
Chapter 2 Basic Algebra

I see it but I don’t believe it.

Richard Dedekind

2.1 Introduction
Algebra is a branch of mathematics in which one expresses relations among quantities by using
symbols to represent these quantities. The symbols are called the variables. In this class we shall allow
the variables to represent real numbers only. One can carry out manipulations and computations using
variables just as one does with numbers. That is, one may substitute real numbers for the variables in
the expression and the resulting value will also be a real number. Once a quantity or a mathematical
statement is expressed in terms of variables, it is possible to substitute specific numerical values for
those variables. This makes algebra a very powerful tool. For this reason the subject of algebra has
very wide application, not only within mathematics, but also in other disciplines and in real life. The
notion of real numbers is fundamental to the whole of mathematics. The real number system was well
understood only in the nineteenth century. The need for extending the rational numbers arose quite
early in the history of mathematics. Pythagoreans knew that

√
2 was not a rational number. Certain

constructions involving irrational numbers can be found in Shulbha Sutras, which date back to around
800 BCE. Aryabhata (476-550) had found approximations to π.

Indian mathematicians like Brahmagupta (598-670) and Bhaskaracharya
(1114-1185) had made contributions to the understanding of the real
numbers system and algebra. In his work Brahmagupta had solved
the general quadratic equation for both positive and negative roots.
Bhaskaracharya solved quadratic equations with more than one unknown
and found negative and irrational solutions. The most important real
number zero was the contribution by Indians.

Rene Descartes (1596-1650) introduced the term “real” to describe
roots of a polynomial equation distinguishing them from imaginary ones.
A rigorous construction of real number system was due to Richard
Dedekind (1831-1916). Richard Dedekind

(1831-1916)

Learning Objectives

On completion of this chapter, the students are expected to know

• the concept of real numbers and their properties.
• the absolute value, polynomials, exponents, radicals, logarithms and functions of one

variables involving these concepts.
• how to solve equations, inequalities involving above mentioned functions.
• how to solve linear inequalities involving two variables and representing the solutions

graphically in the cartesian plane.
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2.2 Real Number System

2.2 Real Number System
First we shall recall how the real number system was developed. We start with natural numbers N.

2.2.1 Rational Numbers
Note that N = {1, 2, 3, . . . } is enough for counting objects. In order to deal with loss or debts,
we enlarged N to the set of all integers, Z = {. . . ,−4,−3,−2,−1, 0, 1, 2, . . .} , which consists of
the natural numbers, zero, and the negatives of natural numbers. We call {0, 1, 2, 3, · · · } as the set
of whole numbers and denote it by W. Note that it differs from N by just one element, namely,
zero. Now imagine dividing a cake into five equal parts, which is equivalent to finding a solution
of 5x = 1. But this equation cannot be solved within Z. Hence we have enlarged Z to the set
Q =
{

m
n

| m, n ∈ Z, n �= 0
}

of ratios; so we call each x ∈ Q as a rational number. Some examples
of rational numbers are

−5,
−7

3
, 0,

22

7
, 7, 12.

We have seen in earlier classes that rational numbers are precisely the set of terminating or infinite
periodic decimals. For example,

−5.0, −2.333 · · · , 25

99
= 0.252525 · · · , 2

3
= 0.66666 · · · , 7.14527836231231231 · · ·

are rational numbers.

2.2.2 The Number Line
Let us recall “The Number Line”. It is a horizontal line with the origin, to represent 0, and another
point marked to the right of 0 to represent 1. The distance from 0 to 1 defines one unit of length. Now
put 2 one unit to the right of 1. Similarly we put any positive rational number x to the right of 0 and
x units away. Also, we put a negative rational number −r, r > 0, to the left of 0 by r units. Note that

for any x, y ∈ Q if x < y, then x is to the left of y; also x <
x+ y

2
< y and hence between any two

distinct rational numbers there is another rational number between them.

Question:

Have we filled the whole line with rational numbers?
The answer to the above question is “No” as the following consideration demonstrates. Consider

a square whose side has length 1 unit. Then by Pythagoras theorem its diagonal has length
√
2 units.

1

1
�2

Figure 2.1
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2.2.3 Irrational Numbers
Theorem 2.1:

√
2 is not a rational number.

Proof. Suppose that
√
2 is a rational number. Let

√
2 = m

n
, where m and n are positive integers with

no common factors greater than 1. Then, we have m2 = 2n2, which implies that m2 is even and hence
m is even.

Let m = 2k. Then, we have 2n2 = 4k2 which gives n2 = 2k2.
Thus, n is also even.
It follows, that m and n are even numbers having a common factor 2.
Thus, we arrived at a contradiction.
Hence,

√
2 is an irrational number. �

Remark:

(i) Note that in the above proof we have assumed the contrary of what we wanted to prove and
arrived at a contradiction. This method of proof is called ‘proof by contradiction’.

(ii) There are points on the number line that are not represented by rational numbers.
(iii) We call those numbers on the number line that do not correspond to rational numbers as

irrational numbers. The set of all irrational numbers is denoted by Q′ (For number line see
Figure 1.2.)

Every real number is either a rational number or an irrational number, but not both. Thus,
R = Q ∪Q′ and Q ∩Q′ = ∅.

As we already knew that every terminating or infinite periodic decimal is a rational number, we
see that the decimal representation of an irrational number will neither be terminating nor infinite
periodic. The set R of real numbers can be visualized as the set of points on the number line such that
if x < y, then x lies to left of y.

Figure 2.2 demonstrates how the square roots of 2 and 3 can be identified on a number line.

√

√

√

√ D

Figure 2.2

We notice that N ⊂ W ⊂ Z ⊂ Q ⊂ R.
As we have already observed, irrational numbers occur in real life situations. Over 2000 years ago

people in the Orient and Egypt observed that the ratio of the circumference to the diameter is the same
for any circle. This constant was proved to be an irrational number by Johann Heinrich Lambert in
1767. The value of π rounded off to nine decimal places is equal to 3.141592654. The values 22

7
and

3.14, used in calculations, such as area of a circle or volume of a sphere, are only approximate values
for π.

The number π, which is the ratio of the circumference of a circle to its diameter, is an
irrational number.
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2.3 Absolute Value

Now let us recall the properties of the real number system which is the foundation for mathematics.

2.2.4 Properties of Real Numbers
(i) For any a, b ∈ R, a+ b ∈ R and ab ∈ R.

[Sum of two real numbers is again a real number and multiplication of two real numbers is
again a real number.]

(ii) For any a, b, c ∈ R, (a+ b) + c = a+ (b+ c) and a(bc) = (ab)c.
[While adding (or multiplying) finite number of real numbers, we can add (or multiply) by

grouping them in any order.]
(iii) For all a ∈ R, a+ 0 = a and a(1) = a.
(iv) For every a ∈ R, a+ (−a) = 0 and for every b ∈ R− {0}, b

(
1
b

)
= 1.

(v) For any a, b ∈ R, a+ b = b+ a and ab = ba.
(vi) For a, b, c ∈ R, a(b+ c) = ab+ ac.

(vii) For a, b ∈ R, a < b if and only if b− a > 0.
(viii) For any a ∈ R, a2 ≥ 0.

(ix) For any a, b ∈ R, only one of the following holds: a = b or a < b or a > b.
(x) If a, b ∈ R and a < b, then a+ c < b+ c for all c ∈ R.

(xi) If a, b ∈ R and a < b, then ax < bx for all x > 0.
(xii) If a, b ∈ R and a < b, then ay > by for all y < 0.

Exercise - 2.1

1. Classify each element of {√7, −1
4
, 0, 3.14, 4, 22

7
} as a member of

N, Q, R−Q or Z.

2. Prove that
√
3 is an irrational number.

(Hint: Follow the method that we have used to prove
√
2 �∈ Q.)

3. Are there two distinct irrational numbers such that their difference is a rational number? Justify.
4. Find two irrational numbers such that their sum is a rational number. Can you find two irrational

numbers whose product is a rational number.

5. Find a positive number smaller than
1

21000
. Justify.

2.3 Absolute Value
2.3.1 Definition and Properties
As we have observed that there is an order preserving one-to-one correspondence between elements
of R and points on the number line. Note that for each x ∈ R, x and −x are equal distance from the
origin. The distance of the number a ∈ R from 0 on the number line is called the absolute value of
that number a and is denoted by |a|. Thus, for any x ∈ R, we have

|x| =
{

x if x ≥ 0,
−x if x < 0.

and hence | · | defines a function known as absolute value function, from R onto [0, ∞) and the graph
of this function is discussed in Chapter 1.
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(i) For any x ∈ R, we have |x| = | − x| and thus, |x| = |y| if and only if x = y or
x = −y.

(ii) |x− a| = r if and only if r ≥ 0 and x− a = r or x− a = −r.

2.3.2 Equations Involving Absolute Value
Note that a real number a is said to be a solution of an equation or an inequality, if the statement
obtained after replacing the variable by a is true.

Next we shall learn solving equations involving absolute value.

Example 2.1 Solve |2x− 17| = 3 for x.

Solution:
|2x− 17| = 3. Then, we have 2x− 17 = ±3 which implies x = 10 or x = 7.

Example 2.2 Solve 3|x− 2|+ 7 = 19 for x.

Solution:
3|x− 2|+ 7 = 19. So that we have, |x− 2| = 19−7

3
= 4.

Thus, we have either x− 2 = 4 or x− 2 = −4.
Therefore the solutions are x = −2 and x = 6.

Example 2.3 Solve |2x− 3| = |x− 5|.
Solution:
We know that |u| = |v| if and only if u = v or u = −v.
Therefore, |2x− 3| = |x− 5| implies 2x− 3 = x− 5 or 2x− 3 = 5− x.

Solving these two equations, we get x = −2 and x =
8

3
.

Hence, both x = −2 and x =
8

3
are solutions.

2.3.3 Some Results For Absolute Value
(i) If x, y ∈ R, |y + x| = |x− y|, then xy = 0.

(ii) For any x, y ∈ R, |xy| = |x||y|.
(iii)
∣∣∣xy ∣∣∣ = |x|

|y| , for all x, y ∈ R and y �= 0.

(iv) For any x, y ∈ R, |x+ y| ≤ |x|+ |y|.

2.3.4 Inequalities Involving Absolute Value
Here we shall learn to solve inequalities involving absolute values. First we analyze very simple
inequalities such as (i) |x| < r and (ii) |x| > r.

(i) Let us prove that |x| < r if and only if −r < x < r. Note that r > 0 as |x| ≥ 0.
There are two possibilities to consider depending on the sign of x.

Case (1). If x ≥ 0, then |x| = x, so |x| < r implies x < r.
Case (2). If x < 0, then |x| = −x, so |x| < r implies −x < r that is, x > −r.

Therefore we have, |x| < r if and only if −r < x < r, that is x ∈ (−r, r).
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2.4 Linear Inequalities

(ii) Let us prove that |x| > r if and only if x < −r or x > r.
Consider |x| > r. If r < 0, then every x ∈ R satisfies the inequality.
For r ≥ 0, there are two possibilities to consider.

Case (1). If x ≥ 0, then |x| = x > r.
Case (2). If x < 0, then |x| = −x > r, that is, x < −r.

So we have |x| > r, if and only if x < −r or x > r, that is, x ∈ (−∞,−r) ∪ (r, ∞).

Remark:
(i) For any a ∈ R, |x− a| ≤ r if and only if −r ≤ x− a ≤ r if and only if x ∈ [a− r, a+ r].

(ii) For any a ∈ R, |x − a| ≥ r is equivalent to x − a ≤ −r or x − a ≥ r if and only if
x ∈ (−∞, a− r] ∪ [a+ r, ∞).

Example 2.4 Solve |x− 9| < 2 for x.

Solution:
|x− 9| < 2 implies −2 < x− 9 < 2. Thus, 7 < x < 11.

Example 2.5 Solve

∣∣∣∣ 2

x− 4

∣∣∣∣ > 1, x �= 4.

Solution:
From the given inequality, we have that 2 > |x− 4|.
That is, −2 < x− 4 < 2 and x �= 4.
Adding 4 throughout the inequality, we obtain 2 < x < 6 andx �= 4.
So the solution set is (2, 4) ∪ (4, 6).

Exercise - 2.2
1. Solve for x:

(i) |3− x| < 7. (ii) |4x− 5| ≥ −2. (iii)
∣∣3− 3

4
x
∣∣ ≤ 1

4
.

(iv) |x| − 10 < −3.
2. Solve 1

|2x−1| < 6 and express the solution using the interval notation.

3. Solve −3|x|+ 5 ≤ −2 and graph the solution set in a number line.
4. Solve 2|x+ 1| − 6 ≤ 7 and graph the solution set in a number line.
5. Solve 1

5
|10x− 2| < 1.

6. Solve |5x− 12| < −2.

2.4 Linear Inequalities
Recall that a function of the form f(x) = ax + b, a, b ∈ R are constants, is called a linear function,
because its graph is a straight line. Here a is the slope of the line and b is the y-intercept. If a �= 0,
then x-intercept x = −b

a
is obtained by solving f(x) = ax+ b = 0.

But there are situations where we need to consider linear inequalities.
For example to describe a statement like “ A tower is not taller than fifty feet.”
If x denotes the height of the tower in feet, then the above statement can be expressed as x ≤ 50.
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Example 2.6 Our monthly electricity bill contains a basic charge, which does not change with
number of units used, and a charge that depends only on how many units we use. Let us say
Electricity Board charges Rs.110 as basic charge and charges Rs. 4 for each unit we use. If a person
wants to keep his electricity bill below Rs.250, then what should be his electricity usage?

Solution:
Let x denote the number of units used. Note that x ≥ 0. Then, his electricity bill is Rs. 110 + 4x.
The person wants his bill to be below Rs.250. Let us solve the inequality 110 + 4x < 250. Thus,
4x < 140; which gives 0 ≤ x < 35.
The person should keep his usage below 35 units in order to keep his bill below Rs.250.

Example 2.7 Solve 3x− 5 ≤ x+ 1 for x.

Solution:
We have 3x− 5 ≤ x + 1; which is equivalent to 2x ≤ 6. Hence we have x ≤ 3; the solution set is
(−∞, 3].

We can also solve the above inequality graphically.
Let us consider the graphs of f(x) = 3x− 5 and g(x) = x + 1 (See Figure 2.3). Now,
find all the x-values for which the graph of f is below the graph of g.

–4 –3 –2 –1

–1

1

2

3

4

5

6

7

y

–2

–3

–4

–5

0 1 2 3 4 5 6 7 8

g(x) = x+1

f(x) = 3x–5

x

Figure 2.3

Example 2.8 Solve the following system of linear inequalities.
3x− 9 ≥ 0, 4x− 10 ≤ 6.

Solution:
Note that 3x − 9 ≥ 0 implies 3x ≥ 9, by multiplying both sides by 1/3 we get x ≥ 3. Similarly,
4x− 10 ≤ 6 implies 4x ≤ 16 and hence x ≤ 4.

So the solution set of 3x−9 ≥ 0, 4x−10 ≤ 6 is the intersection of [3,∞) and (−∞, 4]. Clearly,
the intersection of these intervals give [3, 4].
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2.5 Quadratic Functions

Example 2.9 A girl A is reading a book having 446 pages and she has already finished reading 271
pages. She wants to finish reading this book within a week. What is the minimum number of pages
she should read per day to complete reading the book within a week?

Solution:
Let x denote the number of pages the girl should read per day. Then we need our x to satisfy
7x+ 271 ≥ 446. Hence x ≥ 25; which implies that she should read at least 25 pages per day.

In all the above examples observe that each inequality has more than one solution. Inequalities in
general give rise to a range of solutions.

Exercise - 2.3
1. Represent the following inequalities in the interval notation:

(i) x ≥ −1 and x < 4 (ii) x ≤ 5 and x ≥ −3
(iii) x < −1 or x < 3 (iv) −2x > 0 or 3x− 4 < 11.

2. Solve 23x < 100 when (i) x is a natural number, (ii) x is an integer.
3. Solve −2x ≥ 9 when (i) x is a real number, (ii) x is an integer, (iii) x is a natural number.

4. Solve: (i)
3(x− 2)

5
≤ 5(2− x)

3
. (ii)

5− x

3
<

x

2
− 4.

5. To secure A grade one must obtain an average of 90 marks or more in 5 subjects each of maximum
100 marks. If one scored 84, 87, 95, 91 in first four subjects, what is the minimum mark one scored
in the fifth subject to get A grade in the course?

6. A manufacturer has 600 litres of a 12 percent solution of acid. How many litres of a 30 percent
acid solution must be added to it so that the acid content in the resulting mixture will be more than
15 percent but less than 18 percent?

7. Find all pairs of consecutive odd natural numbers both of which are larger than 10 and their sum
is less than 40.

8. A model rocket is launched from the ground. The height h reached by the rocket after t seconds
from lift off is given by h(t) = −5t2+100t, 0 ≤ t ≤ 20. At what time the rocket is 495 feet above
the ground?

9. A plumber can be paid according to the following schemes: In the first scheme he will be paid
rupees 500 plus rupees 70 per hour, and in the second scheme he will paid rupees 120 per hour. If
he works x hours, then for what value of x does the first scheme give better wages?

10. A and B are working on similar jobs but their annual salaries differ by more than Rs 6000. If B
earns rupees 27000 per month, then what are the possibilities of A’s salary per month?

2.5 Quadratic Functions
In earlier classes we have learnt that for any z ∈ R and n ∈ N, zn = z · z ·
z · · · z (n-times).
A function of the form P (x) = ax2 + bx+ c, where a, b, c ∈ R are constants
and a �= 0, is called a quadratic function. If P (t) = 0 for some t ∈ R, then
we say t is a zero of P (x).
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2.5.1 Quadratic Formula
Is it possible to write the general quadratic function P (x) = ax2+bx+c
in the form a(x − k)2 + d? The answer is yes. We can do this by the
method called “completing the square.” We shall rewrite the function
P (x) as follows:

P (x) = ax2 + bx+ c

= a

(
x2 + 2x

b

2a
+

c

a

)

= a

(
x2 + 2x

b

2a
+

(
b

2a

)2

− b2

4a2
+

c

a

)

= a

(
x+

b

2a

)2

− a
b2

4a2
+ c

= a

(
x+

b

2a

)2

+

(
a

(
b

2a

)2

− b
b

2a
+ c

)
.

Thus, P (x) = a

(
x+

b

2a

)2

+ P

(
b

2a

)
. (1)

Now, to find the x- intercepts of the curve described by P (x), let us solve for P (x) = 0.

Considering P (x) = 0 from (1) it follows that a

(
x+

b

2a

)2

+ P
(

b
2a

)
= 0.

a
(
x+ b

2a

)2
= −P

(
b
2a

)
= − (b2−4ac)

4a(
x+ b

2a

)2
= b2−4ac

4a2
.

So x =
√
b2−4ac
2a

− b
2a

or x = −
√
b2−4ac
2a

− b

2a
.

Hence, x = −b±√
b2−4ac
2a

; which is called the quadratic formula.

Remark:

(i) Note that
√
u is defined as a real number only for u ≥ 0.

(ii) when we write
√
u, we mean only the nonnegative root.

Note that P (x) = 0 has two distinct real solutions if b2 − 4ac > 0, the roots are real and equal if
b2 − 4ac = 0, and no real root if b2 − 4ac < 0.
Thus the curve intersects x-axis in two places if b2 − 4ac > 0, touches x-axis at only one point if
b2 − 4ac = 0, and does not intersect x-axis at any point if b2 − 4ac < 0.
That is why D = b2 − 4ac is called the discriminant of the quadratic function P (x) = ax2 + bx+ c.

(i) If α and β are roots of ax2 + bx+ c = 0, then α + β = −b
a

and αβ = c
a
.

(ii) If the discriminant b2 − 4ac is negative, then the quadratic equation
ax2 + bx+ c = 0, has no real roots. In this case, we have complex roots given by

α =
−b+ i

√
4ac− b2

2a
, β =

−b− i
√
4ac− b2

2a
, where i2 = −1,

which we will study in Higher Secondary Second year
(iii) For example, let us look at the graph of y = x2 − 4x+ 5. (See Figure 2.4.)

Since the graph does not intersect the x−axis, x2 − 4x+5 = 0 has no real roots.
(iv) We have the following table describing the nature of the roots of a quadratic

equation and the sign of the discriminant D = b2 − 4ac.
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2.5 Quadratic Functions

y = x2 – 4x + 5
x

y

Figure 2.4

Discriminant Nature of roots Parabola
Positive real and distinct intersects x-axis at two points

Zero real and equal touches x-axis at one point

Negative no real roots does not meet x-axis

Example 2.10 If a and b are the roots of the equation x2 − px+ q = 0, find the value of
1

a
+

1

b
.

Solution:
Given that a and b are the roots of x2 − px+ q = 0. Then, a+ b = p and ab = q. Thus,
1

a
+

1

b
=

a+ b

ab
=

p

q
.

Example 2.11 Find the complete set of values of a for which the quadratic x2 − ax + a + 2 = 0
has equal roots.

Solution:
The quadratic equation x2 − ax+ a+ 2 = 0 has equal roots.
So, its discriminant is zero. Thus, D = b2 − 4ac = a2 − 4a− 8 = 0.
So, a = 4±√

48
2

which gives a = 2 +
√
12, 2−√

12.

Example 2.12 Find the number of solutions of x2 + |x− 1| = 1.

Solution:

Case (1). For x ≥ 1, |x− 1| = x− 1.
Then the given equation reduces to x2+x−2 = 0. Factoring we get (x+2)(x−1) = 0,

which implies x = −2 or 1. As x ≥ 1, we obtain x = 1.
Case (2). For x < 1, |x− 1| = 1− x

Then the given equation becomes x2 + 1− x = 1. Thus we have x(x− 1) = 0 which
implies x = 0 or x = 1. As x < 1, we have to choose x = 0.

Thus, the solution set is {0, 1}. Hence, the equation has two solutions.
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Exercise - 2.4
1. Construct a quadratic equation with roots 7 and −3.
2. A quadratic polynomial has one of its zeros 1 +

√
5 and it satisfies p(1) = 2. Find the quadratic

polynomial.
3. If α and β are the roots of the quadratic equation x2 +

√
2x+3 = 0, form a quadratic polynomial

with zeroes 1
α
, 1
β

.

4. If one root of k(x− 1)2 = 5x− 7 is double the other root, show that k = 2 or −25.
5. If the difference of the roots of the equation 2x2 − (a+ 1)x+ a− 1 = 0 is equal to their product,

then prove that a = 2.
6. Find the condition that one of the roots of ax2 + bx + c may be (i) negative of the other, (ii)

thrice the other, (iii) reciprocal of the other.
7. If the equations x2 − ax+ b = 0 and x2 − ex+ f = 0 have one root in common and if the second

equation has equal roots, then prove that ae = 2(b+ f).
8. Discuss the nature of roots of (i) −x2 + 3x+ 1 = 0, (ii) 4x2 − x− 2 = 0, (iii) 9x2 + 5x = 0.
9. Without sketching the graphs, find whether the graphs of the following functions will intersect the

x-axis and if so in how many points.
(i) y = x2 + x+ 2, (ii) y = x2 − 3x− 7, (iii) y = x2 + 6x+ 9.

10. Write f(x) = x2 + 5x+ 4 in completed square form.

2.5.2 Quadratic Inequalities
Here we shall learn to solve the quadratic inequalities ax2 + bx+ c < 0 or ax2 + bx+ c > 0.

Steps to Solve Quadratic Inequalities:

(i) First solve ax2 + bx+ c = 0.
(ii) If there are no real solutions, then one of the above inequality holds for all x ∈ R

(iii) If there are real solutions, which are called critical points, then label those points on the number
line.

(iv) Note that these critical points divide the number line into disjoint intervals. (It is possible that
there may be only one critical point.)

(v) Choose one representative number from each interval.
(vi) Substitute that these representative numbers in the inequality.

(vii) Identify the intervals where the inequality is satisfied.

Example 2.13 Solve 3x2 + 5x− 2 ≤ 0.

Solution:
On factorizing the quadratic polynomial we get 3(x+ 2)(x− 1

3
) ≤ 0. Draw the number line. Mark

the critical points −2 and 1
3

where the factors vanish (See Figure 2.5). On each sub-interval check
the sign of (x + 2)(x − 1

3
). To do this pick an arbitrary point anywhere in the interval. Whatever

sign the resulting value has, the polynomial has the same sign throughout the whole corresponding
interval. (Otherwise, there would be another critical point within the interval). This process is easily
organized in the following table.
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2.5 Quadratic Functions

–4 –2

–2

y = 3x2 + 5x – 2

2

(–2,0) (1/3,0)

4

–4

2 4 x

y

Figure 2.5

Interval Sign of (x+ 2) Sign of (x− 1/3) Sign of 3x2 + 5x− 2
(−∞,−2) - - +

(−2, 1/3) + - -

(1/3,∞) + + +

You can see the inequality is satisfied in [−2, 1/3].

Example 2.14 Solve
√
x+ 14 < x+ 2.

Solution:
The function

√
x+ 14 is defined for x + 14 ≥ 0. Therefore x ≥ −14, x + 2 > 0 implies x ≥ −2.

(x+ 14) < (x+ 2)2 gives x2 + 3x− 10 > 0.
Hence, (x+ 5)(x− 2) > 0. Dividing the number line with the critical points x = −5 and x = 2.
Substituting a reference point in the sub-interval we get the solution set to be x < −5 and x > 2.
Since x ≥ −2, we have the solution to be x > 2.

Example 2.15 Solve the equation
√
6− 4x− x2 = x+ 4.

Solution:
The given equation is equivalent to the system
(x+ 4) ≥ 0 and 6− 4x− x2 = (x+ 4)2.
This implies x ≥ −4 and x2 + 6x+ 5 = 0. Thus, x = −1,−5.
But only x = −1 satisfies both the conditions. Hence, x = −1.

Exercise - 2.5

1. Solve 2x2 + x− 15 ≤ 0.
2. Solve −x2 + 3x− 2 ≥ 0.
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2.6 Polynomial Functions

So far we have understood about linear functions and quadratic functions. Now we shall generalize
these ideas. We call an expression of the form anx

n + an−1x
n−1 + · · · + a0, where ai ∈ R, i =

0, 1, 2, · · · , n, is called a polynomial in the variable x. Here n is a non-negative integer. When an �= 0,
we say that the polynomial has degree n. The numbers a0, a1, . . . , an ∈ R are called the coefficients
of the polynomial. The number a0 is called the constant term and an is called the leading coefficient
(when it is non-zero). It is clear that:

(i) 100x7 − πx5 + 20
√
2x2 + 7x+ 1.22 is a polynomial of degree 7.

(ii) (17x− 3)(x+ 3)(2x−√
π)(x+ 2.3) is a polynomial of degree 4.

(iii) (x2 + x+ 1)(x3 + 2x+ 2)(x5 − 5x+
√
3) is a polynomial of degree 10.

One may substitute specific values for x, say x = c and obtain anc
n + an−1c

n−1 + · · ·+ a1c+ a0.
A function of the form P (x) = anx

n + an−1x
n−1 + · · ·+ a0 is called a polynomial function which is

defined from R to R. We shall treat polynomial and polynomial function as one and the same.
A polynomial with degree 1 is called a linear polynomial. A polynomial with degree 2 is called

a quadratic polynomial. A cubic polynomial is one that has degree three. Likewise, degree 4 and
degree 5 polynomials are called quartic and quintic polynomials respectively. Note that any constant
a �= 0 is a polynomial of degree zero!

Two polynomials f(x) = anx
n + an−1x

n−1 + · · ·+ a0, an �= 0 and g(x) = bmx
m + bm−1x

m−1 +
· · ·+ b0, bm �= 0 are equal if and only if f(x) = g(x) for all x ∈ R. It can be proved that f(x) = g(x)
if and only if n = m and ak = bk, k = 0, 1, 2, · · ·n. Given two polynomials, one can form their
sum and product. For example if P (x) = 2x3 + 7x2 − 5 and Q(x) = x4 − 2x3 + x2 + x + 1, then
P (x) +Q(x) = x4 + 8x2 + x− 6 (by adding the corresponding coefficients of the like powers of x)
and P (x)Q(x) = 2x7 + 3x6 − 12x5 + 4x4 + 19x3 + 2x2 − 5x− 5 by multiplying each term of P (x)
by every term of Q(x). It is easy to see that the degree of P (x)Q(x) is the sum of the degrees of P (x)
and Q(x), whereas the degree of P (x) +Q(x) is at most the maximum of degrees of P (x) and Q(x).
Here is an example of the graph of a cubic polynomial function.
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–10
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Figure 2.6

Suppose that f(x) and g(x) are polynomials where g(x) is not zero. The quotient
f(x)
g(x)

is called a

rational function, which is defined for all x ∈ R such that g(x) �= 0. In general, a rational function
need not be a polynomial.
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2.6.1 Division Algorithm
Given two polynomials f(x) and g(x), where g(x) is not the zero polynomial, there exist two
polynomials q(x) and r(x) such that f(x) = q(x)g(x)+r(x) where degree of r(x) < degree of g(x).
Here, q(x) is called the quotient polynomial, and r(x) is called the remainder polynomial. If r(x) is
the zero polynomial, then q(x), g(x) are factors of f(x) and f(x) = q(x)g(x).

These terminologies are similar to terminologies used in division done with integers.
If g(x) = x− a, then the remainder r(x) should have degree zero and hence r(x) is a constant. To

determine the constant, write f(x) = (x− a)q(x) + c. Substituting x = a we get c = f(a).

Remainder Theorem
If a polynomial f(x) is divided by x−a, then the remainder is f(a). Thus the remainder c = f(a) = 0
if and only if x− a is a factor for f(x).

Definition 2.1

A real number a is said to be a zero of the polynomial f(x) if f(a) = 0. If x = a is a zero of
f(x), then x− a is a factor for f(x).

In general, if we can express f(x) as f(x) = (x − a)k.g(x) where g(a) �= 0, then the value of k,
which depends on a, cannot exceed the degree of f(x). The value k is called the multiplicity of the
zero a.

(i) A polynomial function of degree n can have at most n distinct real zeros. It is
also possible that a polynomial function like P (x) = x2 + 1 has no real zeros at
all.

(ii) Suppose that P (x) is a polynomial function having rational coefficients. If a +
b
√
p where a, b ∈ Q, p a prime, is a zero of P (x), then its conjugate a− b

√
p is

also a zero.

Two important problems relating to polynomials are

(i) Finding zeros of a given polynomial function; and hence factoring the polynomial into linear
factors and

(ii) Constructing polynomials with the given zeros and/or satisfying some additional conditions.

To address the problem of finding zeros of a polynomial function, some well known algebraic
identities are useful. What is an identity?

An equation is said to be an identity if that equation remains valid for all values in its domain. An
equation is called conditional equation if it is true only for some (not all) of values in its domain. Let
us recall the following identities.

2.6.2 Important Identities
For all x, a, b ∈ R we have

1. (x+ a)3 = (x+ a)2(x+ a) = x3 + 3x2a+ 3xa2 + a3 = x3 + 3xa(x+ a) + a3

2. (x− b)3 = x3 − 3x2b+ 3xb2 − b3 = x3 − 3xb(x− b) + b3 taking a = −b in (1)
3. x3 + a3 = (x+ a)(x2 − xa+ a2)
4. x3 − b3 = (x− b)(x2 + xb+ b2) taking a = −b in (3)
5. xn − an = (x− a)(xn−1 + xn−2a+ · · ·+ xn−k−1ak + · · ·+ an−1), n ∈ N

6. xn + bn = (x+ b)(xn−1 − xn−2b+ · · ·+ xn−k−1(−b)k + · · ·+ (−b)n−1), n ∈ N
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Exercise - 2.6
1. Find the zeros of the polynomial function f(x) = 4x2 − 25.
2. If x = −2 is one root of x3 − x2 − 17x = 22, then find the other roots of equation.
3. Find the real roots of x4 = 16.
4. Solve (2x+ 1)2 − (3x+ 2)2 = 0.

Method of Undetermined Coefficients

Now let us focus on constructing polynomials with the given information using the method of
undetermined coefficients. That is, we shall determine coefficients of the required polynomial using
the given conditions. The main idea here is that two polynomials are equal if and only if the
coefficients of same powers of the variables in the two polynomials are equal.

Example 2.16 Find a quadratic polynomial f(x) such that, f(0) = 1, f(−2) = 0 and f(1) = 0.

Solution:
Let f(x) = ax2 + bx+ c be the polynomial satisfying the given conditions.
f(0) = a02 + b0 + c = 1, implies that c = 1. Now the other two conditions f(−2) = 0, f(1) = 0
give 4a− 2b+ c = 0 and a+ b+ c = 0.

Using c = 1, we get 4a−2b = −1 and a+b = −1. Solving these two equations we get a = b = −1

2

and thus, we have f(x) = −1

2
x2 − 1

2
x+ 1.

The above problem can also be solved in another way. x = −2, x = 1 are zeros of
f(x). Thus, f(x) = d(x+ 2)(x− 1) for some constant d.

Now using f(0) = 1 gives −2d = 1, hence d = −1
2
. So, f(x) = −1

2
(x+2)(x−1) =

−1
2
x2 − 1

2
x+ 1.

Example 2.17 Construct a cubic polynomial function having zeros at x = 2
5
, 1 +

√
3 such that

f(0) = −8.

Solution:
Given that 2

5
and 1 +

√
3 are zeros of f(x). Thus, 1−√

3 is also a zero of f(x).

Let f(x) = a(x− 2
5
)[(x− (1 +

√
3))][x− (1−√

3)] = a(x− 2
5
)[(x− 1)2 − 3].

Using f(0) = −8, we have,
(−2

5
a
)
(−2) = −8 which give a = −10.

Thus the required polynomial is f(x) = (−10)(x− 2
5
)[x2 − 2x− 2] = −10x3 +24x2 +12x− 8.

Example 2.18 Prove that ap+ q = 0 if f(x) = x3−3px+2q is divisible by g(x) = x2+2ax+a2.

Solution:
Note that the degree of f(x) is 3 and the leading coefficient is 1. Since g(x) divides f(x), we have
f(x) = (x+ b)g(x), for some b ∈ R. Thus, x3 − 3px+ 2q = (x+ b)(x2 + 2ax+ a2).

Equating like coefficients on both sides, we have 2a + b = 0, a2 + 2ab = −3p and 2q = ba2.
Thus, b = −2a, p = a2, and q = −a3.

Now, q = −a3 = −a(a2) = −ap, which gives ap+ q = 0.
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Example 2.19 Use the method of undetermined coefficients to find the sum of
1 + 2 + 3 + · · ·+ (n− 1) + n, n ∈ N

Solution:

Let S(n) = n+ (n− 1) + (n− 2) + · · ·+ 2 + 1

= n+ (n− 1) + (n− 2) + · · ·+ [n− (n− 2)] + [n− (n− 1)]

= n

[
1 +

n− 1

n
+

n− 2

2
+ · · ·+ n− (n− 2)

n
+

n− (n− 1)

n

]
≤ n[1 + 1 + · · ·+ 1] since

n− 1

n
< 1,

n− 2

n
< 1, · · ·

Thus, S(n) ≤ n2.

Let S(n) = a+ bn+ cn2, where a, b, c,∈ R.

Now, S(n+ 1)− S(n) = n+ 1

a+ b(n+ 1) + c(n+ 1)2 − [a+ bn+ cn2] = n+ 1

b+ 2cn+ c = n+ 1

Thus, b+ c = 1 and 2c = 1 (Equating like coefficients) which give b =
1

2
; c =

1

2
Now, S(1) = 1 a+ b+ c = 1 which gives a = 0

Hence, S(n) =
1

2
n+

1

2
n2 =

n(n+ 1)

2
, n ∈ N.

Example 2.20 Find the roots of the polynomial equation (x − 1)3(x + 1)2(x + 5) = 0 and state
their multiplicity.

Solution:
Let f(x) = (x− 1)3(x+ 1)2(x+ 5) = 0. Clearly, we have x = 1,−1,−5.

Hence, the roots are 1 with multiplicity 3, −1 with multiplicity 2 and −5 with multiplicity 1.

When the root has multiplicity 1, it is called a simple root.

Example 2.21 Solve x =
√
x+ 20 for x ∈ R.

Solution:
Observe that

√
x+ 20 is defined only if x+ 20 ≥ 0.

By definition,
√
x+ 20 ≥ 0 is positive. So, x is positive.

Now squaring we get x2 = x+ 20. x2 − x− 20 = 0
(x− 5)(x+ 4) = 0, which gives x = 5, x = −4
Since, x is positive, the required solution is x = 5.
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Example 2.22 The equations x2 − 6x+ a = 0 and x2 − bx+6 = 0 have one root in common. The
other root of the first and the second equations are integers in the ratio 4 : 3. Find the common root.

Solution:
Let α be the common root.
Let α, 4β be the roots of x2 − 6x+ a = 0.
Let α, 3β be the roots of x2 − bx+ 6 = 0.
Then, 4αβ = a and 3αβ = 6 which give αβ = 2 and a = 8.
The roots of x2 − 6x+ 8 = 0 are 2, 4.
If α = 2, then β = 1
If α = 4, then β = 1

2
which is not an integer.

Hence, the common root is 2.

Example 2.23 Find the values of p for which the difference between the roots of the equation
x2 + px+ 8 = 0 is 2.

Solution:
Let α and β be the roots of the equation x2 + px+ 8 = 0.

Then, α + β = −p, αβ = 8 and |α− β| = 2.
Now, (α + β)2 − 4αβ = (α− β)2, which gives p2 − 32 = 4. Thus, p = ±6.

Exercise - 2.7

1. Factorize: x4 + 1. (Hint: Try completing the square.)
2. If x2 + x+ 1 is a factor of the polynomial 3x3 + 8x2 + 8x+ a, then find the value of a.

2.7 Rational Functions
A rational expression of x is defined as the ratio of two polynomials in x, say P (x) and Q(x) where

Q(x) �= 0. Examples of rational expressions are
2x+ 1

x2 + x+ 1
,
x4 + 1

x2 + 1
and

x2 + x

x2 − 5x+ 6
.

If the degree of the numerator P (x) is equal to or larger than that of the denominator Q(x), then
we can write P (x) = f(x)Q(x)+r(x) where r(x) = 0 or the degree of r(x) is less than that of Q(x).

So
P (x)

Q(x)
= f(x) +

r(x)

Q(x)
.

2.7.1 Rational Inequalities

Example 2.24 Solve
x+ 1

x+ 3
< 3.

Solution:
Subtracting 3 from both sides we get

x+ 1

x+ 3
− 3 < 0.
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x+ 1− 3(x+ 3)

x+ 3
< 0

−2x− 8

x+ 3
< 0

x+ 4

x+ 3
> 0

Thus, x+ 4 and x+ 3 are both positive or both negative.
So let us find out the signs of x+ 3 and x+ 4 as follows

x x+ 3 x+ 4
x+ 4

x+ 3
x < −4 − − +

−4 < x < −3 − + −
x > −3 + + +
x = −4 − 0 0

So the solution set is given by (−∞,−4) ∪ (−3, ∞).

The above type of rational inequality problem can also be solved by plotting the signs
of various factors on the intervals of the number line.

Exercise - 2.8

1. Find all values of x for which
x3(x− 1)

(x− 2)
> 0.

2. Find all values of x that satisfies the inequality
2x− 3

(x− 2)(x− 4)
< 0.

3. Solve
x2 − 4

x2 − 2x− 15
≤ 0.

2.7.2 Partial Fractions

A rational expression
f(x)

g(x)
is called a proper fraction if the degree of f(x) is less than degree of g(x),

where g(x) can be factored into linear factors and quadratic factors without real zeros. Now
f(x)
g(x)

can

be expressed in simpler terms, namely, as a sum of expressions of the form

(i)
A1

(x− a)
+

A2

(x− a)2
+ · · ·+ Ak

(x− a)k
if x− a divides g(x) and

(ii)
(B1x+ C1)

(x2 + ax+ b)
+

(B2x+ C2)

(x2 + ax+ b)2
+ · · · + (Bkx+ Ck)

(x2 + ax+ b)k
if x2 + ax + b has no real zeros and

(x2 + ax+ b) divides g(x).

The resulting expression of
f(x)

g(x)
is is called the partial fraction decomposition. Such a decomposition

is unique for a given rational function.
This method is useful in doing Integral calculus. So let us discuss some examples.
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Example 2.25 Resolve into partial fractions:
x

(x+ 3)(x− 4)
.

Solution:

Let
x

(x+ 3)(x− 4)
=

A

x+ 3
+

B

x− 4
where A and B are constants.

Then,
x

(x+ 3)(x− 4)
=

A(x− 4) + B(x+ 3)

(x+ 3)(x− 4)
, which gives x = A(x− 4) + B(x+ 3).

When x = 4, we have B =
4

7
.

When x = −3, we have A =
3

7

Hence,
x

(x+ 3)(x− 4)
=

3

7(x+ 3)
+

4

7(x− 4)
.

The above procedure can be carried out if the denominator has all its zeros in R which
are all distinct.

Example 2.26 Resolve into partial fractions:
2x

(x2 + 1)(x− 1)
.

Solution:
In this case, note that the denominator has a factor x2 + 1 which does not have real zeros.

Let
2x

(x2 + 1)(x− 1)
=

A

(x− 1)
+

Bx+ C

x2 + 1
where A,B,C are constants.

We have, 2x = A(x2 + 1) + (Bx+ C)(x− 1).

When x = 1, we get A = 1.

When x = 0, we have A− C = 0 and hence A = C = 1.

When x = −1, we have 2A− 2(C − B) = −2, which gives B = −1.

Thus,
2x

(x2 + 1)(x− 1)
=

1

(x− 1)
+

1− x

x2 + 1

We now illustrate the situation when denominator has a real zeros with multiplicity more than one.

Example 2.27 Resolve into partial fractions:
x+ 1

x2(x− 1)
.

Solution:

Let
x+ 1

x2(x− 1)
=

A

x
+

B

x2
+

C

x− 1
.

Then, x+ 1 = Ax(x− 1) + B(x− 1) + Cx2.

When x = 0, we have B = −1 and when x = 1, we get C = 2.

When x = −1, we have 2A− 2B + C = 0 which gives A = −2.

Thus,
x+ 1

x2(x− 1)
=

−2

x
− 1

x2
+

2

x− 1
.
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Exercise - 2.9
Resolve the following rational expressions into partial fractions.

1.
1

x2 − a2
2.

3x+ 1

(x− 2)(x+ 1)
3.

x

(x2 + 1)(x− 1)(x+ 2)
4.

x

(x− 1)3

5.
1

x4 − 1
6.

(x− 1)2

x3 + x
7.

x2 + x+ 1

x2 − 5x+ 6
8.

x3 + 2x+ 1

x2 + 5x+ 6

9.
x+ 12

(x+ 1)2(x− 2)
10.

6x2 − x+ 1

x3 + x2 + x+ 1
11.

2x2 + 5x− 11

x2 + 2x− 3
12.

7 + x

(1 + x)(1 + x2)

2.7.3 Graphical Representation of Linear Inequalities
A straight line ax + by = c divides the Cartesian plane into two parts. Each part is an half plane. A
vertical line x = c will divide the plane in left and right half planes and a horizontal line y = k will
divide the plane into upper and lower half planes.

A point in the cartesian plane which is not on the line ax + by = c will lie in exactly one of
the two half planes determined by the line and satisfies one of the inequalities ax + by < c or
ax+ by > c.

To identify the half plane represented by ax + by < c, choose a point P in any one of the half
planes and substitute the coordinates of P in the inequality.

If the inequality is satisfied, then the required half plane is the one that contains P ; otherwise the
required half plane is the one that does not contain P . When c �= 0, it is most convenient to take P to
be the origin.

Example 2.28 Shade the region given by the inequality x ≥ 2.

Solution:
First we consider equation x = 2.
It is a line parallel to y axis at a
distance of 2 units from it. This
line divides the cartesian plane into
two parts. Substituting (0, 0) in the
inequality we get 0 ≥ 2 which is
false. Hence the region which does
not contain the origin is represented
by the inequality x ≥ 2. The shaded
region is the required solution set of
the given inequality. Since x ≥ 2,
the points on the line x = 2 are also
solutions.
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Example 2.29 Shade the region given by the linear inequality x+ 2y > 3.

Proof. The line x + 2y = 3 divides the
cartesian plane into two half planes. To
find the half plane represented by x +
2y > 3 substitute a point in one of the
half planes in the inequality and check
whether it is satisfied. Let us substitute
(0, 0) in the inequality. We get 0 > 3
which is false. Hence, the region given
by x + 2y > 3 is the half plane which
does not contain the origin. �

x

y
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1
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3

4

1 2 3 4 5

x + 2y � 3

Example 2.30 Solve the linear inequalities and exhibit the solution set graphically:

x+ y ≥ 3, 2x− y ≤ 5, −x+ 2y ≤ 3.

Solution:
Observe that a straight line can be drawn if we identify any two points on it. For example, (3, 0)
and (0, 3) can be easily identified as two points on the straight line x+ y = 3.
Draw the three straight lines x+ y = 3, 2x− y = 5 and −x+ 2y = 3.
Now (0, 0) does not satisfy x + y ≥ 3. Thus, the half plane bounded by x + y = 3, not containing
the origin, is the solution set of x+ y ≥ 3.

Similarly, the half-plane bounded by
2x− y ≤ 5 containing the origin repre-
sents the solution set of the 2x− y ≤ 5.

The region represented by −x +
2y ≤ 3 is the half space bounded by
the straight line the line −x + 2y = 3
that contains the origin.

The region common to the above
three half planes represents the solution
set of the given linear inequalities. x
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Exercise - 2.10
Determine the region in the plane determined by the inequalities:

(1) x ≤ 3y, x ≥ y.
(2) y ≥ 2x, −2x+ 3y ≤ 6.
(3) 3x+ 5y ≥ 45, x ≥ 0, y ≥ 0.
(4) 2x+ 3y ≤ 35, y ≥ 2, x ≥ 5.
(5) 2x+ 3y ≤ 6, x+ 4y ≤ 4, x ≥ 0, y ≥ 0.
(6) x− 2y ≥ 0, 2x− y ≤ −2, x ≥ 0, y ≥ 0.
(7) 2x+ y ≥ 8, x+ 2y ≥ 8, x+ y ≤ 6.

2.8 Exponents and Radicals
First we shall consider exponents.

2.8.1 Exponents
Let n ∈ N, a ∈ R. Then an = a · a · · · a (n times). If m is a negative integer and the real number

a �= 0, then am =
1

a−m
.

Note that for any a �= 0, we have
a

a
= a1−1 = a0 = 1. It is also easy to see the following

properties.

Properties of Exponents

(i) For m,n ∈ Z and a �= 0, we have aman = am+n.

(ii) For m,n ∈ Z and a �= 0, we have
am

an
= am−n.

2.8.2 Radicals
Question:

For a �= 0 and r ∈ Q, is it possible to define ar?

First let us consider the case when r =
1

n
, n ∈ N. Suppose there is a real number y ∈ R such that

y = a
1
n . Then we must have yn = a.

This problem is basically to finding inverse function of y = xn. In order to understand better let
us consider the graphs of the following functions:

(i) f(x) = x2n, n ∈ N (ii) g(x) = x2n+1, n ∈ N

x–1
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2

3

4

10 2 3
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–2–3

y
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From these two figures it is clear that the function g : R → R given by g(x) = x2n+1, n ∈ N is
one-to-one and onto and hence its inverse function from R onto R exists. But f : R → [0,∞) given
by f(x) = x2n, n ∈ N is onto but not one-to-one. However, f is one-to-one and onto if we restrict
its domain to [0, ∞). This is helpful in understanding nth root of a real number. So we have two cases;

Case 1 When n is even.
In this case yn = a is not meaningful when a < 0. So no such y exists when a < 0.
Assume that a > 0. If y is a solution to xn = a, then −y is also solution to xn = a.

Case 2 When n is odd.
In this case no such problem arises as in Case 1. For y ∈ R, there is a unique x ∈ R such that

y = xn.

Based on the above observation we define radicals as follow.

Definition 2.2
(i) For n ∈ N, n even, and b > 0, there is a unique a > 0 such that an = b.

(ii) For n ∈ N, n odd, b ∈ R, there is a unique a ∈ R such that an = b. In both cases a is
called the nth root of b or radical and is denoted by b1/n or

n
√
b

(i) If n = 2, then nth root is called the square root; if n = 3, then it is called cube
root.

(ii) Observe that the equation x2 = a2, has two solutions x = a, x = −a; but√
a2 = |a|.

(iii) Properties of exponents given above are still valid for radicals provided each of
the individual terms are defined.

(iv) Note that for n ∈ N and a �= 0 we have

(an)1/n =

{ |a| if n is even ,
a if n is odd .

For example, 4
√

(−2)4 = 161/4 = 2, 3431/3 = 7 and (−1000)
1
3 = −10.

For any rational r =
m

n
, m ∈ Z, n ∈ N, with gcd(m,n) = 1 and for a > 0 we define ar = a

m
n =

(a1/n)m.
For example, 493/2 = (491/2)3 = 73 = 343. But (−49)3/2 has no meaning in real number system

because there is no real number x such that x2 = −49.
It is clear that, for x, y ≥ 0 we have (x1/2y−3)1/2 = x1/4/y3/2.
Also, note that

√
x2 − 10x+ 25 =

√
(x− 5)2 = |x− 5|.

2.8.3 Exponential Function
Observe that for any a > 0 and x ∈ R, ax can be defined. If a = 1, we define 1x = 1. So we shall
consider ax, x ∈ R for 0 < a �= 1. Here ax is called exponential function with base a. Note that

ax may not be defined if a < 0 and x =
1

m
for even m ∈ N. This is why we restrict to a > 0. Also,

ax > 0 for all x ∈ R. It does also satisfy the following:

Properties of Exponential Function
For a, b > 0 and a �= 1 �= b

(i) ax+y = ax ay for all x, y ∈ R,

(ii)
ax

ay
= ax−y for all x, y ∈ R,
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2.8 Exponents and Radicals

(iii) (ax)y = axy for all x, y ∈ R,
(iv) (ab)x = axbx for all x ∈ R,
(v) ax = 1 if and only if x = 0.

1. Let us consider f(x) = ax, x ∈ R where a = 2.
Now f(x) = 2x, x ∈ R. Let us show that f is one-to-one and onto.

Suppose f(u) = f(v) for some u, v ∈ R. Then, we have 2u = 2v, which implies that
2u

2v
= 1,

⇒ 2u−v = 1.
So, u− v = 0 and hence u = v. Thus f is a one-to-one function.
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Figure 2.7: f(x) = 2x
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Figure 2.8: f(x) =
1

2x

From the graph it is clear that values of f(x) = 2x increase as x values increase and the range
of f is (0, ∞). So as 20 = 1, we have 2x > 1 for all x > 0 and 2x < 1 for all x < 0. Observe that
f : R → (0,∞) is onto.

2. Let us consider a =
1

2
. Let g(x) =

(
1

2

)x

=
1

2x
, x ∈ R.

From the graph it is clear that the values of g(x) =

(
1

2

)x

decrease as x values increase and

g(R) = (0, ∞). Also, g(0) = 1 we have g(x) > 1 for all x < 0 and g(x) < 1 for all x > 0.

Remark: Exactly same arguments as above would show that an exponential function f(x) = ax, for
any base 0 < a �= 1, is one-to-one and onto with domain R and codomain (0, ∞).

A Special Exponential Function
Among all exponential functions, f(x) = ex, x ∈ R is the most important one as it has applications in
many areas like mathematics, science and economics. Then what is this e? The following illustration
from compounding interest problem leads to the constant e.

Illustration
2.8.3.1 Compound Interest

Recall that if P is the principal, r =
interest rate

100
, n is the number of compounding periods in a year

and t is the number of years, then A = P
(
1 + r

n

)nt
gives the total amount after t years. If n = 4, then

it is compounded quarterly (the interest is added to the existing principal for three months in a year).
If n = 12, then compounded monthly, n = 365 means compounded daily. We can compound every
hour, every minute etc. We know that if P and r are fixed and the number of compounding periods in
a year increases, then the total amount also increases. Let us consider the case with P = 1, r = 1 and
t = 1. Then, we have An =

(
1 + 1

n

)n
. We want to understand how big it gets as n gets really large.

Let us make a table with different values of n = 10, 100, 10000, 100000, 100000000.
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n 10 100 10000 100000 100000000

An 2.593742460 2.704813829 2.718145927 2.718268237 2.718281815

We notice that as n gets really large, An values seem to be getting closer to 2.718281815..... Actually
An values approach a real number e, an irrational number. 2.718281815 is an approximation to e. So
the compound interest formula becomes A = Pert, where r is the interest rate and P is the principal
and t is the number of years. This is called Continuous Compounding.

Example 2.31 (i) Simplify: (x1/2y−3)1/2; where x, y ≥ 0.
(ii) Simplify:

√
x2 − 10x+ 25.

Solution:
(i) Since x, y ≥ 0, we have (x1/2y−3)1/2 = x1/4/y3/2.
(ii) Observe that

√
x2 − 10x+ 25 =

√
(x− 5)2 = |x− 5|.

(i) (x1/4)4 = x but (y4)1/4 = |y|.
Observe that x1/4 is defined only when x is positive. But y4 is defined even

when y < 0.
Now (y4)1/4 is a positive number whose fourth power equals y4. So it has to

be |y|.
(ii) (x8.y4)1/4 = x2|y|.

(iii) Let u, v, b be rational numbers where b is positive.
Let us suppose they are not squares of rational numbers.

Then u+ v
√
b, u− v

√
b are called conjugates.

Observe that (u+ v
√
b)(u− v

√
b) = u2 − bv2 is now rational.

Thus, if an expression such as u + v
√
b appears in the denominator we can

multiply both the numerator and denominator by its conjugate, namely, u− v
√
b,

to get a rational number in the denominator.
(iv) Using (u

√
a − v

√
b)(u

√
a + v

√
b) = u2a − v2b, it is possible to simplify

expressions when u
√
a+ v

√
b occurs in the denominator.

Example 2.32 Rationalize the denominator of

√
5

(
√
6 +

√
2)

.

Solution:
Multiplying both numerator and denominator by (

√
6−√

2),we get√
5

(
√
6 +

√
2)

=

√
5(
√
6−√

2)

(
√
6 +

√
2)(

√
6−√

2)
=
(
√
30−√

10)

4
.

Example 2.33 Find the square root of 7− 4
√
3.

Solution:

Let
√
7− 4

√
3 = a+ b

√
3 where a, b are rationals.

Squaring on both sides, we get 7− 4
√
3 = a2 + 3b2 + 2ab

√
3. So, a2 + 3b2 = 7 and 2ab = −4.
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2.9 Logarithm

Therefore a = −2/b.
From a2+3b2 = 7, we get (−2/b)2+3b2 = 7, which gives 4/b2+3b2 = 7 or 3b4−7b2+4 = 0.

Solving for b2 we get b2 = (7±√
49−48)
6

, which gives b2 = 1 or b2 = 4
3
.

Thus, b = ±1 or b = ± 2√
3
.

Since b is rational, we have b = ±1 and hence the corresponding values of a are ∓2.

Since
√

7− 4
√
3 > 0, we have

√
7− 4

√
3 = 2−√

3.

It is not always possible to express square roots of u+ v
√
b where u, v are rationals, in

the form x + y
√
b with x, y rationals. For example, the square root of 1 +

√
2 is not of

the form a+ b
√
2 with a, b rationals.

Exercise - 2.11
1. Simplify:

(i) (125)
2
3 , (ii) 16

−3
4 , (iii) (−1000)

−2
3 , (iv) (3−6)

1
3 , (v)

27
−2
3

27
−1
3

.

2. Evaluate
((

(256)−1/2
)−1

4

)3
.

3. If (x1/2 + x−1/2)2 = 9/2, then find the value of (x1/2 − x−1/2) for x > 1.
4. Simplify and hence find the value of n: 32n923−n/33n = 27.
5. Find the radius of the spherical tank whose volume is 32π/3 units.

6. Simplify by rationalising the denominator.
7 +

√
6

3−√
2
.

7. Simplify
1

3−√
8
− 1√

8−√
7
+

1√
7−√

6
− 1√

6−√
5
+

1√
5− 2

.

8. If x =
√
2 +

√
3 find

x2 + 1

x2 − 2
.

2.9 Logarithm
We have seen that, with a base 0 < a �= 1, the exponential function f(x) = ax is defined on R having
range (0, ∞). We also observed that f(x) is a bijection, hence it has an inverse. We call this inverse
function as logarithmic function and is denoted by loga(.). Let us discuss this function further. Note
that if f(x) takes x to y = ax, then loga(.) takes y to x. That is, for 0 < a �= 1, we have

y = ax is equivalent to loga y = x.

For example, since 34 = 81 we have log3(81) = 4. In other words, with fixed a, given a real
number y, logarithm finds the exponent x satisfying ax = y. This is useful in addressing practical
problems like, “how long will it take for certain investment to reach a fixed amount?” Logarithm is
also very useful in multiplying very small or big numbers.

(i) Note that exponential function ax is defined for all x ∈ R and ax > 0 and so
loga(·) defined only for positive real numbers.

(ii) Also, a0 = 1 for any base a and hence loga(1) = 0 for any base a.
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2.9.1 Properties of Logarithm

(i) aloga x = x for all x ∈ (0, ∞) and loga (a
y) = y for all y ∈ R.

(ii) For any x, y > 0, loga(xy) = loga x+ loga y. (Product Rule)

(iii) For any x, y > 0, loga

(
x

y

)
= loga x− loga y. (Quotient Rule)

(iv) For any x > 0 and r ∈ R, loga x
r = r loga x. (Power Rule)

(v) For any x > 0, with a and b as bases, logb x =
loga x

loga b
. (Change of base formula.)

Proof. Since exponential function with base a and logarithm function with base a are inverse of each
other,

(i) follows by using the definitions.
(ii) For x, y > 0 let loga x = u, loga y = v, and loga(xy) = w. Rewriting these in the exponential

form we obtain au = x, av = y, and, aw = xy. So, aw = xy = auav = au+v; thus w = u + v.
Thus, we obtain loga(xy) = loga x+ loga y.

(iii) Let loga x = u, loga y = v, and loga
x

y
= w. Then au = x, av = y and aw =

x

y
. Hence,

aw =
x

y
=

au

av
= au−v; which implies w = u− v.

Thus, we obtain loga

(
x

y

)
= loga x− loga y.

(iv) Let loga x = u. Then au = x and therefore, xr = (au)r = aru. Thus, loga x
r = nu = r loga x.

(v) Let logb x = v. We have bv = x. Taking logarithm with base a on both sides we get
loga b

v = loga x.

On the other hand loga b
v = v loga b by the Power rule. Therefore, v loga b = loga x.

Hence logb x =
loga x

loga b
, b > 0. This completes the proof.

�

Remark:

(i) If a = 10, then the corresponding logarithmic function log10 x is called the common logarithm.
(ii) If a = e,(an irrational number, approximately equal to 2.718), then the corresponding

logarithmic function loge x is called the natural logarithm. It is denoted by ln x. These
above particular cases of logarithmic functions are used very much in other sciences and
engineering. Particularly, the natural logarithm occurs very naturally. When we write log x we
mean loge x.

(iii) If a = 2, then the corresponding logarithmic function log2 x called the binary logarithm, which
is used in computer science.

(iv) Observe that loga 35 = loga(7 ∗ 5) = loga 7 + loga 5; loga
50

3
= loga 50 −

loga 3.

loga 22
x = x loga 22; log5 50 =

log10 50

log10 5
.

(v) Observe the graph of the logarithmic and exponential functions.
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Example 2.34 Find the logarithm of 1728 to the base 2
√
3.

Solution:
Let log2

√
3 1728 = x.

Then we have (2
√
3)x = 1728 = 26 33 = 26 (

√
3)6.

Hence, (2
√
3)x = (2

√
3)6.

Therefore x = 6. That is, log2
√
3 1728 = 6.

Example 2.35 If the logarithm of 324 to base a is 4, then find a.

Solution:
We are given loga 324 = 4, which gives
a4 = 324 = 34 (

√
2)4. Therefore a = 3

√
2.

Example 2.36 Prove log
75

16
− 2 log

5

9
+ log

32

243
= log 2.

Solution:
Using the properties of logarithm, we have

log
75

16
− 2 log

5

9
+ log

32

243
= log 75− log 16− 2 log 5 + 2 log 9 + log 32− log 243.

(By Quotient rule.)

= log 3 + log 25− log 16− log 25 + log 81 + log 16 + log 2− log 81− log 3

= log 2.

Example 2.37 If log2 x+ log4 x+ log16 x =
7

2
, find the value of x.

Solution:
Note that x > 0.

log2 x+ log4 x+ log16 x =
7

2
becomes

1

logx 2
+

1

logx 4
+

1

logx 16
=

7

2
. (change of base rule)

Thus
1

a
+

1

2a
+

1

4a
=

7

2
where a = logx 2. That is

7

4a
=

7

2
.
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Thus, a =
1

2
and so, logx 2 =

1

2
which gives x

1
2 = 2.

Thus, x = 22 = 4.

Example 2.38 Solve xlog3 x = 9.

Solution:
Let log3 x = y.
Then x = 3y and so, 3y

2
= 9.

Thus, y2 = 2, which implies y =
√
2, −√

2. Hence, x = 3
√
2, 3−

√
2.

Example 2.39 Compute log3 5 log25 27.

Solution:
log3 5 log25 27 = log3 5 log25 3

3.
= log3 5× 3 log25 3 (by exponent rule)
= 3 log25 5 = 3

log5 25
= 3

2 log5 5
= 3

2
.

Example 2.40 Given that log10 2 = 0.30103, log10 3 = 0.47712 (approximately), find the number
of digits in 28.312.

Solution:
Suppose that N = 28312 has n + 1 digits. Then N can be written as 10n × b where 1 ≤ b < 10.
Taking logarithm to the base 10, we get
logN = log(10n b) = n log 10 + log b = n+ log b.
On the other hand,
logN = log 28312 = 8 log 2 + 12 log 3 = 8× 0.30103 + 12× 0.47712 = 8.13368.
Thus, we get n+ log b = 8.13368. Since 1 ≤ b < 10 the number of digits is 9.

Exercise - 2.12
1. Let b > 0 and b �= 1. Express y = bx in logarithmic form. Also state the domain and range of the

logarithmic function.
2. Compute log9 27− log27 9 .
3. Solve log8 x+ log4 x+ log2 x = 11.
4. Solve log4 2

8x = 2log2 8.

5. If a2 + b2 = 7ab, show that log
a+ b

3
=

1

2
(log a+ log b).

6. Prove log
a2

bc
+ log

b2

ca
+ log

c2

ab
= 0.

7. Prove that log 2 + 16 log
16

15
+ 12 log

25

24
+ 7 log

81

80
= 1.

8. Prove loga2 a logb2 b logc2 c =
1
8
.

9. Prove log a+ log a2 + log a3 + · · ·+ log an =
n(n+ 1)

2
log a.
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Exercise

10. If
log x

y − z
=

log y

z − x
=

log z

x− y
, then prove that xyz = 1.

11. Solve log2 x− 3 log 1
2
x = 6.

12. Solve log5−x(x
2 − 6x+ 65) = 2.

2.10 Application of Algebra in Real Life
Algebra is used in many aspects of life. Financial planning is an area in daily life where algebra is
used. Algebra concepts are used to calculate interest rates by bankers and as well as for calculating
loan repayments. They are used to predict growth of money. Physical fitness is another area where
calculations are made to determine the right amount of food intake for an individual taking into
consideration such as the height, body mass of the person etc. Doctors use algebra in measuring
drug dosage depending on age and weight of an individual. Architects depend on algebra to design
buildings while civil engineers use it to design roads, bridges and tunnels. Algebra is needed to convert
items to scale so that the structures designed have the correct proportions. It is used to programme
computers and phones . Let us see some examples. Because of the extra-ordinary range of sensitivity
of the human ear (a range of over 1000 million millions to one), it is useful to use logarithmic scale
to measure sound intensity over this range. The unit of measure decibel is named after the inventor of
the telephone Alexander Graham Bell.
If we know the population in the world today, the growth, which is rapid, can be measured by
approximating to an exponential function. The radioactive carbon-14 is an organism which decays
according to an exponential formula.

Exercise - 2.13
Choose the correct or the most suitable answer.

1. If |x+ 2| ≤ 9, then x belongs to

(1) (−∞,−7) (2) [−11, 7] (3) (−∞,−7) ∪ [11,∞) (4) (−11, 7)

2. Given that x, y and b are real numbers x < y, b > 0, then
(1) xb < yb (2) xb > yb (3) xb ≤ yb (4) x

b
≥ y

b

3. If
|x− 2|
x− 2

≥ 0, then x belongs to

(1) [2,∞) (2) (2,∞) (3) (−∞, 2) (4) (−2,∞)

4. The solution of 5x− 1 < 24 and 5x+ 1 > −24 is

(1) (4, 5) (2) (−5,−4) (3) (−5, 5) (4) (−5, 4)

5. The solution set of the following inequality |x− 1| ≥ |x− 3| is

(1) [0, 2] (2) [2,∞) (3) (0, 2) (4) (−∞, 2)
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6. The value of log√2 512 is

(1) 16 (2) 18 (3) 9 (4) 12

7. The value of log3
1
81

is

(1) −2 (2) −8 (3) −4 (4) −9

8. If log√x 0.25 = 4, then the value of x is

(1) 0.5 (2) 2.5 (3) 1.5 (4) 1.25

9. The value of loga b logb c logc a is

(1) 2 (2) 1 (3) 3 (4) 4

10. If 3 is the logarithm of 343, then the base is

(1) 5 (2) 7 (3) 6 (4) 9

11. Find a so that the sum and product of the roots of the equation
2x2 + (a− 3)x+ 3a− 5 = 0 are equal is

(1) 1 (2) 2 (3) 0 (4) 4

12. If a and b are the roots of the equation x2 − kx+ 16 = 0 and satisfy a2 + b2 = 32, then the value
of k is

(1) 10 (2) −8 (3) −8, 8 (4) 6

13. The number of solutions of x2 + |x− 1| = 1 is

(1) 1 (2) 0 (3) 2 (4) 3

14. The equation whose roots are numerically equal but opposite in sign to the roots of
3x2 − 5x− 7 = 0 is

(1) 3x2 − 5x− 7 = 0 (2) 3x2 + 5x− 7 = 0 (3) 3x2 − 5x+ 7 = 0 (4) 3x2 + x− 7

15. If 8 and 2 are the roots of x2 + ax+ c = 0 and 3, 3 are the roots of x2 + dx+ b = 0, then the roots
of the equation x2 + ax+ b = 0 are

(1) 1, 2 (2) −1, 1 (3) 9, 1 (4) −1, 2

16. If a and b are the real roots of the equation x2 − kx+ c = 0, then the distance between the points
(a, 0) and (b, 0) is

(1)
√
k2 − 4c (2)

√
4k2 − c (3)

√
4c− k2 (4)

√
k − 8c
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17. If
kx

(x+ 2)(x− 1)
=

2

x+ 2
+

1

x− 1
, then the value of k is

(1) 1 (2) 2 (3) 3 (4) 4

18. If 1−2x
3+2x−x2 = A

3−x
+ B

x+1
, then the value of A+B is

(1) −1
2

(2) −2
3

(3) 1
2

(4) 2
3

19. The number of roots of (x+ 3)4 + (x+ 5)4 = 16 is

(1) 4 (2) 2 (3) 3 (4) 0

20. The value of log3 11 · log11 13 · log13 15 · log15 27 · log27 81 is

(1) 1 (2) 2 (3) 3 (4) 4

Summary
• π and

√
p, where p is a prime number, are some irrational numbers.

• |x− a| = r if and only if r ≥ 0 and x− a = ±r.

• |x− a| ≤ r if and only if −r ≤ x− a ≤ r or a− r ≤ x ≤ a+ r.

• |x− a| > r implies x < a− r and x > a+ r (or) x ∈ (−∞, a− r) ∪ (a+ r,∞)

• inequalities, in general, have more than one solution.

• The nature of roots of ax2 + bx+ c = 0 is determined by the discriminant D = b2 − 4ac.

• A real number a is a zero of a polynomial function f(x) if and only if (x − a) is a factor of
f(x).

• If degree of f(x) is less than the degree of g(x), then
f(x)
g(x)

can be written as sum of its partial

fractions.

• In general exponential functions and logarithmic functions are inverse functions to each other.

83



Basic Algebra

ICT CORNER-2(a)

Expected Outcome ⇒

Step–1
Open the Browser and type the URL Link given below (or) Scan the QR Code.

Step–2
GeoGebra Work Sheet called “Hill and Flower Puzzle” will appear. Puzzle Detail

(a)You have some flowers in your hand. If you climb up the hill the flowers will be doubled
and also, when you climb down the hill it will be doubled. (b)At the top of each hill there
is a idol of god where you have to put some flowers. (c)you have to climb and put flowers
in all the three idols in each hill top.

finally, when you reach the top of the third hill you have to put all the flowers in hand
such a way that all the three Idols get equal flowers. How many flowers you should take
and how many flowers you should put on each Idol?

Step–3
You can think of the no. of flowers taken by you as X value and no. of flowers offered
to the god as Y value. And adjust the sliders in the page. Simply by thinking you cannot
solve the puzzle.

Step–4
Now is the time for you to recognise the need of algebra. Think of the way to use Algebra.
Otherwise Click on the box Show Calculation. Algebra calculation at each level is seen.
Now you have to Identify the equation to solve the puzzle. Note: The result will be a ratio.
.Step-1
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Browse in the link Hill and Flower Puzzle:
https://ggbm.at/KmrE5vHsor Scan the QR Code.

ICT CORNER-2(b)

Expected Outcome ⇒

Step–1
Open the Browser and type the URL Link given below (or) Scan the QR Code. GeoGebra
work book named High School Algebra will open. In that several work sheets are given,
choose any worksheet you want, for example open the work sheet “Quadratic Equation”
solving by formula.

In the work sheet you can enter any value between −20 and 20 for a, b and c. You yourself
work out the answer using the formula given.(? mark indicates Undefined answer

Step–2
Now click on the answer to check. You can click the check box one by one to see the steps.
Finally, on right hand side click Show Graph to view the graph. Compare the graph with your
answer.)
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(The curve where it cuts the x-axis is the answer).

Browse in the link Hill and Flower Puzzle:
https://ggbm.at/N4kX9QJqor Scan the QR Code.
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