो में दो जोड़े पाद होते हैं तथा ये टेट्रापोडा के अंतर्गत रखे गए हैं। उभयचर थल एवं जल दोनों में पाए जाते हैं। सरीसृप की त्वचा सूखी एवं करेटिनित होती है। सांपों में पाद अनुपस्थित रहते हैं। मछलियाँ, उभयचर तथा सरीसृप असमतापी (अनियततापी) हैं। पक्षी समतापी जीव होते हैं तथा शरीर पर पंख होते हैं जो उड़ने में सहायता करते हैं। ये पंख रूपांतरित अग्रपाद हैं। पश्चपाद चलने, तैरने, टिकने पक्षिसाद या आलिंगन के लिए अनुकूलित होते हैं। स्तनधारियों के विशिष्ट लक्षणों में स्तन ग्रंथि एवं त्वचा पर बाल प्रमुख हैं। ये सामान्यतया जरायुज (बच्चे देने वाले) होते हैं।

#### अभ्यास

- 1. यदि मूलभूत लक्षण ज्ञात न हों तो प्राणियों के वर्गीकरण में आप क्या परेशानियाँ महसूस करेंगे?
- 2. यदि आपको एक नमूना (स्पेसिमेन) दे दिया जाए तो वर्गीकरण हेतु आप क्या कदम अपनाएंगे?
- देहगुहा एवं प्रगुहा का अध्ययन प्राणियों के वर्गीकरण में किस प्रकार सहायक होता है?
- 4. अंत: कोशिकीय एवं बाह्य कोशिकीय पाचन में विभेद करें।
- 5. प्रत्यक्ष तथा अप्रत्यक्ष परिवर्धन में क्या अंतर है?
- 6. परजीवी प्लेटिहेल्मिंथीज के विशेष लक्षण बताएं।
- 7. आर्थोपोडा प्राणि-समूह का सबसे बड़ा वर्ग है, इस कथन के प्रमुख कारण बताएं।
- जल संवहन-तंत्र किस वर्ग के मुख्य लक्षण हैं?
   (अ) पोरीफेरा (ब) टीनोफोरा (स) एकाइनोडर्मेटा (द) कॉर्डेटा
- सभी कशेरुकी (वर्टिब्रेट्स) रज्जुकी (कॉर्डेटस) है, लेकिन सभी रज्जुकी कशेरुकी नहीं हैं। इस कथन को सिद्ध करें।
- 10. मछलियों में वायु-आशय (एयर ब्लैडर) की उपस्थिति का क्या महत्व है?
- 11. पक्षियों में उड़ने हेतु क्या-क्या रूपांतरण हैं?
- 12. अंडजनक तथा जरायुज द्वारा उत्पन्न अंडे या बच्चे संख्या में बराबर होते हैं? यदि हाँ तो क्यों? यदि नहीं तो क्यों?
- 13. निम्नलिखित में से शारीरिक खंडीभवन किसमें पहले देखा गया?

```
(अ) प्लेटिहेल्मिंथीज (ब) एस्केलमिंथीज (स) ऐनेलिडा (द) आर्थ्रोपोडा
```

- 14. निम्न का मिलान करें-
  - (i) प्रच्छद (अ) टीनेफोरा
  - (ii) पार्श्वपाद (ब) मोलस्का
  - (iii) शल्क (स) पोरीफोरा
  - (iv) कंकत पट्टिका (काम्बप्लेट) (द) रेप्टेलिया
  - (v) रेडूला (ई) ऐनेलिडा
  - (vi) बाल (फ) साइक्लोस्टोमेटा एवं कॉन्ड्रीक्थीज
  - (vii) कीपकोशिका (कोएनोसाइट)
  - (viii) क्लोमछिद्र
- (घ) ऑस्टिक्थीज : - - - - ``

(ग) मैमेलिया

15. मनुष्यों पर पाए जाने वाले कुछ परजीवों के नाम लिखें।